高考数学模拟复习试卷试题模拟卷第03节 二项式定理 2

合集下载

高考数学模拟复习试卷试题模拟卷第03节 二项式定理0013 6

高考数学模拟复习试卷试题模拟卷第03节 二项式定理0013 6

高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28 【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)256 【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 【答案】C 【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210 【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【大纲高考第13题】8y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70.14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为. 【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项. 【解析】(1)通项公式为2333111()()22n k k n kkk k kk nn T C xx C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈N,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值. 解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.① (2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.② 与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013, ∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r , ∴a2k -1<0,a2k>0 (k ∈N*). ∴|a0|+|a1|+|a2|+…+|a2 013| =a0-a1+a2-…-a2 013 =32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟复习试卷试题模拟卷第03节 二项式定理001 30

高考数学模拟复习试卷试题模拟卷第03节 二项式定理001 30

高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28 【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)256 【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 【答案】C 【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210 【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【大纲高考第13题】8y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70.14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为. 【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项. 【解析】(1)通项公式为2333111()()22n k k n kkk k kk nn T C xx C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈N,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值. 解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.① (2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.② 与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013, ∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r , ∴a2k -1<0,a2k>0 (k ∈N*). ∴|a0|+|a1|+|a2|+…+|a2 013| =a0-a1+a2-…-a2 013 =32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷【高频考点解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【热点题型】题型一 考查函数的定义域 例 1.(1)(函数f(x)= 1-2x +1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数y =ln ⎝⎛⎭⎫1+1x + 1-x2的定义域为________.【提分秘籍】1.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题角度有:(1)求给定函数解析式的定义域.(2)已知f(x)的定义域,求f(g(x))的定义域. (3)已知定义域确定参数问题. 2.简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f(x)的定义域为[a ,b],则函数f(g(x))的定义域由不等式a≤g(x)≤b 求出. 【举一反三】已知f(x)的定义域为⎣⎡⎦⎤-12,12,求函数y =f ⎝⎛⎭⎫x2-x -12的定义域.题型二考查函数的解析式例2、(1)已知f(1-cos x)=sin2x ,求f(x)的解析式;(2)已知f(x)是二次函数且f(0)=2,f(x +1)-f(x)=x -1,求f(x)的解析式;(3)已知f(x)+2f ⎝⎛⎭⎫1x =x(x≠0),求f(x)的解析式.【提分秘籍】求函数解析式的常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x 替代g(x),便得f(x)的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.(4)解方程组法:已知关于f(x)与f ⎝⎛⎭⎫1x 或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f(x).【举一反三】已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为( ) A .f(x)=x2-12x +18B .f(x)=13x2-4x +6 C .f(x)=6x +9D .f(x)=2x +3题型三考查分段函数例3、如图,点P 从点O 出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系分别记为y =f(x),y =g(x),定义函数h(x)=⎩⎪⎨⎪⎧f x ,f x ≤g x ,g x ,f x >g x .对于函数y =h(x),下列结论正确的个数是( )①h(4)=10;②函数h(x)的图象关于直线x =6对称;③函数h(x)的值域为[0,13 ];④函数h(x)的递增区间为(0,5).A .1B .2C .3D .4【提分秘籍】(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求的变量值或自变量的取值范围,应根据每一段的解析式分别求解.但要注意检验,是否符合相应段的自变量的取值范围.【举一反三】已知f(x)=⎩⎪⎨⎪⎧2x ,x>0,f x +1,x≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43等于________.【高考风向标】1.【高考湖北,文6】函数256()4||lg 3x x f x x x -+--的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-3.【高考重庆,文3】函数22(x)log (x 2x 3)f 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.【高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A)16小时 (B)20小时 (C)24小时 (D)21小时1.(·安徽卷)若函数f(x)(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x≤1,sin πx ,1<x≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______.2.(·北京卷)下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x3 C .y =ln x D .y =|x|3.(·江西卷)将连续正整数1,2,…,n(n ∈N*)从小到大排列构成一个数123…n ,F(n)为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S ={n|h(n)=1,n≤100,n ∈N*},求当n ∈S 时p(n)的最大值.4.(·山东卷)函数f(x)=1log2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)5.(·安徽卷)定义在R 上的函数f(x)满足f(x +1)=2f(x),若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.6.(·安徽卷)函数y =ln1+1x +1-x2的定义域为________.7.(·福建卷)已知函数f(x)=⎩⎪⎨⎪⎧2x3,x<0,-tanx ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________.8.(·江西卷)设函数f(x)=⎩⎨⎧1a x ,0≤x≤a ,11-a (1-x ),a<x≤1.a 为常数且a ∈(0,1).(1)当a =12时,求f ⎝⎛⎭⎫f ⎝⎛⎭⎫13;(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC 的面积为S(a),求S(a)在区间⎣⎡⎦⎤13,12上的最大值和最小值.9.(·辽宁卷)已知函数f(x)=x2-2(a +2)x +a2,g(x)=-x2+2(a -2)x -a2+8.设 H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p ,q}表示p ,q 中的较大值,min{p ,q}表示p ,q 中的较小值),记H1(x)的最小值为A ,H2(x)的最大值为B ,则A -B =( )A .a2-2a -16B .a2+2a -16C .-16D .1610.(·辽宁卷)已知函数f(x)=ln(1+9x2-3x)+1,则f(lg 2)+flg 12=( ) A .-1 B .0 C .1 D .211.(·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-9所示.经销商为下一个销售季度购进了130 t 该产品.以X(单位:t ,100≤X ≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图1-9(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.11.(·山东卷)函数f(x)=1-2x +1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]12.(·四川卷)已知圆C 的方程为x2+(y -4)2=4,点O 是坐标原点.直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)设Q(m ,n)是线段MN 上的点,且2|OQ|2=1|OM|2+1|ON|2.请将n 表示为m 的函数.13.(·浙江卷)已知函数f(x)= x -1.若f(a)=3,则实数a = ________.14.(·重庆卷)函数y =1log2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)【高考押题】1.下列函数中,与函数y =13x定义域相同的函数为( ).A .y =1sin x B .y =ln x x C .y =xexD .y =sin xx2.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x2+1,值域为{1,3}的同族函数有( ).A .1个B .2个C .3个D .4个3.若函数y =f(x)的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数y =f(x)的图象可能是( ).4.已知函数f(x)=⎩⎪⎨⎪⎧|lg x|,0<x≤10,-12x +6,x>10.若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( ). A .(1,10) B .(5,6) C .(10,12)D .(20,24)5.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b≤1,b ,a -b >1.设函数f(x)=(x2-2)⊗(x -x2),x ∈R.若函数y =f(x)-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(-∞,-2]∪⎝⎛⎭⎫-1,32B .(-∞,-2]∪⎝⎛⎭⎫-1,-34C.⎝⎛⎭⎫-1,14∪⎝⎛⎭⎫14,+∞D.⎝⎛⎭⎫-1,-34∪⎣⎡⎭⎫14,+∞6.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数的图象为( )7.已知函数f(x),g(x)分别由下表给出,x 1 2 3 f(x)131x 1 2 3 g(x)321则f[g(1)]的值为________,满足f[g(x)]>g[f(x)]的x 的值是________.8.已知函数f(x)=⎩⎪⎨⎪⎧x2+1,x≥0,1,x<0,则满足不等式f(1-x2)>f(2x)的x 的取值范围是________.9.已知函数f(x)的图象如图所示,则函数g(x)=2logf(x)的定义域是______.10.设函数f(x)=⎩⎪⎨⎪⎧1,1≤x≤2,x -1,2<x≤3,g(x)=f(x)-ax ,x ∈[1,3],其中a ∈R ,记函数g(x)的最大值与最小值的差为h(a). (1)求函数h(a)的解析式;(2)画出函数y =h(x)的图象并指出h(x)的最小值.11.求下列函数的定义域: (1)f(x)=lg 4-xx -3;(2)y =25-x2-lg cos x ; (3)y =lg(x -1)+lg x +1x -1+19-x .12. 设x≥0时,f(x)=2;x <0时,f(x)=1,又规定:g(x)=()()3f x 1f x 22---(x >0),试写出y=g(x)的解析式,并画出其图象.13.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1. (1)求f(x)的解析式;(2)在区间[-1,1]上,函数y =f(x)的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟复习试卷试题模拟卷第03节 二项式定理001 14

高考数学模拟复习试卷试题模拟卷第03节 二项式定理001 14

高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28 【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)256 【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 【答案】C 【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210 【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【大纲高考第13题】8y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70.14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为. 【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项. 【解析】(1)通项公式为2333111()()22n k k n kkk k kk nn T C xx C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈N,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值. 解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.① (2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.② 与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013, ∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r , ∴a2k -1<0,a2k>0 (k ∈N*). ∴|a0|+|a1|+|a2|+…+|a2 013| =a0-a1+a2-…-a2 013 =32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟复习试卷试题模拟卷第03节 二项式定理0011 7

高考数学模拟复习试卷试题模拟卷第03节 二项式定理0011 7

高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28 【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)256 【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 【答案】C 【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210 【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【大纲高考第13题】8y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70.14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为. 【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项. 【解析】(1)通项公式为2333111()()22n k k n kkk k kk nn T C xx C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈N,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值. 解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.① (2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.② 与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013, ∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r , ∴a2k -1<0,a2k>0 (k ∈N*). ∴|a0|+|a1|+|a2|+…+|a2 013| =a0-a1+a2-…-a2 013 =32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟复习试卷试题模拟卷第03节 二项式定理0011 4

高考数学模拟复习试卷试题模拟卷第03节 二项式定理0011 4

高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28 【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)256 【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 【答案】C 【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210 【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【大纲高考第13题】8y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70.14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为. 【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项. 【解析】(1)通项公式为2333111()()22n k k n kkk k kk nn T C xx C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈N,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值. 解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.① (2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.② 与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013, ∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r , ∴a2k -1<0,a2k>0 (k ∈N*). ∴|a0|+|a1|+|a2|+…+|a2 013| =a0-a1+a2-…-a2 013 =32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟复习试卷试题模拟卷第03节 二项式定理 23

高考数学模拟复习试卷试题模拟卷第03节 二项式定理 23

高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .174.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( ) A.第五项 B.第六项 C.第七项 D.第六和第七项5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或286.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .77.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30(D )608.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .929.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .1210.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)25611.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【大纲高考第13题】8x y y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为.15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答).16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项;(2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值.20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷【考情解读】1.以立体几何的有关定义、公理和定理为出发点,认识和理解空间中线面平行、面面平行的有关性质与判定定理,并能够证明相关性质定理;2.能运用线面平行、面面平行的判定及性质定理证明一些空间图形的平行关系的简单命题.【重点知识梳理】1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b 2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥b a∥α【高频考点突破】考点一有关线面、面面平行的命题真假判断【例1】 (1)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是() A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β(2)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β【变式探究】 (1)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是() A.b⊂α B.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α(2)给出下列关于互不相同的直线l,m,n和平面α,β,γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为()A.3 B.2 C.1 D.0考点二直线与平面平行的判定与性质【例2】如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明(1)如图,取BD的中点O,连接CO,EO.法二如图,延长AD,BC交于点F,连接EF.因为CB=CD,∠BCD=120°,所以∠CBD=30°.【变式探究】如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.考点三平面与平面平行的判定与性质【例3】如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.【变式探究】如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.考点四平行关系中的探索性问题【例4】 (·四川卷)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.存在.而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.【变式探究】 如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD =DC =4,AD =2,E 为PC 的中点.(1)求三棱锥A -PDE 的体积;(2)AC 边上是否存在一点M ,使得PA ∥平面EDM ?若存在,求出AM 的长;若不存在,请说明理由.【真题感悟】1.【高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂()A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m【答案】A2.【高考浙江,文18】(本题满分15分)如图,在三棱锥111ABC A B C 中,11ABC 90AB AC 2,AA 4,A ∠====,在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明:11D A BC A ⊥平面;(2)求直线1A B 和平面11B C B C 所成的角的正弦值.1.(·安徽卷)如图1-5,四棱柱ABCD -A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.图1-5(1)证明:Q为BB1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA1=4,CD =2,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小.V 三棱锥Q -A1AD =13×12·2a·h·d =13ahd ,V 四棱锥Q -ABCD =13·a +2a 2·d·⎝⎛⎭⎫12h =14ahd , 所以V 下=V 三棱锥Q -A1AD +V 四棱锥Q -ABCD =712ahd.又V 四棱柱A1B1C1D1 -ABCD =32ahd ,所以V 上=V 四棱柱A1B1C1D1 -ABCD -V 下=32ahd -712ahd =1112ahd ,故V 上V 下=117. (3)方法一:如图1所示,在△ADC 中,作AE ⊥DC ,垂足为E ,连接A1E.又DE ⊥AA1,且AA1∩AE =A ,所以DE ⊥平面AEA1,所以DE ⊥A1E.所以∠AEA1为平面α与底面ABCD 所成二面角的平面角.因为BC ∥AD ,AD =2BC ,所以S △ADC =2S △BCA.由⎩⎪⎨⎪⎧DA1→·n =4sin θ x +4=0,DC →·n =2xcos θ+2ys in θ=0, 得⎩⎪⎨⎪⎧x =-sin θ,y =cos θ,所以n =(-sin θ,cos θ,1).又因为平面ABCD 的法向量m =(0,0,1),所以cos 〈n ,m 〉=n·m |n||m|=22,故平面α与底面ABCD 所成二面角的大小为π4.2.(·北京卷)如图1-3,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P -ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.3.(·湖北卷)如图1-4,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ.(2)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.图1-4图①图②4.(·新课标全国卷Ⅱ)如图1-3,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.图1-3由题设易知|cos 〈n1,n2〉|=12,即 33+4m2=12,解得m =32. 因为E 为PD 的中点,所以三棱锥E-ACD 的高为12.三棱锥E-ACD 的体积V =13×12×3×32×12=38.5.(·山东卷)如图1-3所示,在四棱柱ABCD -A1B1C1D1中,底面ABCD 是等腰梯形,∠DAB =60°,AB=2CD=2,M是线段AB的中点.图1-3(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.方法二:由(1)知,平面D1C1M∩平面ABCD=AB,点过C向AB引垂线交AB于点N,连接D1N.【押题专练】1.若直线ɑ平行于平面α,则下列结论错误的是()A.ɑ平行于α内的所有直线B.α内有无数条直线与ɑ平行C.直线ɑ上的点到平面α的距离相等D.α内存在无数条直线与ɑ成90°角2.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是 () A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面3.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β4.已知m,n为两条不同的直线,α,β,γ为三个不同的平面,则下列命题中正确的是 () A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊥α,则m∥nC.若α∥β,m∥n,m∥α,则n∥βD.若α⊥γ,β⊥γ,则α∥β5.在四面体ABCD中,截面PQMN是正方形,则在下列结论中,错误的是 ()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°6.设a,b是两条直线,α,β是两个不同的平面,则α∥β的一个充分条件是 ()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α7.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①③ B.②③ C.①④ D.②④8.棱长为2的正方体ABCD-A1B1C1D1中,M是棱AA1的中点,过C,M,D1作正方体的截面,则截面的面积是________.9.如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.10.设α,β,γ是三个平面,a,b是两条不同直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确的序号填上).11.如图,在正四棱柱A1C中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1(请填上你认为正确的一个条件).解析如图,连接FH,HN,FN,12.如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.13.一个多面体的直观图及三视图如图所示(其中M,N分别是AF,BC的中点).(1)求证:MN∥平面CDEF;(2)求多面体A-CDEF的体积.14.如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将△AEF沿线段EF折起到△A′EF位置,使得A′C=2 6.(1)求五棱锥A′-BCDFE的体积;(2)在线段A′C上是否存在一点M,使得BM∥平面A′EF?若存在,求A′M;若不存在,请说明理由.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟复习试卷试题模拟卷第03节 二项式定理001 3

高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28 【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)256 【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 【答案】C 【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210 【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【大纲高考第13题】8y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70.14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为. 【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项. 【解析】(1)通项公式为2333111()()22n k k n kkk k kk nn T C xx C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈N,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值. 解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.① (2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.② 与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013, ∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r , ∴a2k -1<0,a2k>0 (k ∈N*). ∴|a0|+|a1|+|a2|+…+|a2 013| =a0-a1+a2-…-a2 013 =32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷第1课时等差数列的前n项和课后篇巩固探究A组1.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设Sn是等差数列{an}的前n项和,S5=10,则a3的值为()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{an}的通项公式为an=2n37,则Sn取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{an}的前n项和为Sn(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{an},{bn}的前n项和分别为An与Bn,且满足(n∈N+),则的值是()A. B. C. D.解析:因为,所以.答案:C6.已知{an}是等差数列,Sn为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{an}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=2,a1=20,∴S10=10a1+d=0=110.答案:1107.在等差数列{an}中,前n项和为Sn,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶S奇=3015=15,于是d=3.答案:39.若等差数列{an}的公差d<0,且a2·a4=12,a2+a4=8.(1)求数列{an}的首项a1和公差d;(2)求数列{an}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=2.(2)S10=10×a1+d=10.10.导学号33194010已知数列{an}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为Sn,求Sn的最大值;(3)当Sn是正数时,求n的最大值.解(1)∵数列{an}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得<d<,又d∈Z,∴d=4.(2)∵d<0,∴{an}是递减数列.又a6>0,a7<0,∴当n=6时,Sn取得最大值,即S6=6×23+×(4)=78.(3)Sn=23n+×(4)>0,整理得n(252n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{an}为等差数列,公差d=2,Sn为其前n项和,若S10=S11,则a1=()A.18B.20C.22D.24解析:因为S11S10=a11=0,a11=a1+10d=a1+10×(2)=0,所以a1=20.答案:B2.(全国1高考)记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①×3②,得(2115)d=24,即6d=24,所以d=4.答案:C3.等差数列{an}的前n项和记为Sn,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{an}的通项公式是an=12n,其前n项和为Sn,则数列的前11项和为()A.45B.50C.55D.66解析:∵Sn=,∴=n,∴的前11项和为(1+2+3+…+11)=66.故选D.答案:D5.已知等差数列{an}前9项的和等于前4项的和.若a1=1,ak+a4=0,则k=.解析:设等差数列{an}的公差为d,则an=1+(n1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=.又a4=1+3×,ak=1+(k1)d,由ak+a4=0,得+1+(k1)d=0,将d=代入,可得k=10.答案:106.已知数列{an}为等差数列,其前n项和为Sn,且1+<0.若Sn存在最大值,则满足Sn>0的n的最大值为.解析:因为Sn有最大值,所以数列{an}单调递减,又<1,所以a10>0,a11<0,且a10+a11<0.所以S19=19×=19a10>0,S20=20×=10(a10+a11)<0,故满足Sn>0的n的最大值为19.答案:197.导学号33194012在等差数列{an}中,a1=60,a17=12,求数列{|an|}的前n项和.解数列{an}的公差d==3,∴an=a1+(n1)d=60+(n1)×3=3n63.由an<0得3n63<0,解得n<21.∴数列{an}的前20项是负数,第20项以后的项都为非负数.设Sn,Sn'分别表示数列{an}和{|an|}的前n项和,当n≤20时,Sn'=Sn==n2+n;当n>20时,Sn'=S20+(SnS20)=Sn2S20=60n+×32×n2n+1260.∴数列{|an|}的前n项和Sn'=8.导学号33194013设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.(1)求数列{an}的通项公式及前n项和公式;(2)设数列{bn}的通项公式为bn=,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{an}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以an=1+(n1)×2=2n1,Sn=n×1+×2=n2.(2)由(1)知bn=,所以b1=,b2=,bm=.若b1,b2,bm(m≥3,m∈N)成等差数列,则2b2=b1+bm,所以,即6(1+t)(2m1+t)=(3+t)(2m1+t)+(2m1)(1+t)(3+t),整理得(m3)t2(m+1)t=0,因为t是正整数,所以(m3)t(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟复习试卷试题模拟卷第03节 二项式定理0011 3

高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 【答案】A2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 【答案】B【解析】依题意,()()3333133243122n n n n T C x C x x ---⎛⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,∵其展开式中第四项为常数项,∴3102n --=,∴5n =,故选B . 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .17 【答案】C 【解析】6(1)x 展开式的通项为616(kk k T C x -+=-3626(1)k kkC x--=-,令2k =,得2223615T C x x ==,令0k =,得03316T C x x ==,故3x 项为32311516x x x x ⋅+⋅=,所以3x 项系数为16.4.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 【答案】C【解析】依题意得展开式的通项的系数为111(1)r r r T C +=-.二项系数最大的是511C 与611C .所以系数最大的是6711T C =.5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或28 【答案】C6.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C7.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.8.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 9.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12【答案】C10.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)256 【答案】B11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 【答案】C 【解析】由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210 【答案】D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【大纲高考第13题】8y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 【答案】70.14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为. 【答案】8【解析】 44)23()1(+-=-x x ,又423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,∴32216214343=⨯=⋅⋅=C C a . 15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项. 【解析】(1)通项公式为2333111()()22n k k n kkk k kk nn T C xx C x ---+=-=-,因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x2的项的系数是2210145()24C -=.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z0≤k ≤10k ∈N,令10-2k 3=r (r ∈Z),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为222101()2C x -,55101()2C -,882101()2C x -.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值. 解 (1)令x =1,得a0+a1+a2+…+a2 013=(-1)2 013=-1.① (2)令x =-1,得a0-a1+a2-a3+…-a2 013=32 013.② 与①式联立,①-②得2(a1+a3+…+a2 013)=-1-32 013, ∴a1+a3+…+a2 013=-1+32 0132. (3)Tr +1=Cr 2 013(-2x)r =(-1)r ·Cr 2 013(2x)r , ∴a2k -1<0,a2k>0 (k ∈N*). ∴|a0|+|a1|+|a2|+…+|a2 013| =a0-a1+a2-…-a2 013 =32 013(令x =-1).20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟复习试卷试题模拟卷第03节 二项式定理4 52

高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .174.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( ) A.第五项 B.第六项 C.第七项 D.第六和第七项5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或286.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .77.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30(D )608.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .929.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .1210.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)25611.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【大纲高考第13题】8x y y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为.15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答).16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项;(2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值.20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算A 基础巩固训练1.【高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )22.【高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 3.【福州市三中模拟】已知集合,,若,则实数的取值范围是() A .B .C .D .4.【冀州中学高三上学期第一次月考,文1】若集合{}0P y y =≥,P Q Q =,则集合Q 不可能是( )A .∅B .{}2,R y y x x =∈C .{}2,R xy y x =∈D .{}2log ,0y y x x =>5.【重点中学高三上学期第三次月考,理1】已知全集{}1,2,3,4,5,6,7,8,9U = 集合{}1,2,3,4,5,6A = 集合{}3,4,5,6,7,8B =,则集合B C A C U U ⋂为( )A . {}3,4,5,6B . {}1,2,7,8,9C . {}1,2,3,4,5,6,7,8D . {}9 B 能力提升训练1.定义集合A 与B 的运算“*”为:{A B x x A *=∈或x B ∈,但}x A B ∉.设X 是偶数集,{1,2,3,4,5}Y =,则()X Y Y **=( ) A.X B.Y C.XY D.X Y2.下列四个集合中,是空集的是( )A .{}3|3x x +=B .22{|}x y y x x y R =∈(,)﹣,, C .21{|0}x x x x R +=∈﹣, D .2{|}0x x ≤3.设集合{}1,0,2A =-,集合{}2B x x A x A =-∈-∉且,则B =( ) (A ){}1 (B ){}2- (C ){}1,2-- (D ){}1,0-4.【·海安中学模拟】已知集合A ={(x ,y)|x2+y2=1},B ={(x ,y)||x|+|y|=λ},若A ∩B ≠∅,则实数λ的取值范围是________.5.已知集合A ={x|4≤x2≤16},B =[a ,b],若A ⊆B ,则实数a -b 的取值范围是( ) A. (-∞,-2]B.[)+∞-,2 C. (-∞,2]D.[)+∞,2 C 思维拓展训练1.【湖北八校联考文】已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅,则a =( )A .6或2B .6C .2或6D .22.【广东汕头市二模】设非空集合M 同时满足下列两个条件: ①{}1,2,3,,1M n ⊆⋅⋅⋅⋅⋅⋅-;②若a M ∈,则n a M -∈,(2,)n n N +≥∈.则下列结论正确的是( ) A .若n 为奇数,则集合M 的个数为122n - B .若n 为奇数,则集合M 的个数为122n +C .若n 为偶数,则集合M 的个数为22n D .若n 为偶数,则集合M 的个数为221n - 3.设数集M 同时满足条件①M 中不含元素1,0,1-,②若a M ∈,则11aM a+∈-. 则下列结论正确的是 ( )(A )集合M 中至多有2个元素; (B )集合M 中至多有3个元素; (C )集合M 中有且仅有4个元素; (D )集合M 中有无穷多个元素. 4.【其中总动员】设集合(){}(){},|||||1,,()()0A x y x y B x y y x y x =+≤=-+≤,M AB =,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .15[,]22B .25[,]22 C .110[,]22 D .210[,]225.已知集合()(){},M x y y f x ==,若对于任意()11,x y M∈,存在()22,x y M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①()1,M x y y x ⎧⎫==⎨⎬⎩⎭; ②(){},sin 1M x y y x ==+; 则以下选项正确的是()(A)①是“垂直对点集” ,②不是“垂直对点集” (B)①不是“垂直对点集”,②是“垂直对点集” (C)①②都是“垂直对点集” (D) ①②都不是“垂直对点集”高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟复习试卷试题模拟卷第03节 二项式定理30

高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项2.【宝鸡市高三数学质量检测(一)】若)21(3x x n -的展开式中第四项为常数项,则=n ( ) A . 4 B. 5 C. 6 D. 73.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .174.【金丽衢十二校高三第二次联考】二项式2111()x x -的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或286.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( ) A .4 B .5 C .6 D .77.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30(D )608.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102 D .92 9.【咸阳市高考模拟考试试题(三)】若n x x )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .1210.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( )(A) 1 (B)0 (C)l (D)256 11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 21012.【原创题】210(1)x x -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【大纲高考第13题】8x y y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为.15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答).16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332n x x ⎛- ⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数;(3)求展开式中所有的有理项.18.已知223)n x x 的展开式的二项式系数和比(31)n x -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中, (1)二项式系数最大的项;(2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R).(1)求a0+a1+a2+…+a2 013的值;(2)求a1+a3+a5+…+a2 013的值;(3)求|a0|+|a1|+|a2|+…+|a2 013|的值.20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()0()C (1)n k k n k n n k k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小;(3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷第04节 数学归纳法一、选择题1. 数学归纳法适用于证明的命题类型是A 、已知⇒结论B 、结论⇒已知C 、直接证明比较困难D 、与正整数有关【答案】D【解析】由数学归纳法的概念可知,数学归纳法适用于证明的命题类型是与正整数有关的题目,故选D.2. 用数学归纳法证明等式(3)(4)123(3)()2n n n n *+++++++=∈N 时,第一步验证1n =时,左边应取的项是A .1B .12+C .123++D .1234+++ 【答案】D3. 利用数学归纳法证明不等式1+12+13+ 121n -<f(n) (n≥2,n N *∈)的过程中,由n =k 变到n =k +1时,左边增加了( )A .1项B .k 项C .12k -项 D .2k项 【答案】D 【解析】当n k =时,左边共有21k -项,当1n k =+时,左边共有121k +-项,左边增加了()()121212k k k+---=项. 4. 若f n n ()=++++-121314121……,则f k f k ()()+-1等于() A 、1211k +- B 、121211211k k k +++-+ C. 121211k k +-+ D. 121211211k k k ++++-+…… 【答案】D5. 设()x f 是定义在正整数集上的函数,且()x f 满足:“当()1+≥k k f 成立时,总可推出()21+≥+k k f 成立”,那么,下列命题总成立的是 ( )A .若()21<f 成立,则()1110<f 成立B .若()43≥f 成立,则当1≥k 时,均有()1+≥k k f 成立C .若()32<f 成立,则()21≥f 成立D .若()54≥f 成立,则当4≥k 时,均有()1+≥k k f 成立【答案】D6. 在应用数学归纳法证明凸n 变形的对角线为)3(21-n n 条时,第一步检验n 等于( ) A.1 B.2 C .3 D .0【答案】C 【解析】因为凸n 变形的n 最小为3,所以第一步检验n 等于3,故选C.7. 下面四个判断中,正确的是()A .式子1+k +k2+…+kn(n ∈N*)中,当n =1时式子值为1B .式子1+k +k2+…+kn -1(n ∈N*)中,当n =1时式子值为1+kC .式子1+1123++…+121n + (n ∈N*)中,当n =1时式子值为1+1123+ D .设f(x)=111+1231n n n ++++ (n ∈N*),则f(k +1)=f(k)+111323334k k k +++++ 【答案】C8.在数列{an}中,an =1-12+13-14+…+121n --12n,则ak +1等于() A .ak +121k + B .ak +122k +-124k + C .ak +122k + D .ak +121k +-122k + 【答案】D【解析】由于a1=1-12,a2=1-12+13-14,…,ak =1-12+13-14+…+121k --12k∴ak +1=ak +121k +-122k +.故选D. 9. 用数学归纳法证明12+32+52+…+(2n ﹣1)2=n (4n2﹣1)过程中,由n=k 递推到n=k+1时,不等式左边增加的项为( )A .(2k )2B .(2k+3)2C .(2k+2)2D .(2k+1)2【答案】D .10. 用数学归纳法证明(1)(2)()213(21)n n n n n n +++=-····,从k 到1k +,左边需要增乘的代数式为()A.21k +B.2(21)k +C.211k k ++D.231k k ++ 【答案】B二、填空题11. 利用数学归纳法证明“221111n n a a a a a ++-++++=-, (1,a n N ≠∈)”时,在验证1n =成立时,左边应该是 .【答案】21a a ++【解析】用数学归纳法证明“221111n n a a a a a++-++++=-, (1,a n N ≠∈)”时,在验证1n =成立时,将1n =代入,左边以1即0a 开始,以112a a +=结束,所以左边应该是21a a ++.12. 用数学归纳法证明:(31)(1)(2)()2n n n n n n +++++++=*()n N ∈的第二步中,当1n k =+时等式左边与n k =时的等式左边的差等于.【答案】32k +13.用数学归纳法证明2n na b +≥2a b +⎛⎫ ⎪⎝⎭n(a ,b 是非负实数,n ∈N +)时,假设n =k 命题成立之后,证明n =k +1命题也成立的关键是________________.【答案】两边同乘以2a b + 【解析】要想办法出现ak +1+bk +1,两边同乘以2a b +,右边也出现了要证的2a b +⎛⎫ ⎪⎝⎭k +1. 三、解答题14. 数列}{n a 满足)(2*N n a n S n n ∈-=. (1)计算1a ,2a ,3a ,4a ,并由此猜想通项公式n a ;(2)用数学归纳法证明(1)中的猜想.15. 已知数列}{n a 的前n 项和为n S ,且44431--=+n n n a S )(*∈N n ,令nn n a b 4=. (1)求证:数列}{n b 是等差数列,并求数列}{n a 的通项公式;(2)若2)(-=n a n f )(*∈N n ,用数学归纳法证明)(n f 是18的倍数.【解析】(1)当1n =时,4443211--=a S ,∴201=a .当n≥2时,444311--=--n n n a S ,∴n n n n n a a S S 43443311⨯--=---,即n n n a a 4341⨯+=-. ∴344111=-=----n n n n n n a a b b . 即当n≥2时31=--n n b b .∵51=b ,∴数列}{n b 是首项为5,公差为3的等差数列.∴)1(35-+=n b n ,即23+=n b n . ∴n n n a 4)23(+=.16. 若不等式11n ++12n ++…+131n +>24a 对一切正整数n 都成立,猜想正整数a 的最大值,并证明结论.则当n =k +1时,有()111k +++()112k +++…+()1311k ++ =11k ++12k ++…+131k ++132k ++133k ++134k +-11k +>2524+[132k ++134k +-()231k +].因为132k ++134k +=()2619188k k k +++>()231k +, 所以132k ++134k +-()231k +>0,所以当n =k +1时,不等式也成立.由①②知,对一切正整数n,都有11n++12n++…+131n+>2524,所以a的最大值等于25. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项 2.【宝鸡市高三数学质量检测(一)】若)21(3xx n-的展开式中第四项为常数项,则=n ( )A . 4 B. 5 C. 6 D. 7 3.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .174.【金丽衢十二校高三第二次联考】二项式2111()x x-的展开式中,系数最大的项为( ) A.第五项 B.第六项 C.第七项 D.第六和第七项5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或286.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .77.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30(D )608.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102D .929.【咸阳市高考模拟考试试题(三)】若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .1210.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( ) (A) 1 (B)0 (C)l (D)25611.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 210 12.【原创题】210(1)xx -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【大纲高考第13题】8x y y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为.15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答).16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332nx x ⎛-⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数; (3)求展开式中所有的有理项.18.已知223)n x x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中,(1)二项式系数最大的项;(2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R). (1)求a0+a1+a2+…+a2 013的值; (2)求a1+a3+a5+…+a2 013的值; (3)求|a0|+|a1|+|a2|+…+|a2 013|的值.20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()()C (1)nk k n k n nk k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小; (3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷第03节变量间的相关性一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.对于给定的两个变量的统计数据,下列说法正确的是()(A)都可以分析出两个变量的关系(B)都可以用一条直线近似地表示两者的关系(C)都可以作出散点图(D)都可以用确定的表达式表示两者的关系【答案】C【解析】给出一组样本数据,总可以作出相应的散点图,但不一定能分析出两个变量的关系,更不一定符合线性相关或函数关系,故选C.2.下面两个变量间的关系不是函数关系的是()(A)正方体的棱长与体积(B)角的度数与它的正弦值(C)单位产量为常数时,土地面积与粮食总产量(D)日照时间与水稻亩产量【答案】D而D项是相关关系.3.【高考数学复习二轮】根据一组样本数据(x1,y1),(x2,y2),…,(xn,yn)的散点图分析存在线性相关关系,求得其回归方程y=0.85x-85.7,则在样本点(165,57)处的残差为()A.54.55 B.2.45 C.3.45 D.111.55【答案】B【解析】把x =165代入回归方程得y =0.85×165-85.7=54.55,所以残差为57-54.55=2.45. 4. 【高考前30天数学保温训练】对于相关系数r 下列描述正确的是( ) A .r >0表明两个变量线性相关性很强 B .r <0表明两个变量无关C .|r|越接近1,表明两个变量线性相关性越强D .r 越小,表明两个变量线性相关性越弱 【答案】C5.对有线性相关关系的两个变量建立的回归直线方程=+x 中,回归系数( ) (A)不能小于0 (B)不能大于0 (C)不能等于0 (D)只能小于0 【答案】C【解析】∵=0时,相关系数r=0,这时不具有线性相关关系,但能大于0也能小于0.6.【改编自高三十三校第二次联考】已知下列表格所示的数据的回归直线方程为ˆ4yx a =+,则a 的值为( ).A .240B .246C .274D .278 【答案】B【解析】由已知得,2345645x ++++==,2512542572622662625y ++++==,又因为回归直线必过样本点中心(4,262) ,则26244a =⨯+,解得246a =,选B.7.【教学合作高三10月联考】某车间加工零件的数量x 与加工时间y 的统计数据如下表:现已求得上表数据的回归方程^^^y b x a =+中的^b 的值为0.9,则据此回归模型可以预测,加工90个零件所需要的加工时间约为( )A .93分钟B .94分钟C .95分钟D .96分钟 【答案】A8.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(,)(1,2,)i i x y i n =…,,用最小二乘法建立的回归方程为ˆ10200,yx =-+则下列结论正确的是( ) (A )y 与x 具有正的线性相关关系(B )若r 表示变量y 与x 之间的线性相关系数,则10r =- (C )当销售价格为10元时,销售量为100件 (D )当销售价格为10元时,销售量为100件左右 【答案】D9. 小明同学根据右表记录的产量x (吨)与能耗y (吨标准煤)对应的四组数据,用最小二乘法求出了y关于x 的线性回归方程a x y+=7.0ˆ,据此模型预报产量为7万吨时能耗为( ) A. 5 B. 25.5 C . 5.5 D. 75.5【答案】B10.【龙岩市高三上学期期末】已知变量x ,y 之间具有线性相关关系,其回归方程为^y =-3+bx ,若10101117,4,ii i i xy ====∑∑则b 的值为( )A. 2B. 1C. -2D.-1 【答案】A【解析】依题意知,17 1.710x ==,40.410y ==,而直线3y bx ∧=-+一定经过点(,)x y ,所以3 1.70.4b ∧-+⨯=,解得2b ∧=.11.【江西新余市高三上学期期末质量检测】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程,表中有一个数据模糊不清,请你推断出该数据的值为( )A .75B .62C .68D .81 【答案】C12.【高考数学(二轮专题复习)假设学生在初一和初二数学成绩是线性相关的,若10个学生初一(x)和初二(y)数学分数如下:x 74 71 72 68 76 73 67 70 65 74 y76757170767965776272则初一和初二数学分数间的回归方程是 ( ). A. y =1.218 2x -14.192 B. y =14.192x +1.218 2 C. y =1.218 2x +14.192 D. y =14.192x -1.218 2【答案】A四、五、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【烟台市高三5月适应性训练一】如果在一次试验中,测得(,x y )的四组数值分别是x1 2 3 4 y33.85.26根据上表可得回归方程ˆˆ1.04yx a =+,据此模型预报当x 为5时,y 的值为( ) A .6.9 B .7.1 C .7.04 D .7.2 【答案】B14.【高考数学人教版评估检测】在元旦期间,某市物价部门对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x 元和销售量y 件之间的一组数据如表所示: 价格x 9 9.5 10 10.5 11 销售量y 1110865通过分析,发现销售量y 与商品的价格x 具有线性相关关系,则销售量y 关于商品的价格x 的线性回归方程为__________.【答案】 3.240.x =-+【解析】392,i i x y ==10,=8,=502.5,代入公式,得= 3.2,=-所以,==40,故线性回归方程为 3.240.x =-+15.【高考数学全程总复习课时提升】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y 之间的关系:时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为. 【答案】0.50.53.,16.【揭阳市高三4月第二次模拟】某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,得下表数据:x 68 10 12y2356根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+中的b 的值为0.7,则记忆力为14的同学的判断力约为.(附:线性回归方程y bx a =+中,a y bx =-,其中x 、y 为样本平均值) 【答案】7.5.六、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【宽甸二中高三最后一模】在一段时间内,某种商品价格x (万元)和需求量)(t y 之间的一组数据为: 价格x1.4 1.6 1.8 22.2 需求量y1210753(1)进行相关性检验;(2)如果x 与y 之间具有线性相关关系,求出回归直线方程,并预测当价格定为1.9万元,需求量大约是多少?(精确到0.01t )参考公式及数据:2121ˆxn x yx n yx bn i i ni ii -⋅-=∑∑==,))((2122121y n y x n x yx n yx r ni i ni i ni ii --⋅-=∑∑∑===,61.428.21≈相关性检验的临界值表: n2 12345678910小概率0.011.000 0.990 0.959 0.917 0.874 0.834 0.798 0.765 0.735 0.708【答案】(1)从而有99%的把握认为x 与y 之间具有线性相关关系(2)x y5.111.28ˆ-=,当价格定为9.1万元时,需求量大约为t 25.6【解析】】(1)①作统计假设:x 与y 不具有线性相关关系。

相关文档
最新文档