温控仪的PID参数设置

合集下载

PID参数设置及调节方法

PID参数设置及调节方法

PID参数设置及调节方法方法一:PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。

PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。

我在手册上查到的,并已实际的测试过,方便且比较准确应用于传统的PID1。

首先将I,D设置为0,即只用纯比例控制,最好是有曲线图,调整P值在控制范围内成临界振荡状态。

记录下临界振荡的同期Ts2。

将Kp值=纯比例时的P值3。

如果控制精度=1.05%,则设置Ti=0.49Ts ; Td=0.14Ts ;T=0.014 控制精度=1.2%,则设置Ti=0.47Ts ; Td=0.16Ts ;T=0.043控制精度=1.5%,则设置Ti=0.43Ts ; Td=0.20Ts ;T=0.09朋友,你试一下,应该不错,而且调试时间大大缩短我认为问题是,再加长积分时间,再减小放大倍数。

获得的是1000rpm以上的稳定,牺牲的是系统突加给定以后系统调节的快速性,根据兼顾原则,自己掌握调节指标吧。

方法二:1.PID调试一般原则a.在输出不振荡时,增大比例增益P。

b.在输出不振荡时,减小积分时间常数Ti。

c.在输出不振荡时,增大微分时间常数Td。

2.一般步骤a.确定比例增益P确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。

输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。

比例增益P调试完成。

pid温控参数的单位

pid温控参数的单位

pid温控参数的单位
PID温控参数通常涉及三个主要参数:比例系数(Kp)、积分系数(Ki)和微分系数(Kd)。

这些参数在温控系统中起着关键作用,用于控制温度的变化。

1.比例系数(Kp):其单位通常与温度控制系统的输出单位相同。

例如,如果输出是电压,则Kp的单位可能是V/℃;如果输出是百分比或PWM(脉宽调制)信号,则Kp的单位可能是%/℃或PWM%/℃。

这个参数决定了系统对温度偏差的响应速度。

2.积分系数(Ki):其单位通常与比例系数的单位相同,即Ki 的单位也可能是V/℃、%/℃或PWM%/℃。

积分项用于消除系统的稳态误差,Ki值越大,消除稳态误差的速度越快。

3.微分系数(Kd):其单位与比例系数和积分系数的单位相同,即V/℃、%/℃或PWM%/℃。

微分项用于预测温度的变化趋势,并提前调整控制输出,以减小温度的超调和振荡。

需要注意的是,这些参数的具体单位取决于温控系统的设计和应用。

不同的系统可能会有不同的输出信号类型和单位,因此在实际应用中需要根据具体情况来确定这些参数的单位。

此外,在调整PID参数时,通常需要综合考虑系统的响应速度、超调量、稳定性和精度等因素,以找到最适合系统需求的参数组合。

因此,了解每个参数的作用和单位对于正确调整PID控制系统非常重要。

温度控制pid参数的设置技巧

温度控制pid参数的设置技巧

温度控制是许多工业和实验室过程中非常重要的一环,而PID控制器是其中常用的一种控制方法。

PID控制器通过调节比例、积分和微分参数来实现对温度的精准控制。

在实际应用中,PID参数的设置对控制效果至关重要。

本文将介绍一些设置PID参数的技巧,帮助读者更好地掌握温度控制。

一、了解系统特性在设置PID参数之前,首先需要了解控制对象的特性。

温度控制系统可能会受到惯性、滞后、非线性等因素的影响,因此需要对控制对象进行全面的分析。

可以通过实验数据或者数学建模来获取控制对象的动态特性,包括惯性时间常数、滞后时间、非线性特性等。

二、合理选择控制模式根据控制对象的特性,选择合适的控制模式也非常重要。

在温度控制中,常用的模式包括位置式控制、增量式控制等。

不同的控制模式对PID参数的要求也不同,因此在设置参数之前,需要确认所采用的控制模式。

三、优化比例参数比例参数是PID控制器中非常重要的参数之一。

合理设置比例参数可以缩短系统的调节时间,提高控制精度。

通常可以通过调节比例参数来达到快速响应的目的。

在实际应用中,建议从较小的数值开始逐步增加比例参数,直到系统出现震荡或者不稳定为止,然后再进行适当调整。

四、精心调节积分参数积分参数可以对系统的稳态性能产生重要影响。

合理设置积分参数可以减小稳态误差,提高系统的稳定性。

在实际调节中,建议从0开始逐步增加积分参数,直到系统出现超调或者不稳定为止,然后再进行适当调整。

五、微分参数的设置微分参数可以对系统的动态特性产生一定的影响。

适当的微分参数可以提高系统的抗干扰能力,减小震荡。

在实际调节中,建议从0开始逐步增加微分参数,直到系统出现超调或者不稳定为止,然后再进行适当调整。

六、考虑系统鲁棒性在设置PID参数的过程中,还需要考虑系统的鲁棒性。

鲁棒性好的控制器能够保持系统在不同工况下的稳定性能。

因此在设置PID参数时,需要充分考虑系统的鲁棒性,以确保系统在各种条件下均能稳定工作。

在实际应用中,以上所述的设置PID参数的技巧只是一些基本的指导原则,具体的调节方法还需要结合具体的控制对象、实际场景进行调整。

温控器PID调节方法

温控器PID调节方法

温控器PID调节方法比例(proportion)调节:是按比例反应系统的偏差,比例(P值)越小引发同样调节的所需的偏差越小,(即同样偏差引起的调节越大,即P值与调节作用成反比)可以加快调节,减少误差,但可使系统的稳定性下降,甚至不稳定。

比例越大,所需偏差越大,系统反应越迟钝。

积分(integral)调节:是使系统消除稳态误差,提高无差度。

只要有误差,积分调节就进行,直至无差,积分调节停止。

积分作用的强弱与积分时间常数(完成一次积分所需的时间)I值成反比。

积分时间短,调节作用强。

积分时间长,动态响应慢。

积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

微分(differential)调节:微分反映系统偏差信号的变化率。

能预见偏差变化的趋势,产生超前的控制作用,,减少超调,减少调节时间。

微分作用对噪声干扰有放大作用,因此D值太大,对系统抗干扰不利。

微分调节作用的大小与微分时间成正比。

微分作用需要与另外两种调节相结合,组成PD或PID控制器。

PID参数整定顺口溜参数整定斩乱麻,P I D 值顺序查调节作用反反正,小步试验找最佳曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动摆得快,积分时间再加长,曲线振荡频率快,先把微分降下来动差大来波动慢。

微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低。

比例:,加热电流与偏差(即实际值和设定值之差)成比例。

P的大小,在数量上是调节器闭环放大倍数的倒数。

P = 偏差电压∕调节器输出电压比例带越小(P越小),开始时调节电压上升越快,但易过冲。

当温差变小,实际比例越接近P,电压越小。

例如:设定温控于60度,在实际温度为20和40度时,加热的功率就不一样。

积分:如果长时间达不到设定值,积分器起作用,进行修正。

加热电流与偏差的累积(积分)成比例。

因此,只要有偏差存在,尽管偏差极微小,但经过长时间的累积,就会有足够的输出去控制炉丝加热电流,去消除偏差,减少小静态误差。

温控仪的PID参数设置

温控仪的PID参数设置

温控仪的PID参数设置对于XMT914、XMT614、XMT916温控仪的参数,和恒温控制的参数只有P、I、D、T、ALL、SOUF几个参数,下面我们分别介绍西安西曼电子科技有限公司温控仪的这几个参数的设定规则P:比例系数,P是PID参数里面最关键的一个参数,如果P设定有问题,即使其他参数怎么调节,也不会有好的控制效果, XMT914、XMT614、XMT916等温控仪出厂默认的P参数是1.6,这个适合大多数系统,如果控制效果不好,无非以下三种情况,第一:温度上升缓慢,离设定的目标值还很远时,系统已经开始频繁的进行断续调节,这种情况是P参数较大造成的,此时,可以适当的减小P 的设定,P的减小每次在原来基础上变化10%进行,调整完后再进行观察,直至升温迅速,在快接近目标值时,才开始进行调节,而且没有过大的超温现象;第二种是温度上升很快,已经马上接近目标值时,系统才开始进行断续调节,这样的情况是P参数较大造成的,可以适当的减小P的设定,使系统调节的灵敏度增加,直至系统升温平缓可控,没有较大的超温现象;第三种情况,温度的上升比较平稳、迅速,但会围绕目标值上、下频繁波动,如果发现系统控制滞后,也就是说温度已经超温,系统的输出才开始减小,这时可以减小P的设定,如果发现系统控制超前,也就是,温度还没有达到目标值,就开始减小输出,那就是超前调节,这时可以增大P的设定,直至系统趋于稳定。

总只,P的设定要考长时间无扰动观察,我们一般把P形象的解说为系统的灵敏度,也就像一个人的个性一样,P越小,灵敏度越大,性子越急,对温度的调节反应越迅速,当系统有一点误差时,就会做出大范围的调节,这样就会出现过犹不及的现象,造成系统震荡。

反之P越大,灵敏度也就越小,属于一个慢性子的人,对温度的变化反应不积极,不如实际温度里目标温度还很远,理应迅速升温,而P过大,就会反应出升温缓慢,对超温后理应减小输出也是一样的。

了解了这些,P参数的手动调节就不会有太大的问题了、I参数:I是当系统稳定后有一个相对对误差进行调节的,比如实际值一直偏离目标值有个固定的误差,而且系统惠安能保持稳定,那这种情况就该减小I的设定,使I参数代表的积分作用加强,直至相对误差的产生;也有情况是实际值围绕目标值最上、下的偏差震荡,一会高于目标值,一会低于目标值,上、下偏差的温度基本相同,这种情况,就是I参数设定太小造成的,可以适当的增大I的设定,减小积分的调节作用。

PID参数设置及调节方法

PID参数设置及调节方法

PID参数设置及调节方法方法一:PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。

PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。

我在手册上查到的,并已实际的测试过,方便且比较准确应用于传统的PID1。

首先将I,D设置为0,即只用纯比例控制,最好是有曲线图,调整P值在控制范围内成临界振荡状态。

记录下临界振荡的同期Ts2。

将Kp值=纯比例时的P值3。

如果控制精度=1.05%,则设置Ti=0.49Ts ; Td=0.14Ts ;T=0.014 控制精度=1.2%,则设置Ti=0.47Ts ; Td=0.16Ts ;T=0.043控制精度=1.5%,则设置Ti=0.43Ts ; Td=0.20Ts ;T=0.09朋友,你试一下,应该不错,而且调试时间大大缩短我认为问题是,再加长积分时间,再减小放大倍数。

获得的是1000rpm以上的稳定,牺牲的是系统突加给定以后系统调节的快速性,根据兼顾原则,自己掌握调节指标吧。

方法二:1.PID调试一般原则a.在输出不振荡时,增大比例增益P。

b.在输出不振荡时,减小积分时间常数Ti。

c.在输出不振荡时,增大微分时间常数Td。

2.一般步骤a.确定比例增益P确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。

输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。

比例增益P调试完成。

加热冷却控制的pid

加热冷却控制的pid

通常的加热控制系统是,为了使被控制点的测量温度(PV)与设定温度(SV)一致,进行PID控制计算,控制加热器的电源功率。

下图就是加热控制系统的例子,控制容器内液体温度的系统。

设置加热冷却控制的PID:需要加热冷却的应用都带有加热控制(加热器~温度传感器)和冷却控制(冷却机构~温度传感器),两个控制系统,并且在大多数情况下,加热系统和冷却系统的响应特性不一样。

为此温控器也被设计成分别设置加热系统和冷却系统的PID参数。

设置加热冷却PID参数的方法:
设置加热冷却控制的温控器的PID参数有两种方法。

具体参数因温控器的型号,温控器档次以及制造商的不同而有差异。

①只有比例带可以分别设置的类型
此类型比例带可以对加热系统设置加热比例带,对冷却系统设置冷却比例带。

积分时间设置和微分时间设置则是加热系统和冷却系统共用。

因此此类型的加热冷却PID温控器,由加热比例带,冷却比例带,积分时间和微分时间4个PID参数进行演算。

这种类型设置只增加了一
个调整项目,虽然调整简单,但是微调整受限制。

②加热控制系统和冷却控制系统可以独立设置的类型
此类型因为加热和冷却的PID常数可以分别独立设置,所以可以更精确地调整常数,但是很难得到最佳PID参数。

M9温控表PID温度控制器调节器说明书

M9温控表PID温度控制器调节器说明书

pid温控器说明书PID调节器使用经验:1、以被控对象特性选择控制器要获得良好控制效果,首先要正确选用PID调节器,PID调节器选型相对复杂,对于有经验的用户大多是按照自己的实践经验来确定PID调节器。

(1)常规工艺参数控制通常选用单回路PID调节器。

单回路调节器有一路信号输入,控制设定及参数修改通过仪表参数设定完成。

(2)正反转控制的电动执行机构选用的带伺服放大器阀位控制调节器。

带伺服放大器阀位控制调节器输入信号为两路(测量值和阀位反馈值),仪表将单回路PID调节器和伺服放大器功能融合在一起。

(3)如果被控对象需要不同时段以不同控制指标进行过程控制,应选用程序控制调节器。

程序控制调节器可以按时间分段设置不同的控制目标值和PID参数,轻松实现工艺控制要求。

(4)串级控制通常由一台单回路PID调节器和一台外给定调节器构成,也可以选用一台可编程序调节器。

可编程序调节器功能强大,便于实现温度、压力、流量、液位PH、酸度、浑浊度等控制项目的串级、选择、批量、交叉、比值、数学运算等复杂的连续过程控制,价格也略高。

(5)温控仪也是一种PID调节器,特别是生产过程中要求对温度按照工艺曲线变化、超调小或无超调、控温稳定性好的场合,对温控仪的控制效果就有些苛刻!在PID参数整定合理、控制方案不存在问题情况下,不同厂家固化在PID调节器芯片内的控制算法程序不同,不同品牌温控仪的温度控制效果也就存在很大差别,所以再此特别提醒:不是所有名称为“温控仪”的仪表都能将温度控制到你所期望到达的水平,选择需谨慎。

(6)所有数字调节器均P、I、D功能,但并不是所有工况都同时用到这三个功能。

2、正确选择PID调节器正反作用数字调节器的正反作用是用软件通过参数设定来选择。

调节器控制输出随被控量增加而增加,我们称调节器处于正作用状态;调节器控制输出随被控量增加而减小,我们称调节器处于反作用状态。

任何一个闭环控制系统均由变送器、调节器、执行器、被控对象四个环节组成的,应从这四个环节放大系数的乘积为负来判断PID调节器正/反作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温控仪的PID参数设置
对于XMT914、XMT614、XMT916温控仪的参数,和恒温控制的参数只有P、I、D、T、ALL、SOUF几个参数,下面我们分别介绍西安西曼电子科技有限公司温控仪的这几个参数的设定规则
P:比例系数,P是PID参数里面最关键的一个参数,如果P设定有问题,即使其他参数怎么调节,也不会有好的控制效果,XMT914、XMT614、XMT916等温控仪出厂默认的P参数是1.6,这个适合大多数系统,如果控制效果不好,无非以下三种情况,第一:温度上升缓慢,离设定的目标值还很远时,系统已经开始频繁的进行断续调节,这种情况是P参数较大造成的,此时,可以适当的减小P
的设定,P的减小每次在原来基础上变化10%进行,调整完后再进行观察,直至升温迅速,在快接近目标值时,才开始进行调节,而且没有过大的超温现象;第二种是温度上升很快,已经马上接近目标值时,系统才开始进行断续调节,这样的情况是P参数较大造成的,可以适当的减小P的设定,使系统调节的灵敏度增加,直至系统升温平缓可控,没有较大的超温现象;第三种情况,温度的上升比较平稳、迅速,但会围绕目标值上、下频繁波动,如果发现系统控制滞后,也就是说温度已经超温,系统的输出才开始减小,这时可以减小P的设定,如果发现系统控制超前,也就是,温度还没有达到目标值,就开始减小输出,那就是超前调节,这时可以增大P的设定,直至系统趋于稳定。

总只,P的设定要考长时间无扰动观察,我们一般把P形象的解说为系统的灵敏度,也就像一个人的个性一样,P越小,灵敏度越大,性子越急,对温度的调节反应越迅速,当系统有一点误差时,就会做出大范围的调节,这样就会出现过犹不及的现象,造成系统震荡。

反之P越大,灵敏度也就越小,属于一个慢性子的人,对温度的变化反应不积极,不如实际温度里目标温度还很远,理应迅速升温,而P过大,就会反应出升温缓慢,对超温后理应减小输出也是一样的。

了解了这些,P参数的手动调节就不会有太大的问题了、
I参数:I是当系统稳定后有一个相对对误差进行调节的,比如实际值一直偏离目标值有个固定的误差,而且系统惠安能保持稳定,那这种情况就该减小I的设定,使I参数代表的积分作用加强,直至相对误差的产生;也有情况是实际值围绕目标值最上、下的偏差震荡,一会高于目标值,一会低于目标值,上、下偏差的温度基本相同,这种情况,就是I参数设定太小造成的,可以适当的增大I
的设定,减小积分的调节作用。

D参数:D是微分项,只要用于解决系统之后的问题,比如当加热全部停止后,系统的余热会上升很多,当系统开始群功率加热,儿温度需要等很长时间才开始上升,这样的系统就属于滞后型系统,如果控温效果不理想,出现关闭加热,余热导致的温度大范围过程已经开始加热后,温度不能及时有效的上升,你们就的增加P的设定,滞后越大,P的设定越大,如果系统的滞后很小,你们就可以减小P的设定。

T参数:控制周期,这是温控仪你把程序计算输出百分比的一个计量单位,比如P为5秒,那么如果PID计算后输出功率一个是80%,那么就会在每5秒时间内输出4秒,停止1秒,做到按80%的隔离输出,如果T是3秒,那么就会在没3秒内输出2.4秒,停止0.6秒,同样的输出80%,可以看出,P设定越小,控制
的精细度越高,所以在允许的情况下T的设定要尽可能得小,当然T越小,后端的控制部件会动作越频繁,对设备的机械寿命是个考验,鉴于此,一般采用固态继电器控制时,我们建议T 取3-5秒,对于应用交流接触器等机械性开关作为控制单元的,T一般取6-10秒。

我们没有解释PID各参数的数学定义,而是站在用户的角度分析了PID参数的设定技巧,希望对现场调试人员有所帮助。

欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求。

相关文档
最新文档