高中数学选修4-2《矩阵与变换》.1.1 矩阵的概念
]高二数学选修4-2 矩阵与变换ppt课件
![]高二数学选修4-2 矩阵与变换ppt课件](https://img.taocdn.com/s3/m/231cacf2960590c69ec37685.png)
1
0
的特征向量为 0 和 1
10 x
1
0
= x· +(–y) ·
0 -1 y
0
1
矩阵只改变其特征向量的长度不改变其方向
22
矩阵的特征向量是在变换下“基本” 不变的量
23
矩阵表示的变换,把直线或者变成 直线,或者变成一个点
直线的向量方程 一般地,在平面直角坐标系中,经过点
M0(x0,y0)且平行于非零向量 的直线l的方程为
v0
v1
v2
14
矩阵表示的变换,把直线或者变成 直线,或者变成一个点
给量向定量OuuMuM矩uur0v阵'变0。M成,它向把量点OuuMMuu0ur0变,成点M把M向0’,量即v0把变向成 对l上任意一点X,矩阵M把点X变成点
高中数学选修4- 2
矩阵与变换
1
主要内容
通过几何变换讨论二阶方 阵的乘法及性质、矩阵的逆 和矩阵的特征向量,初步展 示矩阵应用。
2
特色
突出矩阵的几何意义
从具体到一般,从直观到抽象
用实例展示矩阵应用广泛性
3
矩阵---几何变换的代数表示
几何代数化----向量 平面几何变换 : 二阶矩阵乘向量
X’,根据矩阵变换的性质有
15
矩阵乘法的几何意义——变换的合成 乘法满足结合律,不满足交换律
1/2 0 0 –1 的变换过程(先旋转后压缩):
0 1 10
0 –1 1/2 0 的变换过程(先压缩后旋转):
10 01
16
逆变换与逆矩阵
伸压变换之逆为伸压变换
1/2 0 01
20 01
20 01
1/2 0 01
高等数学教材矩阵

高等数学教材矩阵在高等数学教材中,矩阵是一个重要的概念。
矩阵具有广泛的应用,并在许多领域中起着关键作用,如线性代数、概率论、计算机图形学等等。
本文将详细介绍矩阵的定义、基本运算、特殊矩阵等内容,以帮助读者更好地理解和应用矩阵。
一、矩阵的定义矩阵是一个由m行n列元素排列成的矩形阵列。
其中,m表示矩阵的行数,n表示矩阵的列数。
矩阵中的每个元素可以是任意的数值,可以是实数或复数。
我们用大写字母A、B等来表示矩阵。
二、矩阵的基本运算1. 矩阵的加法:对于两个行数和列数相同的矩阵A和B,它们的和记作A + B,即A和B的对应元素相加得到新的矩阵。
2. 矩阵的数乘:将一个矩阵A的每个元素都乘以一个常数k,得到新的矩阵kA。
3. 矩阵的乘法:对于一个m行n列的矩阵A和一个n行p列的矩阵B,它们的乘积记作AB,即A的行与B的列相乘,得到一个新的m行p列的矩阵。
三、特殊矩阵1. 零矩阵:所有元素均为零的矩阵称为零矩阵,用0表示。
2. 单位矩阵:主对角线上的元素均为1,其余元素均为0的矩阵称为单位矩阵,用I表示。
3. 对角矩阵:除了主对角线上的元素外,其余元素都为0的矩阵称为对角矩阵。
4. 转置矩阵:将矩阵A的行和列对调得到的新矩阵称为A的转置矩阵,记作A^T。
四、矩阵的性质与定理1. 矩阵的加法具有交换律和结合律。
2. 数乘与矩阵的加法满足分配律。
3. 矩阵的乘法具有结合律,但一般不满足交换律。
4. 矩阵的转置满足转置的转置法则,即(A^T)^T = A。
五、矩阵的应用1. 线性方程组的求解:矩阵可用于解决线性方程组,通过矩阵的运算,可以转化为求解矩阵的逆或行列式等问题。
2. 矩阵的特征值与特征向量:通过矩阵的特征值和特征向量,可以研究矩阵的稳定性、振动问题等。
3. 矩阵在图像处理中的应用:计算机图形学中,矩阵可以用于表示和处理图像,如图像的旋转、缩放、平移等操作。
总结:矩阵是高等数学中的重要概念,具有广泛的应用。
01矩阵的概念

组成矩阵的每一个数(或字母)称为矩阵的元素。
1 80 90 3 60 85
21矩阵 2 2矩阵
2 3 m
3 2
4
2 3矩阵
所有元素均为0的矩阵叫做0矩阵.
对于两个矩阵A、B的行数与列数分别相等, 且对应位置上的元素也分别相等时,A和B才相等, 记作A B.
a11 a12 称为行矩阵(仅有一行),
a11 a12
称为列矩阵(仅有一列),用,
表示列矩阵.
向量a (x, y)和平面上的点P(x, y)都可以
看成行矩阵 x
思考:
用矩阵M=0 0123240 表示平面中的图形, 请问:该图形有什么几何特征 ?
课堂小结
1.矩阵的概念,零矩阵,行矩阵,列矩阵; 2.矩阵的表示; 3.相等的矩阵; 4.用矩阵表示实际生活中的问题 ,数学问 题.
y,
也可以看成列矩阵
x y
.
x
y
称为行向量, xy
称为列向量.
习惯上,我们把平面上的向量(x, y)的坐标
写成列向量
xy 的形式.
P(x, y) 一一对应 平面向量OP
xy既表示点(x, y),也表示以O(0,0)
普通高中课程标准实验教科书(选修4-2)
矩阵与变换
二阶矩阵与平面向量
高三数学备课组
南京市东山外国语学校
矩阵的概念
y P(1,3)
3
O
1
1 3
x
简记为13
2019版高考新创新一轮复习理数江苏专版课件:第十二章 第一节 选修4-2《矩阵与变换》

当 λ=-1 时,由-4x-2x+2y=y=00, 得矩阵 A 的属于特征值-1 的
一个特征向量为12, 当 λ=3 时,由24xx++y2=y=0,0 得矩阵 A 的属于特征值 3 的一个特
征向量为-12.
3.[考点二]
(2018·苏北四市期末)已知矩阵 A=1-12
-82=- -1246.
2.[考点二]曲线 C1:x2+2y2=1 在矩阵 M=01 12的作用下变换 为曲线 C2,求 C2 的方程. 解:设P(x,y)为曲线C2上任意一点,P′(x′,y′)为曲线x2 +2y2=1上与P对应的点,
则01
考点贯通 抓高考命题的“形”与“神”
矩阵的运算
[例 1]
(1)已知 A=01 00,B=0-11 0,C=- 0 1-01,
计算 AB,AC.
(2)已知 A=10 00,B=00 10,计算 AB.
1 (3)已知 A=12
02 突破点(二) 矩阵的逆矩阵、特征值与特征向量
基础联通 抓主干知识的“源”与“流”
1.逆矩阵 对于二阶矩阵 A,B,若有 AB=BA=E,则称 A 是_可__逆_ 的,B 称为 A 的逆矩阵. 2.二阶行列式 我们把ac db称为二阶行列式,它的运算结果是一个数值 (或多项式),记为 det(A)= ad-bc .
求曲线 C′的方程. 解:(1)设 M=ca db,
b+d b=30
22,
a=0, 得ab+ =c2=,3,
b+d=2,
∴a=0,b=2,c=3,d=0.∴M=03 20.
能力练通 抓应用体验的“得”与“失”
1.[考点一]已知矩阵 M=13 24,α=12,β=-03,求 M(2α+4β).
一轮复习配套讲义:选修4-2 矩阵与变换.pdf

选修4-2 矩阵与变换A[最新考纲]1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系.2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则: [a 11 a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21]. (2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21 b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc -c ad -bc a ad -bc . (3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎨⎧ax +by =m ,cx +dy =n的系数矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b c d -1⎣⎢⎡⎦⎥⎤m n , 其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc-b ad -bc-c ad -bca ad -bc . 3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量.(2)特征多项式与特征方程 设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的一个特征值,它的一个特征向量为ξ=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎨⎧ax +by =λx ,cx +dy =λy , 故⎩⎨⎧(λ-a )x -by =0-cx +(λ-d )y =0⇔⎣⎢⎡⎦⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式 ⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤ab c d 的特征方程. (3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎨⎧ x =x 1,y =y 1,⎩⎨⎧x =x 2,y =y 2,记ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2.则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量. 诊 断 自 测1. ⎣⎢⎡⎦⎥⎤1 00 -1 ⎣⎢⎡⎦⎥⎤57=________.解析 ⎣⎢⎡⎦⎥⎤1 00 -1⎣⎢⎡⎦⎥⎤57=⎣⎢⎢⎡⎦⎥⎥⎤ 1×5+0×7 0×5+(-1)×7=⎣⎢⎡⎦⎥⎤5-7.答案 ⎣⎢⎡⎦⎥⎤5-72.若A =⎣⎢⎢⎡⎦⎥⎥⎤12 121212,B =⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212,则AB =________. 解析AB =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12⎣⎢⎢⎡⎦⎥⎥⎤ 12 -12-12 12 =⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12=⎣⎢⎡⎦⎥⎤0 00 0.答案 ⎣⎢⎡⎦⎥⎤0 00 0 3.设A =⎣⎢⎡⎦⎥⎤-1 0 0 1,B =⎣⎢⎡⎦⎥⎤0 -11 0,则AB 的逆矩阵为________. 解析 ∵A-1=⎣⎢⎡⎦⎥⎤-1 0 0 1,B -1=⎣⎢⎡⎦⎥⎤0 1-1 0 ∴(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0 ⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤0 11 0. 答案 ⎣⎢⎡⎦⎥⎤0 11 0 4.函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10014变换作用下的结果为________. 解析 ⎣⎢⎢⎡⎦⎥⎥⎤1 00 14 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x 14y =⎣⎢⎡⎦⎥⎤x ′y ′⇒x =x ′,y =4y ′, 代入y =x 2,得y ′=14x ′2,即y =14x 2. 答案 y =14x 25.若A =⎣⎢⎡⎦⎥⎤1 56 2,则A 的特征值为________. 解析 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2 =(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 答案 7和-4考点一 矩阵与变换【例1】 (2014·苏州市自主学习调查)已知a ,b 是实数,如果矩阵M =⎣⎢⎡⎦⎥⎤2a b 1所对应的变换将直线x -y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎡⎦⎥⎤2 a b1 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎨⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′),在直线x +2y =1上,所以 (2+2b )x +(a +2)y =1,即⎩⎨⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.规律方法 理解变换的意义,掌握矩阵的乘法运算法则是求解的关键,利用待定系数法,构建方程是解决此类题的关键.【训练1】 已知变换S 把平面上的点A (3,0),B (2,1)分别变换为点A ′(0,3),B ′(1,-1),试求变换S 对应的矩阵T . 解 设T =⎣⎢⎡⎦⎥⎤a c bd ,则T :⎣⎢⎡⎦⎥⎤30→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤30=⎣⎢⎡⎦⎥⎤3a 3b =⎣⎢⎡⎦⎥⎤03,解得⎩⎨⎧a =0,b =1;T :⎣⎢⎡⎦⎥⎤21→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤2a +c 2b +d =⎣⎢⎡⎦⎥⎤ 1-1, 解得⎩⎨⎧c =1,d =-3,综上可知T =⎣⎢⎡⎦⎥⎤0 11 -3. 考点二 二阶逆矩阵与二元一次方程组【例2】 已知矩阵M =⎣⎢⎡⎦⎥⎤2 -31 -1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.解 依题意得由M =⎣⎢⎡⎦⎥⎤2 -31 -1,得|M |=1, 故M -1=⎣⎢⎡⎦⎥⎤-13-12. 从而由⎣⎢⎡⎦⎥⎤2 -31 -1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-1-1 32⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤ 2-3,故⎩⎨⎧x =2,y =-3,∴A (2,-3)为所求. 规律方法 求逆矩阵时,可用定义法解方程处理,也可以用公式法直接代入求解.在求逆矩阵时要重视(AB )-1=B -1A -1性质的应用. 【训练2】 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤21 32, (1)求矩阵A 的逆矩阵;(2)利用逆矩阵知识解方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0.解 (1)法一 设逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤a c b d , 则由⎣⎢⎢⎡⎦⎥⎥⎤2132⎣⎢⎢⎡⎦⎥⎥⎤a cb d =⎣⎢⎢⎡⎦⎥⎥⎤1001,得⎩⎨⎧2a +3c =1,2b +3d =0,a +2c =0,b +2d =1,解得⎩⎨⎧a =2,b =-3,c =-1,d =2,A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1-32. 法二 由公式知若A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d =⎣⎢⎢⎡⎦⎥⎥⎤2132,(2)已知方程组⎩⎨⎧2x +3y -1=0,x +2y -3=0,可转化为⎩⎨⎧2x +3y =1,x +2y =3,即AX =B ,其中A =⎣⎢⎢⎡⎦⎥⎥⎤21 32,X =⎣⎢⎢⎡⎦⎥⎥⎤x y ,B =⎣⎢⎢⎡⎦⎥⎥⎤13,且由(1), 得A -1=⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32. 因此,由AX =B ,同时左乘A -1,有 A -1AX =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤2-1 -32⎣⎢⎢⎡⎦⎥⎥⎤13=⎣⎢⎢⎡⎦⎥⎥⎤-75. 即原方程组的解为⎩⎨⎧x =-7,y =5.考点三 求矩阵的特征值与特征向量【例3】 已知a ∈R ,矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1a21对应的线性变换把点P (1,1)变成点P ′(3,3),求矩阵A 的特征值以及每个特征值的一个特征向量. 解 由题意⎣⎢⎢⎡⎦⎥⎥⎤1a21 ⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤3a +1=⎣⎢⎢⎡⎦⎥⎥⎤33, 得a +1=3,即a =2,矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2 -2λ-1=(λ-1)2-4=(λ+1)(λ-3), 令f (λ)=0,所以矩阵A 的特征值为λ1=-1,λ2=3. ①对于特征值λ1=-1,解相应的线性方程组⎩⎨⎧ x +y =0,2x +2y =0得一个非零解⎩⎨⎧x =1,y =-1.因此,α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A 的属于特征值λ1=-1的一个特征向量; ②对于特征值λ2=3,解相应的线性方程组⎩⎨⎧2x -2y =0,-2x +2y =0得一个非零解⎩⎨⎧x =1,y =1.因此,β=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A 的属于特征值λ2=3的一个特征向量. 规律方法 已知A =⎣⎢⎢⎡⎦⎥⎥⎤a cb d ,求特征值和特征向量,其步骤为: (1)令f (λ)=⎪⎪⎪⎪⎪⎪(λ-a )-c -b(λ-d )=(λ-a )(λ-d )-bc =0,求出特征值λ; (2)列方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应的向量.【训练3】 (2014·扬州质检)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤3-1-13,求M 的特征值及属于各特征值的一个特征向量.解 由矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-311λ-3= (λ-3)2-1=0,解得λ1=2,λ2=4,即为矩阵M 的特征值. 设矩阵M 的特征向量为⎣⎢⎡⎦⎥⎤x y ,当λ1=2时,由M ⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧-x +y =0,x -y =0.可令x =1,得y =1,∴α1=⎣⎢⎡⎦⎥⎤11是M 的属于λ1=2的特征向量.当λ2=4时,由M ⎣⎢⎡⎦⎥⎤x y =4⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧x +y =0,x +y =0,取x =1,得y =-1,∴α2=⎣⎢⎡⎦⎥⎤1-1是M 的属于λ2=4的特征向量.用坐标转移的思想求曲线在变换作用下的新方程【典例】 二阶矩阵M 对应的变换T 将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换T 作用下得到了直线m :x -y =4,求l 的方程.[审题视点] (1)变换前后的坐标均已知,因此可以设出矩阵,用待定系数法求解. (2)知道直线l 在变换T 作用下的直线m ,求原直线,可用坐标转移法. 解 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1 23 4. (2)因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y 且m :x ′-y ′=4, 所以(x +2y )-(3x +4y )=4,即x +y +2=0,∴直线l 的方程是x +y +2=0.[反思感悟] (1)本题考查了求变换矩阵和在变换矩阵作用下的曲线方程问题,题目难度属中档题.(2)本题突出体现了待定系数法的思想方法和坐标转移的思想方法 .(3)本题的易错点是计算错误和第(2)问中坐标转移的方向错误. 【自主体验】(2014·南京金陵中学月考)求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程,其中M =⎣⎢⎢⎡⎦⎥⎥⎤10 02,N =⎣⎢⎢⎡⎦⎥⎥⎤ 1-101. 解 MN =⎣⎢⎢⎡⎦⎥⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤ 1-101=⎣⎢⎢⎡⎦⎥⎥⎤ 1-202. 设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P ′(x ,y ), 则⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ 1-202⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ x ′-2x ′+2y ′, 于是x ′=x ,y ′=x +y2,代入2x ′2-2x ′y ′+1=0,得xy =1.所以曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.一、填空题1.已知变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤3x +4y 5x +6y ,则该变换矩阵为________. 解析 ⎩⎪⎨⎪⎧x ′=3x +4y ,y ′=5x +6y ,可写成⎣⎢⎡⎦⎥⎤3 45 6⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′. 答案 ⎣⎢⎡⎦⎥⎤3 45 6 2.计算⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤2-1等于________. 解析 ⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎢⎡⎦⎥⎥⎤3×2-75×2-8=⎣⎢⎡⎦⎥⎤-1 2. 答案 ⎣⎢⎡⎦⎥⎤-1 23.矩阵⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为________. 解析 ⎣⎢⎡⎦⎥⎤5 00 1=5,∴⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1 4.若矩阵A =⎣⎢⎡⎦⎥⎤3 a b 13把直线l :2x +y -7=0变换成另一直线l ′:9x +y -91=0,则a =________,b =________. 解析 取l 上两点(0,7)和(3.5,0),则⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤7a 91,⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤3.5 0=⎣⎢⎡⎦⎥⎤10.53.5b . 由已知(7a,91),(10.5,3.5b )在l ′上,代入得a =0,b =-1. 答案 0 -15.矩阵M =⎣⎢⎡⎦⎥⎤6 -36 -3的特征值为________. 解析 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 3-6 λ+3=(λ-6)(λ+3)+18=0. ∴λ=0或λ=3. 答案 0或3 6.已知矩阵M =⎣⎢⎡⎦⎥⎤1234,α=⎣⎢⎡⎦⎥⎤12,β=⎣⎢⎡⎦⎥⎤ 0-3,则M (2α+4β)=________.解析 2α+4β=⎣⎢⎡⎦⎥⎤24+⎣⎢⎡⎦⎥⎤ 0-12=⎣⎢⎡⎦⎥⎤ 2-8,M (2α+4β)=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤ 2-8=⎣⎢⎢⎡⎦⎥⎥⎤-14-26.答案 ⎣⎢⎡⎦⎥⎤-14-26 7.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤121的作用下变换为曲线C 2,则C 2的方程为________.解析 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤10 21⎣⎢⎢⎡⎦⎥⎥⎤x ′ y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧ x =x ′+2y ′,y =y ′⇒⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y . 因为P ′是曲线C 1上的点, 所以C 2的方程为(x -2y )2+y 2=1. 答案 (x -2y )2+y 2=18.已知矩阵A =⎣⎢⎡⎦⎥⎤2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,则满足AX =B 的二阶矩阵X 为________.解析 由题意,得A -1= AX =B , ∴X =A -1B =. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1 9.已知矩阵A 将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是⎣⎢⎢⎡⎦⎥⎥⎤11,则矩阵A 为________.解析 设A =⎣⎢⎢⎡⎦⎥⎥⎤a c b d ,由⎣⎢⎢⎡⎦⎥⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤10=⎣⎢⎢⎡⎦⎥⎥⎤23,得⎩⎪⎨⎪⎧a =2,c =3. 由⎣⎢⎢⎡⎦⎥⎥⎤a cb d ⎣⎢⎢⎡⎦⎥⎥⎤11=3⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤33,得⎩⎪⎨⎪⎧ a +b =3,c +d =3.所以⎩⎪⎨⎪⎧b =1,d =0.所以A =⎣⎢⎢⎡⎦⎥⎥⎤23 10.答案 ⎣⎢⎢⎡⎦⎥⎥⎤23 10 二、解答题10.(2012·江苏卷)已知矩阵A 的逆矩阵A -1=错误!,求矩阵A 的特征值. 解 因为AA -1=E ,所以A =(A -1)-1.因为A -1=错误!,所以A =(A -1)-1=错误!, 于是矩阵A 的特征多项式为 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-2 -3λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4. 11.已知矩阵A =⎣⎢⎡⎦⎥⎤ 1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21.(1)求矩阵A ;(2)若向量β=⎣⎢⎡⎦⎥⎤74,计算A 5β的值.解 (1)A =⎣⎢⎡⎦⎥⎤1 2-1 4. (2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=⎣⎢⎡⎦⎥⎤21,当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11.由β=m α1+n α2,得⎩⎨⎧2m +n =7,m +n =4,解得m =3,n =1.∴A 5β=A 5(3α1+α2)=3(A 5α1)+A5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤435339.12.(2012·福建卷)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a0b1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值; (2)求A 2的逆矩阵.解 (1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′). 由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 0b1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ ax bx +y ,得⎩⎨⎧x ′=ax ,y ′=bx +y .又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1, 即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1,依题意得⎩⎨⎧ a 2+b 2=2,2b =2,解得⎩⎨⎧ a =1,b =1或⎩⎨⎧a =-1,b =1.因为a >0,所以⎩⎨⎧a =1,b =1.(2)由(1)知,A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 01 1=⎣⎢⎡⎦⎥⎤1 02 1. 所以|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤10-21.。
高中数学选修4-2矩阵与变换ppt版

a b x bx ax+by + = ,这是矩阵 与向量 的乘 y d y cx+dy c d +
5.线性变换的基本性质 . 性质 1.设 A 是一个二阶矩阵,α,β 是平面上的任意两个向 设 是一个二阶矩阵, , 是任意实数, 量,λ 是任意实数,则 ①A(λα)=λAα. =
理科
│知识梳理
a A= = c x b = ,a=y ,规定二阶矩阵 A 与向量 a 的乘积为 d
设
ax+by + 向量 ,记为 cx+dy +
Aa
a 或 c
bx , d y
即 法.
a Aa= = c
理科
│要点探究
【点评】 要理解二阶矩阵变换的定义,熟悉五种常 点评】 要理解二阶矩阵变换的定义, 见的矩阵变换,明确矩阵变换的特点. 见的矩阵变换,明确矩阵变换的特点.
理科
│要点探究
变式题 已知变换 T 把平面上的点 A(2,0),B(3,1)分 , 分 别变换成点 A′(2,1),B′(3,2),试求变换 T 对应的矩阵 M. , ,
理科
│二阶矩阵与平面图形的变换
理科
│知识梳理
知识梳理
1.二阶矩阵的定义 . (1)由 4 个数 a,b,c,d 由 ,,, 矩阵. 矩阵. (2)元素全为 0 元素全为
1 矩阵 0 0 的二阶矩阵 0 a 排成的正方形数表 c
b 称为二阶 d
0 0 . 称为零矩阵, 称为零矩阵,简记为 0
0 E 称为二阶单位矩阵, 称为二阶单位矩阵,记为 2 . 1
理科
│知识梳理
2.几种特殊线性变换 . (1)旋转变换 旋转变换 直线坐标系 xOy 内的每个点绕原点 O 按逆时针方向旋 转 α 角的旋转变换的坐标变换公式是
选修4-2 矩阵与变换 第二节 矩阵的逆矩阵、特征值与特征向量

第二节 矩阵的逆矩阵、特征值与特征向量1.矩阵的逆矩阵(1)一般地,设ρ是一个线性变换,如果存在线性变换σ,使得σρ=ρσ=I ,则称变换ρ可逆,并且称σ是ρ的逆变换.(2)设A 是一个二阶矩阵,如果存在二阶矩阵B ,使得BA =AB =E ,则称矩阵A 可逆,或称矩阵A 是可逆矩阵,并且称B 是A 的逆矩阵.(3)(性质1)设A 是一个二阶矩阵,如果A 是可逆的,则A 的逆矩阵是唯一的,A 的逆矩阵记为A -1.(4)(性质2)设A ,B 是二阶矩阵,如果A ,B 都可逆,则AB 也可逆,且(AB )-1=B -1A-1.(5)二阶矩阵A =⎣⎢⎡⎦⎥⎤a b cd 可逆,当且仅当det A =ad -bc ≠0时,A -1=⎣⎢⎡⎦⎥⎤d det A -b det A -c det A a det A . 2.二阶行列式与方程组的解对于关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪a b c d 称为二阶行列式,它的运算结果是一个数值,记为det A =⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若将方程组中行列式⎪⎪⎪⎪⎪⎪ab cd 记为D ,⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪a m c n 记为D y,则当D ≠0时,方程组的解为⎩⎨⎧x =D x D.y =DyD .3.矩阵特征值、特征向量的相关概念 (1)定义:设矩阵A =⎣⎢⎡⎦⎥⎤a b cd ,如果存在实数λ以及非零向量ξ,使得A ξ=λξ,则称λ是矩阵A 的一个特征值,ξ是矩阵A 的属于特征值λ的一个特征向量.(2)一般地,设ξ是矩阵A 的属于特征值λ的一个特征向量,则对任意的非零常数k ,kξ也是矩阵A 的属于特征值λ的特征向量.(3)一般地,属于矩阵的不同特征值的特征向量不共线. (4)设矩阵A =⎣⎢⎡⎦⎥⎤a b cd ,称f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A 的特征多项式,方程⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0为矩阵A 的特征方程.4.特征向量的应用(1)设A 是一个二阶矩阵,α是矩阵A 的属于特征值λ的任意一个特征向量,则A n α=λn α(n ∈N *).(2)性质1 设λ1,λ2是二阶矩阵A 的两个不同特征值,ξ1,ξ2是矩阵A 的分别属于特征值λ1,λ2的特征向量,对于任意的非零平面向量α,设α=t 1ξ1+t 2ξ2(其中t 1,t 2为实数),则对任意的正整数n ,有A n α=t 1λn 1ξ1+t 2λn2ξ2.1.矩阵⎣⎢⎡⎦⎥⎤0 -11 0的逆矩阵是________.答案:⎣⎢⎡⎦⎥⎤0 1-12.若矩阵⎣⎢⎡⎦⎥⎤2 35 k 可逆,则k 的值不可能是________.答案:1523.若矩阵A =⎣⎢⎡⎦⎥⎤2 1-a 21 a +1不可逆,则实数a 的值为________.解析:由题意|A |=⎪⎪⎪⎪⎪⎪⎪⎪2 1-a 21 a +1 =2×(a +1)-1×(1-a 2)=a 2+2a +1=0,∴a =-1.答案:-14.对任意实数x ,矩阵⎣⎢⎡⎦⎥⎤x 3+m 2-m 2总存在特征向量,则m 的取值范围是________.解析:由条件得f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-x -3-m m -2 λ-2 =(λ-x )(λ-2)-(m -2)(-3-m )=λ2-(x +2)λ+2x +(m +3)(m -2)=0有实数根,所有Δ1=(x +2)2-4(2x +m 2+m -6)≥0对任意实数x 恒成立, 所以Δ2=16+4(4m 2+4m -28)≤0, 解得m 的取值范围是-3≤m ≤2. 答案:-3≤m ≤2.5.已知矩阵M 的特征值λ1=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并有特征值λ2=2及对应的一个特征向量e 2=⎣⎢⎡⎦⎥⎤1-2.则矩阵M =________.解析:设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88, 故⎩⎪⎨⎪⎧a +b =8,c +d =8,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-2=2⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤2-4,故⎩⎪⎨⎪⎧a -2b =2,c -2d =-4,联立以上两个方程组解得a =6,b =2,c =4,d =4,故M =⎣⎢⎡⎦⎥⎤6 24 4.答案:⎣⎢⎡⎦⎥⎤6244例1 求矩阵A =⎣⎢⎡⎦⎥⎤3 221的逆矩阵.【解析】 法一:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤x y z w ,则⎣⎢⎡⎦⎥⎤3 22 1 ⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 00 1, 即⎣⎢⎢⎡⎦⎥⎥⎤3x +2z 3y +2w 2x +z 2y +w =⎣⎢⎡⎦⎥⎤1 00 1, 故⎩⎪⎨⎪⎧ 3x +2z =1,2x +z =0,且⎩⎪⎨⎪⎧3y +2w =0,2y +w =1,解得x =-1,z =2,y =2,w =-3,从而矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 2 2 -3. 法二:∵A =⎣⎢⎡⎦⎥⎤3 22 1,∴det A =-1.∴A -1=⎝ ⎛⎭⎪⎪⎫1-1 -2-1-2-1 3-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 22 -3.【点评】 方法一是待定系数法;方法二是公式法.1.已知变换矩阵A 把平面上的点P (2,-1)、Q (-1,2)分别变换成点P 1(3,-4)、Q 1(0,5). (1)求变换矩阵A ;(2)判断变换矩阵A 是否可逆,如果可逆,求矩阵A 的逆矩阵A -1:如不可逆,请说明理由.【解析】 (1)假设所求的变换矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,依题意,可得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎡⎦⎥⎤ 3-4及⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤05,即⎩⎪⎨⎪⎧ 2a -b =3,2c -d =-4,-a +2b =0,-c +2d =5,解得:⎩⎪⎨⎪⎧a =2,b =1,c =-1,d =2所以所求的变换矩阵A =⎣⎢⎡⎦⎥⎤2 1-1 2(2)∵det A =2×2-(-1)×1=5, ∴A 可逆A -1=⎝ ⎛⎭⎪⎪⎫25 -15-1(-1)525=⎝ ⎛⎭⎪⎪⎫251-51525.步骤-求⎣⎢⎡⎦⎥⎤a 1 b 1a 2 b 2的逆矩阵-求方程组的解例2 (1)求矩阵A =⎣⎢⎡⎦⎥⎤2 31 2的逆矩阵;(2)利用逆矩阵知识,解方程组⎩⎪⎨⎪⎧2x +3y -1=0,x +2y -3=0.【解析】 (1)法一:设矩阵A 的逆矩阵为A -1=⎣⎢⎡⎦⎥⎤a b cd ,则由⎣⎢⎡⎦⎥⎤2 31 2 ⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,知⎩⎪⎨⎪⎧ 2a +3c =1,2b +3d =0,a +2c =0,b +2d =1.解之得⎩⎪⎨⎪⎧a =2,b =-3,c =-1,d =2.∴A -1=⎣⎢⎡⎦⎥⎤2 -3-1 2.法二:∵A =⎣⎢⎡⎦⎥⎤2 31 2, ∴|A |=4-3=1,∴A-1=⎣⎢⎢⎡⎦⎥⎥⎤21 -31-11 21=⎣⎢⎢⎡⎦⎥⎥⎤2 -3-12.(2)二元一次方程组的系数矩阵为A =⎣⎢⎡⎦⎥⎤2 31 2,由(1)知A -1=⎣⎢⎢⎡⎦⎥⎥⎤ 2 -3-1 2. 因此方程⎩⎪⎨⎪⎧2x +3y =1,x +2y =3有唯一解⎣⎢⎡⎦⎥⎤x y =A -1⎣⎢⎡⎦⎥⎤13. ∴⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ 2 -3-1 2 ⎣⎢⎡⎦⎥⎤13=⎣⎢⎡⎦⎥⎤-7 5.即⎩⎪⎨⎪⎧x =-7,y =5. 【点评】 二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2(a 1,b 1不同时为零,a 2,b 2不同时为零)的系数矩阵为A =⎣⎢⎡⎦⎥⎤a 1 b 1a 2 b 2,只有当|A |≠0时,方程组有唯一解A -1⎣⎢⎡⎦⎥⎤c 1c 2,若|A |=0,则方程组有无数解或无解.2.用矩阵方法求解二元一次方程组⎩⎪⎨⎪⎧2x +y =8,4x -5y =2.解析:原方程组可以写成⎣⎢⎡⎦⎥⎤2 14 -5⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤82,记M =⎣⎢⎡⎦⎥⎤2 14 -5,其行列式⎪⎪⎪⎪⎪⎪2 14 -5=2×(-5)-1×4=-14≠0,∴M -1=⎣⎢⎡⎦⎥⎤514 11427-17. ∴⎣⎢⎡⎦⎥⎤x y =M -1⎣⎢⎡⎦⎥⎤82=⎣⎢⎡⎦⎥⎤32,即方程组的解为⎩⎪⎨⎪⎧x =3,y =2例3 给定矩阵A =⎣⎢⎡⎦⎥⎤1 2-14,B =⎣⎢⎡⎦⎥⎤32.(1)求A 的特征值λ1,λ2及对应特征向量α1,α2;(2)求A 4B .【解析】 (1)设A 的一个特征值为λ,由题意知:⎣⎢⎢⎡⎦⎥⎥⎤λ-1 -21 λ-4=0,即(λ-2)(λ-3)=0,解得λ1=2,λ2=3,当λ1=2时,由⎣⎢⎡⎦⎥⎤1 2-1 4⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值2的特征向量α1=⎣⎢⎡⎦⎥⎤21; 当λ2=3时,由⎣⎢⎡⎦⎥⎤1 2-1 4⎣⎢⎡⎦⎥⎤x y =3⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值3的特征向量α2=⎣⎢⎡⎦⎥⎤11(2)由于B =⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤21+⎣⎢⎡⎦⎥⎤11=α1+α2.故A 4B =A 4(α1+α2)=(24α1)+(34α2)=16α1+81α2=⎣⎢⎡⎦⎥⎤3216+⎣⎢⎡⎦⎥⎤8181=⎣⎢⎡⎦⎥⎤11397. 【点评】 求矩阵的特征值及对应的特征向量是矩阵与变换的重点和难点,解决此类问题首先要利用行列式求出特征徝,然后求出相应的特征向量.请注意每一个特征值对应无数个特征向量,选择坐标为整数的解就能使后面计算简单、方便.3.已知矩阵A =⎣⎢⎡⎦⎥⎤3 3c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量α2=⎣⎢⎡⎦⎥⎤3-2,求矩阵A ,并写出A 的逆矩阵.解析:由矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11可得,⎣⎢⎡⎦⎥⎤3 3c d ⎣⎢⎡⎦⎥⎤11=6⎣⎢⎡⎦⎥⎤11,即c +d =6;由矩阵A 属于特征值1的一个特征向量α2=⎣⎢⎡⎦⎥⎤3-2,可得⎣⎢⎡⎦⎥⎤3 3c d ⎣⎢⎡⎦⎥⎤ 3-2=⎣⎢⎡⎦⎥⎤ 3-2,即3c -2d =-2, 解得⎩⎪⎨⎪⎧c =2,d =4,即A =⎣⎢⎡⎦⎥⎤3 32 4.A 的逆矩阵是⎣⎢⎡⎦⎥⎤23 -12-13 12.一、填空题 1.已知A =⎣⎢⎡⎦⎥⎤1 3a6可逆,则实数a 的取值范围是________.解析:矩阵A 可逆当且仅当det(A )≠0, 即6-3a ≠0,∴a ≠2,∴a 的取值范围为(-∞,2)∪(2,+∞). 答案:(-∞,2)∪(2,+∞)2.设矩阵M =⎣⎢⎡⎦⎥⎤12 3232 -12,则矩阵M 的特征向量可以是________.解析:矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-12 -32-32 λ+12=λ2-1.由于f (λ)=0得矩阵M 的特征值为 λ1=1,λ2=-1.经计算可得,矩阵M 属于特征值λ=1的一个特征向量为⎣⎢⎡⎦⎥⎤31,而属于特征值λ=-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-3.答案:⎣⎢⎡⎦⎥⎤1-33.设可逆矩阵A =⎣⎢⎡⎦⎥⎤a 34 5的逆矩阵A -1=⎣⎢⎡⎦⎥⎤b c a -1,则a =________,b =________,c =________.解析:由AA -1=E得⎣⎢⎢⎡⎦⎥⎥⎤ab +3a ac -34b +5a 4c -5=⎣⎢⎡⎦⎥⎤1 00 1, 即⎩⎪⎨⎪⎧ac =3,4b +5a =0,4c -5=1,ab +3a =1解方程组得a =2,b =-52,c =32.答案:2 -52 324.已知二元一次方程组⎩⎨⎧22x -22y =-1,22x +22y =1,从线性变换的角度求解时应把向量⎣⎢⎡⎦⎥⎤-1 1绕原点作顺时针旋转________的旋转变换.解析:因为方程组⎩⎨⎧22x -22y =-1,22x +22y =1,的矩阵形式是⎣⎢⎡⎦⎥⎤22 -222222⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-1 1,它是把向量⎣⎢⎡⎦⎥⎤x y 绕原点作逆时针旋转π4变换得到⎣⎢⎡⎦⎥⎤-11,所以解方程组就是把向量⎣⎢⎡⎦⎥⎤-1 1绕原点作顺时针旋转π4的旋转变换.答案:π45.A =⎣⎢⎡⎦⎥⎤1 -10 1 ⎣⎢⎡⎦⎥⎤12-3232 12,则A -1=________.解析:A =⎣⎢⎡⎦⎥⎤1-101 ⎣⎢⎡⎦⎥⎤12 -3232 12=⎣⎢⎢⎡⎦⎥⎥⎤1-32-1-323212, ∵|A |=1-32×12--1-32×32=1≠0.∴A -1=⎣⎢⎢⎡⎦⎥⎥⎤12 1+32-32 1-32. 答案:⎣⎢⎢⎡⎦⎥⎥⎤12 1+32-32 1-326.现用矩阵对信息进行加密后传递,规定英文字母数字化为:a →1,b →2,…,z →26,双方约定的矩阵为⎣⎢⎡⎦⎥⎤1 402,发送方传递的密码为67,30,31,8,此组密码所发信息为________.解析:因为A =⎣⎢⎡⎦⎥⎤1 40 2,所以det A =⎪⎪⎪⎪⎪⎪1 40 2=2≠0,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -20 12,而密码矩阵为B =⎣⎢⎡⎦⎥⎤67 3130 8,故明码矩阵X =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤1 -20 12 ⎣⎢⎡⎦⎥⎤67 3130 8=⎣⎢⎡⎦⎥⎤7 1515 4,对应信息为“good ”.答案:good7.矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-1252 3的特征值与特征向量分别为________. 解析:由⎪⎪⎪⎪⎪⎪⎪⎪λ+1 -2-52 λ-3=(λ+1)(λ-3)-(-2)(-52)=λ2-2λ-8=0,得矩阵M 的特征值为λ1=4,λ2=-2.设属于特征值λ1=4的特征向量为⎣⎢⎡⎦⎥⎤x y ,则它满足方程(λ1+1)x +(-2)y =0,即5x -2y =0.故可取⎣⎢⎡⎦⎥⎤25为属于特征值λ1=4的一个特征向量. 设属于特征值λ2=-2的特征向量为⎣⎢⎡⎦⎥⎤x y ,同理可得x +2y =0.故可取⎣⎢⎡⎦⎥⎤-2 1为属于特征值λ2=-2的一个特征向量.综上所述,矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-1252 3有两个特征值λ1=4,λ2=-2,属于λ1=4的一个特征向量为α1=⎣⎢⎡⎦⎥⎤25;属于λ2=-2的一个特征向量为α2=⎣⎢⎡⎦⎥⎤-2 1. 答案:λ1=4,α1=⎣⎢⎡⎦⎥⎤25和λ2=-2,α2=⎣⎢⎡⎦⎥⎤-2 1 8.已知矩阵A =⎣⎢⎡⎦⎥⎤2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,则满足方程AX =B 的二阶矩阵X =________. 解析:∵A =⎣⎢⎢⎡⎦⎥⎥⎤2 -1-4 3, ∴|A |=⎪⎪⎪⎪⎪⎪⎪⎪2 -1-4 3=2×3-(-1)×(-4)=2≠0. ∴A -1=⎣⎢⎢⎡⎦⎥⎥⎤32 122 1.∵AX =B ,∴X =A -1B , ∴X =⎣⎢⎢⎡⎦⎥⎥⎤32 122 1⎣⎢⎢⎡⎦⎥⎥⎤4 -1-3 1=⎣⎢⎢⎡⎦⎥⎥⎤92 -15 -1.答案:⎣⎢⎢⎡⎦⎥⎥⎤92 -15 -1 二、解答题9.已知矩阵A =⎣⎢⎡⎦⎥⎤1 2-2 -3,B =⎣⎢⎡⎦⎥⎤2 31 2,C =⎣⎢⎡⎦⎥⎤0 11 0,求满足AXB =C 的矩阵X .解析:AXB =C ,所以(A -1A )XB ·B -1=A -1CB -1而A -1AXB·B -1=EXBB -1=X (BB -1)=X ,所以X =A -1CB -1因为A -1=⎣⎢⎡⎦⎥⎤-3 -22 1, B -1=⎣⎢⎢⎡⎦⎥⎥⎤2 -3-1 2, 所以X =A -1CB -1=⎣⎢⎡⎦⎥⎤-3 -22 1⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎢⎡⎦⎥⎥⎤2 -3-1 2 =⎣⎢⎡⎦⎥⎤-2 -31 2⎣⎢⎢⎡⎦⎥⎥⎤2 -3-1 2 =⎣⎢⎡⎦⎥⎤-1 00 1. 10.已知矩阵A =⎣⎢⎡⎦⎥⎤624 4.(1)求矩阵A 的特征值及对应的特征向量;(2)计算矩阵A n .解析:(1)矩阵A 的特征方程为⎪⎪⎪⎪⎪⎪⎪⎪λ-6 -2-4 λ-4=(λ-6)(λ-4)-8=λ2-10λ+16=0. 得矩阵A 的特征值为λ1=8,λ2=2.当λ1=8时,A 属于λ1的特征向量为α1=⎣⎢⎡⎦⎥⎤11;当λ2=2时,A 属于λ2的特征向量为α2=⎣⎢⎡⎦⎥⎤ 1-2. (2)设A n =⎣⎢⎡⎦⎥⎤a b c d A n α1=8n α1,A n α2=2n α2,即⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤8n 8n ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤ 2n-2·2n , 即⎩⎪⎨⎪⎧a +b =8nc +d =8n a -2b =2n c -2d =-2·2n 解得a =2×8n +2n 3,b =8n -2n 3, c =2×8n -2n +13,d =8n +2n +13. 故A n =⎣⎢⎢⎡⎦⎥⎥⎤2×8n +2n 3 8n -2n 32×8n -2n +13 8n +2n +13. 11.给定矩阵M =⎣⎢⎡⎦⎥⎤23 -13-13 23,N =⎣⎢⎡⎦⎥⎤2 11 2,向量α=⎣⎢⎡⎦⎥⎤ 1-1.(1)求证:M 和N 互为逆矩阵;(2)求证:向量α同时是M 和N 的特征向量;(3)指出矩阵M 和N 的一个公共特征值.解析:(1)证明:因MN =⎣⎢⎡⎦⎥⎤23 -13-13 23⎣⎢⎡⎦⎥⎤2 11 2=⎣⎢⎡⎦⎥⎤1 00 1,且NM =⎣⎢⎡⎦⎥⎤211 2⎣⎢⎡⎦⎥⎤23 -13-13 23=⎣⎢⎡⎦⎥⎤1 00 1,所以M 和N 互为逆矩阵.(2)证明:因为Mα=⎣⎢⎡⎦⎥⎤23 -13-13 23⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤ 1-1, 所以α是N 的特征向量.因为Nα=⎣⎢⎡⎦⎥⎤2 11 2⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤ 1-1, 所以α是N 的特征向量. (3)由(2)知,M 对应于特征向量⎣⎢⎡⎦⎥⎤ 1-1的特征值为1,N 对应于特征向量⎣⎢⎡⎦⎥⎤ 1-1的特征值也为1,故1是矩阵M 和N 的一个公共特征值.12.(2011年福建)设矩阵M =⎝ ⎛⎭⎪⎫a00 b (其中a >0,b >0)①若a =2,b =3,求M 的逆矩阵M -1;②若曲线C :x 2+y 2=1,在矩阵M 所对应的线性变换作用下得到曲线C ′:x 24+y 2=1,求a ,b 的值. 解析:①设M -1=⎣⎢⎡⎦⎥⎤x 1 y 1x 2 y 2,则MM -1=⎣⎢⎡⎦⎥⎤1 00 1又M =⎣⎢⎡⎦⎥⎤2 00 3,∴⎣⎢⎡⎦⎥⎤2 00 3⎣⎢⎡⎦⎥⎤x 1 y 1x 2 y 2=⎣⎢⎡⎦⎥⎤1 00 1. ∴2x 1=1,2y 1=0,3x 2=0,3y 2=1.即x =12,y 1=0,x 2=0,y 2=13. ∴M -1=⎝ ⎛⎭⎪⎫1200 13. ②设C 上任一点P (x ,y ),在M 作用下得点P ′(x ′,y ′)则⎣⎢⎡⎦⎥⎤a 00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,∴⎩⎪⎨⎪⎧ax =x ′by =y ′又点P ′(x ′,y ′)在C ′上,所以x ′24+y ′2=1. 即a 2x 24+b 2y 2=1为曲线C 的方程. 又C 的方程为x 2+y 2=1,∴⎩⎪⎨⎪⎧ a 2=4,b 2=1.又a >0,b >0,所以⎩⎪⎨⎪⎧ a =2,b =1.。
【苏教版】高中数学选修4-2《矩阵与变换》.1.1 矩阵的概念

选修4-2矩阵与变换 2.1.1 矩阵的概念编写人: 编号:001学习目标1、 了解矩阵的产生背景,并会用矩阵形式表示一些实际问题。
2、 了解矩阵的相关知识,如行、列、元素、零矩阵的意义和表示。
学习过程:一、预习:(一)阅读教材,解决下列问题:问题1:已知向量OP ,O(0,0),P(1,3).因此把)3,1(=OP ,如果把OP 的坐标排成一列,可简记为 。
问题2:某电视台举办歌唱比赛,甲乙两名选手初、复赛成绩如下表,并简记为问题3:将方程组⎩⎨⎧=+-=++2423132z y x mz y x 中未知数z y x ,,的系数按原来的次序排列,并简记为(二)建构数学1. 矩阵:我们把形如⎥⎦⎤⎢⎣⎡31,⎥⎦⎤⎢⎣⎡85609080,⎥⎦⎤⎢⎣⎡-42332m 这样的矩形数字阵列称为矩阵。
用大写黑体拉丁字母A,B,…来表示矩阵2. 矩阵的行:3. 矩阵的列:4. 矩阵的元素:5. 零矩阵:6. 行矩阵:7.列矩阵:练习征?问该图形有什么几何特表示平面中的图形,请现用矩阵⎥⎦⎤⎢⎣⎡=02204310M 二、课堂训练:例1.用矩阵表示ABC ∆,其中A(-1,0),B(0,2),C(2,0)例2.某种水果的产地为21,A A ,销地为21,B B ,请用矩阵表示产地i A 运到销地j B 水果数量)(ij a ,其中,2,1,2,1==j i例3.已知⎥⎦⎤⎢⎣⎡-=243x A ,⎥⎦⎤⎢⎣⎡-=21z y B ,若A=B ,试求z y x ,,例4.的量。
两矿区向三个城市送煤万吨。
请用矩阵表示从万吨、万吨、送煤的量分别是万吨;从乙矿区向城市万吨、万吨、是送煤的量分别矿区向城市向三个城市送煤:从甲某公司负责从两个矿区820360400,,160240200,,C B A C B A三、课后巩固:1、写出方程组⎩⎨⎧-=+=-2312my x y x 变量x,y 的系数矩阵.2、已知⎥⎦⎤⎢⎣⎡+=c b d a A 23,⎥⎦⎤⎢⎣⎡++=d a c b B 245,若A=B ,求a ,b ,c ,d.3、“两个矩阵的行数和列数相等”是“两个矩阵相等”的( )A 、充分不必要条件B 、必要不充分条件是C 、充要条件D 、既不充分又不必要条件4、已知⎥⎦⎤⎢⎣⎡b a 2000是一个正三角形的三个顶点坐标所组成的矩阵,求a ,b.5. 已知⎥⎦⎤⎢⎣⎡--+-=1sin cos sin cos 1ββααA ,⎥⎦⎤⎢⎣⎡--=1221B 若A=B ,求α,β.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.了解提出矩阵概念的一些实际背景;
2.掌握矩阵行、列、元素等概念,知道零 矩阵、矩阵的相等等相关知识;
3.会用矩阵表示一些简单的实际问题。
何为矩阵?
y P(1,3)
3
O
1
1 3
x
简记为13
某电视台举行的歌唱比赛,甲、乙两选手 初赛、复赛成绩如表:
初赛 复赛
甲
80
90
乙
5.妻子的怀疑、外人的讥讽 “其妻献疑”“河曲智叟笑而止之”
愚公面对困难的解决办法:
没有地方放置土石 “投诸渤海之尾,隐土之北” 不惧路途遥远
劳动力缺乏 “率子孙荷担者三夫”“遗男,始龀,跳往助之”
——团结一切力量
智叟的嘲讽 “虽我之死,有子存焉……子子孙孙,无穷 匮也”“山不加增,何苦而不平” ——移山的信念会永远传承下去
4.投诸渤海之北
(古:之于
今:各个,许多 )
5.遂率子孙荷担者三夫
(古:挑
今:荷花 )
6.曾不能毁山之一毛
(古:草木
今:毛发)
7.北山愚公长息
(古:叹气
今:休息 )
8.虽我之死
(古:即使
今:虽然 )
9.惧其不已也
(古:停止
今:已经 )
四、词类活用 1.面山而居 名词作动词,向着。 2.聚室而谋 使动用法,使……聚。
细读感悟
在疏通文意的基础上,概括故事情节。
第一段: 故事背景,介绍两座山。 第二段: 开端和发展,愚公决心移山,得到全
家的支持,并排除疑难,立即行动。 第三段: 高潮,愚公驳斥智叟的观点。 第四段: 结尾,神仙帮忙移走了两座山。
朗读第一段,说说介绍了两座山的什么 内容,有何作用。
“太行、王屋二山”
愚公移山的困难:
1.两座山面积大、高 “方七百里,高万仞” 2.愚公年老力衰
“年且九十”“曾不能毁魁父之丘”“以 残年余力,曾不能毁山之一毛”
3.移山劳动力缺乏、工具简陋 “率子孙荷担者三夫……箕畚运于渤海之尾”
“遗男,始龀,跳往助之”
4.安置土石的困难、运输路途远 “投诸渤海之尾,隐土之北”“寒暑易节, 始一反焉”
还担心什么挖不平?”智叟没有话来回答。
神话中的山神,拿着蛇,所以叫“操蛇之神”
操蛇之神闻之,惧其不已也,告
害怕他不停地干下去 神话中的天帝
之于被帝他。的帝诚感心其所诚感,动
命夸娥氏二子负二山,一厝朔东,一
传说中的大力神
放置。通“措”
厝雍南。自此,冀之南,汉之阴,无
高大的山冈
陇断焉。
译文:
山神听说了这件事,怕他不停地干下去, 向天帝报告了这件事。天帝被愚公的诚心所 感动,命令夸娥氏的两个儿子背走了两座山, 一座放在朔方东部,一座放在雍州南面。从 此,冀州的南部,直到汉水的南岸,没有山
4
这样的矩形数字(或字母)阵列称为矩阵
而组成矩阵的每一个数(或字母)称为矩阵的元素
通常用大写的拉丁字母A、B、C…表示,或
者用( aij )表示,其中 i, j分别表示元素 aij 所
在的行与列.
矩阵的概念
同一横排中按原来次序排列的一行数 (或字母)叫做矩阵的行,
同一竖排中按原来次序排列的一列数 (或字母)叫做矩阵的列.
造自然的精神。
愚公移山:比喻做事有十分顽强的毅力和排 除万难的精神。
人物形象
智叟和愚公在移山问题上的分歧在哪 里?分别突出了怎样的人物特点?
智叟: “以残年余力,曾不能毁山之一毛,其 如土石眼何前?的”,停滞的观点
愚公: “子子孙孙无穷匮也,而山不加增,何 苦而不平?” 长远的,发展的观点
人物特点:
提出疑问
其妻献疑曰:“以君之力,曾不能损
土山
哪里
魁能父把之太丘行,、如王屋太(行两、座王山屋)何怎?么且样呢焉?置
土石?”
译文: 愚公的妻子提出疑问说:“凭你的力
量,连魁父那座小山丘都平不了,又能把 太行、王屋这两座大山怎么样呢?况且把
土石放到哪里去呢?”
杂曰:“投诸渤海之尾,隐土之北。”
三个人
再读课文,结合注释翻译。
太行、王屋二山,方七百里,高
古代万长仞度。单位本,在冀州黄之河南北,岸。河阳阳,之山的北南。面
八尺为一仞
或水的北面。
(一说七尺)。
译文:
太行、王屋两座大山,纵横七百里,高 万仞。本来在冀州的南部、黄河北岸的北边。
北山愚公者,年且九十,面山而
苦于
曲折,绕远
阻塞
居。惩山北之塞,出入之迂也,
冈阻隔了。
重点积累
一、通假字
1.始一反焉 2.汝之不惠 3.河曲智叟亡以应 4.一厝朔东
通“返”,返回。 通“慧”,聪明。 通“无”,没有。 通“措”,放置。
二、一词多义
其妻献疑代词,他的 其如土石助何词,加强反问语气。
代词,他,指愚公。 惧其不已也 以君的之力 助虽词我,之主死谓间取消句子独立性。
例3:
已知A
x 4
32,
B
1 z
y2,若A B,试求x, y, z.
练一练
已知A
2
y
3x,
B
m 2x
n y
x m
yn,
若A
B,
试求x, y, m, n的值。
谈谈这堂课你有 哪些收获?
小结:
1.矩阵的概念,零矩阵,行矩阵,列矩阵; 2.矩阵的表示; 3.相等的矩阵; 4.用矩阵表示实际生活中的问题 ,数学问 题.
60
85
80 90 60 85
简记为
80 60
90 85
2x 3y mz 1, 3x 2y 4z 2
2 3m 3 2 4
简记为32
3 2
m
4
矩阵的概念
形如13 ,
80 90 60 85 ,
2 3 m
3 2
• 甲矿区
• 乙矿区
城市A
200 400
城市B 城市C
240 160 360 820
练一练
已知甲、乙、丙三人中,甲、乙相识,甲、丙不相 识,乙、丙相识。若用0表示两个人之间不相识,1表示 两个人之间相识,请用一个矩阵表示他们之间的相识关 系。(规定每个人都和自己相识)
矩阵的相等
对于两个矩阵A、B的行数与列数分别相等, 且对应位置上的元素也分别相等时,A和B才相等, 记作A B.
智叟: 目光短浅、安于现状、自以为是 对 比
愚公:志向远大、不畏困难、坚持不懈、
造福后人、大智若愚 智叟不“智”、愚公不“愚”
对于愚公和智叟,也有人说愚公“很 愚”,智叟“很智”,你的看法如何呢?
代词,这件事。 告之于帝
年且九十 将近 且焉置土石 况且
且焉置土疑石问代词,哪里。 始一反焉加强语气 面山而居 表修饰 何苦而不平表承接
表转折 而山不加增
三、古今异义
1.河阳之北 (古:山之南,水之北
2.惩山北之塞 (古:苦于
今:太阳 ) 今:惩罚 )
3.达于汉阴
(古:山之北,水之南 今:阴天)
定决心,不怕牺牲,排除万难,去争取胜 利”,愚公移山精神成为中国共产党团结带 领全国人民战胜一切艰难险阻、从失败走向
胜利的强大精神动力。
走近作者
列子:名寇,又名御寇,战国 前期郑国人,道家代表人物之
一,主张清静无为。
代表作:《列子》,东晋人搜集的有关古代资料编 写的,里面保管了不少先秦时代的寓言故事和神话
传说。
相关介绍
寓言: 一种文学体裁,它的特点是寓一定的
道理于简短的故事之中,采用象征、比喻、 拟人、夸张等手法。情节比较简单,篇幅 较短小,寓意深刻而含蓄。好的寓言,往
往给人以有益的启示和深刻的教育。
字词积累
rèn
sè
jī běn chèn
仞 塞 箕畚 龀
kuì
wú
cuò
穷匮
亡以应
厝
整体感知
朗读课文,读准节奏,读出感情。
长叹
固执
可通彻,曾不若孀妻弱子。虽我之死,
有子存焉;子又生孙,孙又生子;
子又有子,子又有孙;子子孙孙,无
穷尽
穷匮也,而山不加增,担何心什苦么而铲不不平平??”
没有。通“无”
河曲智叟亡以应。
译文:
北山愚公长叹一声说:“你思想顽固,顽 固到了不通事理的程度,连寡妇孤儿都不如。 即使我死了,还有儿子在呀;儿子又生孙子, 孙子又生儿子;儿子又有儿子,儿子又有孙子; 子子孙孙没有穷尽的,可是山不会增高加大,
的两个儿子背走了大山。
以神话结尾的目的:
在生产力极不发达的社会条件下,人们只 能幻想通过具有超人力量的神来帮助人类实现
其征服自然的愿望。
本文采用神话结尾,借助神的力量实现愚 公的宏伟抱负,反映了古代劳动人民的美好愿
望,使人们在精神上得到了鼓舞。
说说本文的寓意和“愚公移山”成语 的意思。
寓意:本文通过愚公移山的故事,表现了我 国古代劳动人民以坚韧不拔的毅力,顽强改
聚室而谋曰:“吾与汝毕力平险,指
家
铲平险峻的大山 直
皆,共同
赞通同豫南,达于汉阴,可乎?”杂然相
译文:
北山脚下有个叫愚公的人,年纪将近九 十岁了,面对着山居住。愚公苦于这两座大 山横亘面前而阻塞交通,进进出出曲折绕远。 于是愚公便聚合全家来商量说:“我和你们 竭尽全力铲平险阻,使它一直通向豫州南部, 到达汉水南岸,好吗?”大家纷纷表示赞成。
才往返一次。
河曲智叟笑而止之曰:“甚矣,
你太不聪明了
汝之不惠。以残年余力,曾不能毁山
地面长的草木