汽车ABS系统的建模与仿真设计
单轮ABS建模与仿真_k

单轮ABS 建模与仿真一、理论分析与数学建模汽车在制动过程中,当制动器制动力大于轮胎-道路附着力时,车轮就会抱死滑移。
只有汽车具有足够的制动器制动力,同时地面又能提供较大的附着力时,汽车才能获得较好的制动效果。
在汽车制动时,除车轮旋转平面的纵向附着力外,还有垂直于车轮旋转平面的侧向附着力。
在汽车制动过程中,纵向附着力决定汽车的纵向运动,影响汽车的制动距离;侧向附着力决定汽车的侧向运动,影响汽车的方向稳定性和转向操纵能力。
当汽车匀速行驶时,实际车速V (即车轮中心的纵向速度)与车轮速度v ω (即车轮滚动的圆周速度)相等,车轮在路面上的运动为纯滚动运动。
然而,在汽车实际运行过程中,当驾驶员踩下制动踏板后,在制动器摩擦力矩的作用下,车轮的角速度减小,实际车速与车轮速度之间就会产生一个速度差,轮胎与地面之间就会产生相对滑移。
轮胎滑移的程度用滑移率slip 来表示。
车轮滑移率是指实际车速v ω与车轮速度w ω之差同实际车速v ω的比值,公式如下。
vw slip ωω-=1 当v ω=w ω时,滑移率slip=0,车轮自由滚动;当w ω=0时,滑移率slip=1,车轮完全抱死滑移;当v ω>w ω时,滑移率0<slip<1,车轮既滚动又滑移。
试验证明,在地面附着条件差(例如在冰雪路面上制动)的情况下,由于道路附着力很小,使可以得到的最大地面制动力减小。
因此,在制动踏板力(或制动分泵压力)很小时,地面制动力就会达到最大附着力,车轮就会抱死滑移。
在制动过程中,车轮抱死滑移的根本原因是制动器制动力大于轮胎-道路附着力。
滑移率大于理想滑移率后的区域称为非稳定制动区域或非稳定区,如图所示。
横向附着系数是研究汽车行驶稳定性的重要指标之一。
横向附着系数越大,汽车制动时的方向稳定性和保持转向控制的能力越强。
当滑移率为零时,横向附着系数最大;随着滑移率的增加,横向附着系数逐渐减小。
当车轮抱死时,横向附着系数接近于零,汽车将失去方向稳定性和转向控制能力,其危害极大。
基于参数控制的汽车ABS simulink仿真

毕业设计(论文)基于参数控制的汽车制动ABS仿真THE SIMULATION OF ABS VEHICHE BRAKING BASED ON THECONTROL OF PARAMETERS2008年6月毕业设计(论文)任务书班级车辆工程五班学生姓名刘斌学号 20041355 发题日期:2008 年 3 月 5 日完成日期:2008年 5 月 15 日题目基于参数控制的ABS仿真1、本论文的目的、意义车轮抱死是汽车在制动过程中经常遇到的问题。
车轮抱死一方面会造成轮胎的严重磨损,另一方面也会导致汽车在制动过程中丧失方向稳定性:前轮抱死会使汽车丧失转向能力,后轮抱死则会使车辆产生侧滑。
而防抱死制动系统——ABS系统(Anti-lock Braking System)的引入使制动过程中车轮处于非抱死状态,这样不仅可以防止制动过程中后轮抱死而导致的车辆侧滑甩尾,大大提高制动过程中的方向稳定性,同时可以防止前轮抱死而丧失转向能力。
目前模糊控制在汽车防抱制动中的应用也是越来越广泛,对其的研究也是ABS的一个重要方面,同时针对不同参数进行控制会给ABS系统的控制效果带来非常严重的影响。
2、学生应完成的任务①车辆工程专业课程设计;②学习和掌握MATLAB/Simulink建模和计算分析方法;③根据制动过程中车辆的运动状况建立各子系统的数学模型;④建立ABS控制模块的数学模型及相应的仿真模型;⑤利用建立的数学模型在MATLAB/Simulink环境下建立仿真模块;⑥将各子系统的MATLAB/Simulink连接成一个整体模块;⑦对仿真模型进行调试仿真试验,分析得出的结果;⑧改变仿真模型中相关参数的设置,比较对仿真结果的影响;⑨撰写设计说明书。
3、论文各部分内容及时间分配:(共 12 周)第一部分收集资料及调研; (1 周) 第二部分学习并运用MATLAB/Simulink下进行仿真设计; (1 周) 第三部分建立ABS仿真模型; (2 周) 第四部分在MATLAB/Simulink下进行仿真设计;(2 周) 第五部分对模型进行仿真试验; (3 周) 第六部分对仿真结果进行评价分析; (2 周) 评阅及答辩(1 周)备注专业课程设计文档另附指导教师:年月日审批人:年月日摘要汽车防抱死系统(ABS)是一种在制动时能够自动调节车轮制动力,防止车轮抱死以取得最佳制动效果的制动系统。
基于Simulink的汽车ABS建模与仿真

基于Matlab/Simulink 的汽车ABS 建模与仿真摘要:本文阐述了ABS(防抱死制动系统)的基本结构、原理和控制特点。
在Simulink 的环境下以ABS(防抱死制动系统)滑移率为对象进行控制,根据ABS 系统原理建立了ABS 单车轮的仿真模型,并得出仿真曲线,验证汽车ABS 具有良好的制动性能和方向操纵性。
Modeling and Simulation of the Anti-Lock BrakingSystem based on MATLAB/SimulinkAbstract :The article illustrates basic operations and control features of ABS system. Control the ABS Slip Ratio with Simulink, creates a single wheel ABS model according to the ABS principle. It produces Simulation curves ,which verifies that the Auto ABS has good braking performance and direction of the manipulation. 引言在遭遇紧急情况下,大多数驾驶员都会将制动踏板立即踩死。
在汽车制动时,如果车轮抱死滑移,车轮与路面间的侧向附着力将完全消失:如果只是前轮(转向轮)抱死滑移而后轮还在滚动,汽车将失去转向能力;如果只是后轮抱死滑移而前轮还在滚动,即使受到不大的侧向干扰力,汽车也将产生侧滑(甩尾)现象。
这些都极易造成严重的交通事故。
为了避免因车辆滑移而带来的交通事故,有必要研究一种以滑移率为对象进行控制的防抱死制动系统(ABS )。
ABS 是提高汽车安全性能的主要因素之一,对于具有较高非线性的汽车制动过程,很难建立精确的数学模型;随着计算机技术和软件技术的迅猛发展,仿真技术已成为国内外研究的热点,并且在汽车研发中获得了广泛应用。
基于AMESIM的ABS液压系统建模与仿真

第 1 章绪论1.1 研究目的与意义随着我国汽车工业的发展,就必须进行汽车关键零部件的自主研发。
汽车制动过程中的安全性也已成为人们关注的焦点。
汽车防抱死制动系统(ABS),关系着汽车制动的安全性。
目前国内许多汽车公司已经开始进行汽车自主研发,要在商业的竞争中脱颖而出,要拥有自主知识产权的汽车,要使我国由一个汽车大国变为一个汽车强国,就必须进行汽车关键零部件的自主研发。
汽车制动过程中的安全性也已成为人们关注的焦点,防抱死制动系统ABS是汽车关键的零部件之一,因此国家、企业和高校都投入了大量的人力和资源对ABS进行自主研发。
汽车动力性能的提高和高速公路的延伸对汽车安全提出了越来越高的要求,许多国家都为此颁布了严厉的汽车安全法规,汽车在制动过程中的方向稳定性和转向操纵能力,已成为人们关注的焦点。
因此,探讨各种高性能的制动系统和完善制动系统的性能是减少交通事故和促进汽车工业发展的重要举措[1]。
而ABS可以在制动过程中自动、高频地对制动系统压力进行调节,从而对制动力进行调节,使车轮滑移率保持在理想滑移率附近,既防止车轮抱死,又充分利用了车轮与路面的附着能力,缩短了制动距离,提高了汽车制动过程中的方向稳定性和转向操作能力,达到了最佳制动效果的目的。
ABS控制的关键之一就是控制制动过程中的滑移率,从而提高路面附着系数的利用率,缩短制动距离,提高制动的稳定性。
然而,滑移率和路面附着系数的关系又受到很多因素的影响,如车辆本身的结构参数、车速、轮胎充气压力、轮胎垂直载荷、路面状况等等[2]。
因此,要求ABS保证汽车在短时间内在各种路面上,各种情况下都能安全制动的难度是相当大的。
还需要针对不同车型进行大量的参数匹配试验,大概需要一年半到两年的时间,并且需要大量的经验,不仅耗资巨大,而且延长了产品的开发周期。
目前国内外也有人应用新的控制理论,进行ABS控制的探讨。
根据汽车制动过程的物理实质及动力学分析,对ABS控制器的结构原理、控制方法等方面进行分析和研究,利用AMESim软件建立车辆防抱死制动系统模型,可以很容易分析液压系统元件对整个系统的影响。
基于Simulink的汽车ABS建模与仿真

车辆运动方程: 车轮运动方程: 车辆纵向摩擦力:
(1) (2) (3)
3.2 汽车轮胎模型 汽车轮胎模型反映了车轮和地面附着系数 与滑移率之间的关系。常用的轮胎模型有双线 性模型、魔术公式模型等。但由于试验条件的 限制,本文采用双线性模型,把附着系数—滑 移率曲线简化为两段直线。 其计算公式为:
(4)
基 于 Simulink 的 汽 车 ABS
建模与仿真
长春科技学院 - 付建国 \ 王洪亮 \ 钟明利 \ 刘小芳
摘要: 本文阐述了在 Simulink 的环境下以 ABS( 防抱死制动系统 ) 滑移率为对象进行控制,根据 ABS 系统工作原理建立了 ABS 单一车轮的仿真 模型,并得出仿真曲线,验证汽车 ABS 具有良好的制动性能。
3.3 汽车制动器模型 汽车制动器模型指制动器力矩与制动系气 液压力之间的关系模型。汽车制动时首先要克 服制动器及制动缸中的弹簧回位力,设此力为 Pm,则相应的制动力矩可用如下公式表示 :
为了方便研究控制算法,本文在进行仿真
时假设制动器为理想元件,忽略了由滞后性带
来的影响。因此,制动器方程为:
4. 汽车 ABS 的 Simulink 模型
以附着系数为输入,以车身速度和制动距离为
输出。最后将车轮线速度、车身速度和制动距
离输入到滑移率计算模块,计算获得实际滑移
率。本仿真模型还设置了示波器,以便观察仿
真曲线,并进行相关分析。
本文所采用的汽车参数模型如表 1 所示。
表 1 单轮模型车辆参数
名称与符号
数值
汽车整备质量 M/kg 1500
制动初速度 v/(m/s) 120
采用 Matlab/ Simulink 图形化建模工具建
基于MATLAB的汽车ABS制动过程仿真

基于MATLAB的汽车ABS制动过程仿真ABS(Anti-lock Braking System,防抱死制动系统)是现代汽车上保证行车安全的重要制动系统之一。
ABS制动系统可以避免在制动时车轮抱死,从而提高了制动效果和稳定性。
为了深入理解ABS制动系统的工作原理和性能,本文将基于MATLAB软件进行汽车ABS制动过程的仿真。
一、建立模型和假设为了实现ABS制动过程的仿真,需要建立一个基于MATLAB 的系统模型。
该系统模型需要考虑以下几个方面:1. 汽车的运动方程。
2. 轮胎与地面的接触力,即摩擦力。
3. 制动器与车轮的接触力。
4. ABS控制器的控制策略。
在仿真过程中,假设车辆在制动前以一定的速度匀速行驶,制动时四个车轮的制动和抱死状态是相同的。
二、模型搭建在MATLAB界面中,首先利用simulink模块搭建模型。
模型如下:模型中包含了车辆运动方程、轮胎地面接触力、制动器与车轮接触力等模块。
其中,运动方程模块利用F=ma公式进行建模,轮胎地面接触力模块利用摩擦力系数进行计算,制动器与车轮接触力模块利用摩擦力系数和制动器力矩进行计算。
在模型中,还有制动器控制器模块,负责制动器的控制与调节。
制动器控制器可以采用PID算法或滑模控制算法来控制制动器的开闭和力矩大小。
三、仿真过程在进行仿真过程中,需要确定以下参数:1. 初始车速度v0=80km/h。
2. 初始刹车踏板角度θ=0。
3. 制动器摩擦力系数μs=0.7。
4. 刹车片初期转动半径r=0.05m。
在进行仿真操作前,应先在程序中设定好各参数,再设定仿真时间和仿真步长。
由于ABS制动过程会使用到控制器,因此应首先进行控制器的设计和仿真。
在此,控制器的设计采用滑模控制器,其仿真结果如下:控制器的仿真结果显示,在刹车操作开始10s后,滑模控制器调节出的制动器力矩逐渐增加并稳定于85N·m左右。
随着控制器的调节,车轮抱死现象得以解决、保持ABS制动状态下使车辆具备更好的稳定性和制动效果。
汽车ABS系统的建模与仿真

汽车ABS系统的建模与仿真基于Matlab/Simulink的汽车建模与仿真摘要本文所研究的是基于Matlab/Simulink的汽车防抱死刹车系统(ABS)的仿真方法,本方法是利用了Simulink所提供的模块建立了整车的动力学模型,轮胎模型,制动系统的模型和滑移率的计算模型,采用的控制方法是PID控制器,对建立的ABS的数学模型进行了仿真研究,得到了仿真的曲线,将仿真曲线与与没有安装ABS系统的制动效果进行对比。
根据建立的数学模型分析,得到ABS系统可靠,能达到预期的效果。
关键词ABS 仿真建模防抱死系统 PIDModeling and Simulation of ABS System of AutomobilesBased onMatlab/SimulinkAbstractA method for building a Simulator of ABS base on Matlab/Simulink is presented in this paper.The single wheel vehicle model was adopted as a research object in the paper. Mathematical models for an entire car, a bilinear tire model, a hydraulic brake model and a slip ratio calculation model were established in the Matlab/Simulink environment. The PID controller was designed. The established ABS mathematical model was simulated and researched and the simulation curves were obtained. The simulation results were compared with the results without ABS. The results show that established models were reliable and could achieve desirable brake control effects.Key wordsABS; control; modeling; simulation;Anti-lock Braking System;PID1.概述随着载重车辆动力性的不断提高,客观上也对车辆的制动性能与驱动性能提出了越来越高的要求。
ABS控制器设计及仿真

汽车ABS控制器设计及其仿真摘要:ABS(Anti-lock Braking System)防抱死制动系统,通过安装在车轮上的传感器发出车轮将被抱死的信号,控制器指令调节器降低该车轮制动缸的油压,减小制动力矩。
关键字:ABS 控制系统仿真一.ABS控制系统简介。
汽车制动性能主要是三个方面:⑴制动效能,即制动距离与制动减速度;⑵制动效能的恒定性,即摩擦材料的抗热衰性能;⑶制动时汽车的方向稳定性,即制动时汽车不发生跑偏、侧滑及失去转向性能。
汽车维持直线行驶或按预定弯道行驶的能力。
而制动性能主要是有汽车轮胎的制动性能决定的。
ABS系统是一种能防止车轮被抱死而导致车身失去控制的安全装置,全称防抱死刹车系统。
我们知道,当车轮抱死滑移时,车轮与路面间的侧向附着力将完全消失。
如果是前轮(转向轮)制动到抱死滑移而后轮还在滚动,汽车将失去转向能力(跑偏)。
如果是后轮制动到抱死而前轮还在滚动,即使受到不大的侧向干扰力,汽车也将产生侧滑(甩尾)现象。
这些都极容易造成严重的交通事故。
因此,汽车在制动时不希望车轮制动到抱死滑移,而是希望车轮制动到边滚边滑的运动状态。
从已有的实验中可以知道[1],如图1所示,汽车车轮的滑动率在15%-20%时,轮胎与路面有最大的纵向附着系数,此时侧向附着系数也较大,因此,为了充分发挥轮胎与路面间这种潜在的附着能力,目前的许多中高级轿车及大客车和重型货车上均装备了防抱死制动装置(Antilock Braking System),简称ABS.汽车电控防抱死制动系统的主要功用有:(1)在任何制动情况下驾驶员应能保持对行驶车辆的控制。
(2)在任何制动情况下应能保持汽车转向时的操纵性和制动时的稳定性。
(3)当左,右车轮处于不同附着系数路面或者路面附着系数突然变化时能够进行调整控制。
(4)能够缩短制动距离,提高汽车制动效能。
(5)制动噪声小,工作安全可靠,一但防抱死制动系统失效时,自检系统能显示报警,而由机械制动系统来承担汽车制动作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于Matlab/Simulink的汽车建模与仿真摘要本文所研究的是基于Matlab/Simulink的汽车防抱死刹车系统(ABS)的仿真方法,本方法是利用了Simulink所提供的模块建立了整车的动力学模型,轮胎模型,制动系统的模型和滑移率的计算模型,采用的控制方法是PID控制器,对建立的ABS的数学模型进行了仿真研究,得到了仿真的曲线,将仿真曲线与与没有安装ABS系统的制动效果进行对比。
根据建立的数学模型分析,得到ABS系统可靠,能达到预期的效果。
关键词ABS 仿真建模防抱死系统PIDModeling and Simulation of ABS System of AutomobilesBased onMatlab/SimulinkAbstractA method for building a Simulator of ABS base on Matlab/Simulink is presented in this paper.The single wheel vehicle model was adopted as a research object in the paper. Mathematical models for an entire car, a bilinear tire model, a hydraulic brake model and a slip ratio calculation model were established in the Matlab/Simulink environment. The PID controller was designed. The established ABS mathematical model was simulated and researched and the simulation curves were obtained. The simulation results were compared with the results without ABS. The results show that established models were reliable and could achieve desirable brake control effects.Key wordsABS; control; modeling; simulation;Anti-lock Braking System; PID1.概述随着载重车辆动力性的不断提高,客观上也对车辆的制动性能与驱动性能提出了越来越高的要求。
然而,由于车辆运动状态的复杂性和车轮与地面之间的附着力的非线性等因素,车辆在高速行驶中制动或在弯道上紧急制动以及在冰雪路面等复杂路况下运动时,经常会出现车轮因抱死拖滑而导致制动距离过长,同时还有车身侧滑掉头,失去方向控制能力,车轮滑转等现象,严重威胁汽车,乘客及行人的安全。
车辆防抱死制动系统(ABS )是一种在紧急制动情况下使汽车制动距离尽可能缩短,同时保持汽车方向稳定性和转向操纵能力的装置;正因为ABS 系统能够极大的改善汽车的制动效能,现在汽车上都基本配备了ABS系统,ABS 系统已经成为汽车制动系统的关键部件。
2.汽车ABS的组成和工作原理ABS 通常由车轮转速传感器、制动压力调节装置、电子控制装置ECU 和ABS 警示灯组成。
车轮转速传感器将各个车轮的转速信号输入给ECU,ECU 根据各车轮转速传感器的输入信号对各个车轮的运动状态进行分析判断,并产生相应的控制指令,发送给制动压力调节器,由制动压力调节系统对制动管路油压高速地进行“增压-保压-减压”的循环调节过程,将各车轮滑移率围控制在最佳围,从而缩短制动距离,提高车轮制动时的方向稳定性。
3.ABS 的动力学建模汽车防抱死制动系统的数学模型由车辆动力学模型、轮胎模型、制动系统模型、滑移率模型和控制系统模型5 部分组成。
3.1 车辆动力学模型由于汽车动力学模型建立是个复杂的过程,以经典的单轮车辆模型为例,并假设:车轮载荷为常数;忽略迎风阻力和车轮滚动阻力。
建立单轮模型如图2-1。
本文采用单轮模型建立汽车动力学模型。
图3-1 车辆受力分析图由此可得车辆动力学方程:车辆运动方程:F Ma -= (1) 车轮运动方程:b T FR I -=α (2) 车辆纵向摩擦力:N F μ= (3)式中,M 为1/4 车辆的质量,单位是kg ;v 为车辆行驶速度,单位是m/s ;F 为纵向摩擦力,单位是N ;I 为车轮的转动惯量,单位是2/m kg ;ω为车轮角速度,单位是rad/s ;R 为车轮行驶半径,单位是m ;b T 为制动器制动力矩,单位是N ·m ;μ为纵向附着系数;N 为地面支持力,单位是N 。
根据式(1)、(2)、(3)建立相应的Simulink 仿真模型,输入为制动力和纵向附着系数,输出为车辆速度、车轮转速及制动距离,仿真模型如图2-2所示。
图3-2 汽车动力学模型建立3.2轮胎模型建立根据滑移率的定义公式%100)1(⨯-=vRS ωS=0时,车轮处于纯滚动状态;0<S<100%时车辆处于边滚动边滑状态;S= 100%时,车轮处于抱死状态。
ECU 通过计算判断车轮的状态后,向制动压力调节 器发出控制指令进行控制,压力调节器通过调节轮缸压力控制地面制动力的大小,使车轮不会处于5=100%的抱死状态,由图2-3可以看出,保持S 在20%左右的峰值附近,以得到汽车的最佳制动效果。
图 3-3 路面滑移率S 与附着系数u 的关系汇总图对于纵向附着系数,与滑移率的关系一般为非线性的,采用双线性模型来简化 轮胎模型,如下式:)17.0(11)17.0(>----•-=≤•=S S S S S S S cgh ccg h hhμμμμμμμ式中:μ是附着系数;h μ是峰值附着系数;g μ是滑移率为100%时的附着系数;c S 是最佳滑移率。
以下为根据一些实验数据得出的一些有代表性的特殊路面的双折线模型参数。
以下表格为以干沥青路面代表高附着系数路面,以潮湿泥土路面代表的中附着系数路面,还有以结冰路面代表的低附着系数路面的实验数据参数。
路面 c Sh μg Sg μ干沥青 0.17 0.9599 1 0.75 潮湿泥土 0.36 0.4565 1 0.45 疏松积雪 0.2 0.15 1 0.27 结冰 0.100.102810.07下面是干沥青路面滑移率S 与附着系数u 的关系:)2.0(13.083.0)2.0(2.3>•-=≤•=S S S S μμ根据滑移率公式和附着系数与滑移率关系公式,得出轮胎的附着系数收车轮轮速影响,当轮速发生变化时附着系数发生相应改变,因此车轮的附着系数为一可变因素,附着系数因素要通过轮胎子模块反馈到单轮车辆系统模型中。
根据滑移率公式和附着系数公式,搭建的轮胎子模块如下图3-4所示。
图3-4 轮胎模块3.3 制动系统模型制动系统包括传动机构和制动器两部分。
传动机构主要指液压传动系统,其建模主要是考虑制动力调节器的制动压力随电磁阀电流变化的关系。
为简化系统, 忽略电磁阀弹簧的非线性因素及压力传送的延迟,将液压传动系统简化为一个电磁阀和一个积分环节。
传递函数表示为: )101.0(100)(+•=s s s G制动器模型指制动器力矩与制动系气液压力之间的关系模型。
为了方便研究控制算法,在进行仿真时假设制动器为理想元件,忽略滞后性带来的影响。
因此,制动器方程为:p k T p b •=式中,b T 为制动器制动力矩,单位是m N •;p K 为制动器制动系数,单位是N ·m/kPa ;P 为制动器气液压力,单位是kPa 。
由式建立制动系统仿真模型,如图3-5所示。
图3-5 汽车制动系统模型3.4 滑移率计算模型汽车制动, 如果车轮线速度R ω低于汽车行驶速度ν,轮胎和路面之间将产生滑移,滑移的程度常用滑移率表示,计算公式为:%100)(⨯-=υωνλR由式建立滑移率的仿真模型,如图2-6所示。
图3-6 滑移率模型3.5 PID 控制器模块采用经典的PID 控制器, 其仿真模型如图2-7所示。
图3-7 PID 控制模型图4.汽车ABS 系统仿真及结果分析 4.1 汽车ABS 系统仿真在Matlab/Simulink 环境下,对所设计的PID 控制器在有ABS 系统和没有ABS 系统的情况下分别仿真,以得出结论。
仿真参数如表1 所示。
1/4汽车的质量M 车轮半径R 车轮转动惯量I 388kg 0.289m0.872m kg •. 初始速度v 重力加速度g 最佳滑移率λ 25m/s9.82/s m0.2带有PID 控制器的系统仿真模型如图4-1所示。
图4-1 汽车ABS仿真模型3.2 仿真结果分析当C=0的时候,此系统为无ABS 系统;当C=1的时候,此系统为ABS系统。
分别对C=0 和C=1 时进行仿真,有ABS 系统时和无ABS 系统时的车速和轮速对比曲线、滑移率对比曲线、制动距离对比曲线分别如图3-2到图3-7所示。
图3-2 无ABS系统时候的滑移率图3-3 无ABS系统时候的制动距离图3-4 无ABS系统时候的车速轮速图图3-5 有ABS的滑移率图3-6 有ABS系统的制动距离图3-7无ABS系统时候的车速轮速图从仿真结果可以看出:在整个制动过程中,ABS控制器能够很好地发挥防抱死的作用,并且使滑移率维持在最佳(0.2 左右),保证轮胎能够获得最大的地面制动力,及最短的制动距离。
与未装ABS 的车辆相比,制动距离缩短了7m,而且有ABS 的车辆并没有发生抱死现象。
结论采用Matlab/Simulink 对汽车防抱死制动系统单轮进行建模与仿真分析,仿真结果表明汽车ABS 系统具有良好的方向稳定性和制动效果。
参考文献[1]华.汽车ABS仿真检测平台的研究【D】.:工业大学机电工程学院硕士论文,2006: 51-55[2]鲍祥英.汽车ABS的模糊预测控制策略研究【D】.:理工大学机电工程学院硕士论文,2004[3]朱占胜.汽车ABS性能仿真检测系统的研发【D】.:工业大学工学硕士学位论文,2003: 64恐惧过苦。