(新)高中数学黄金100题系列第65题空间角的计算理
空间角定理

空间角定理空间角定理是指在三维空间中,两个直线之间的夹角可以通过它们在平面上的投影以及它们在空间中的夹角来求得。
这个定理是空间几何中非常重要的定理之一,可以用在很多不同的数学和物理问题中。
首先,我们来看一下这个定理的几何图像。
假设有两个非平行的直线AB和CD,它们在空间中的夹角为α。
我们将这两个直线在一个平面上的投影分别表示为A'B'和C'D',它们在平面上的夹角为β。
那么空间角定理告诉我们,这两个夹角之间有一个关系式:cos(α) = cos(β)cos(γ) +sin(β)sin(γ)cos(δ)其中,γ表示A'B'和C'D'的夹角,δ表示这两条直线所在的两个平面的夹角。
这个公式可以用于计算任意两条直线之间的夹角,只需要知道它们在平面上的投影和它们在空间中的夹角即可。
空间角定理的推导可以通过向量的方法进行,它的基本思想是将直线的方向向量表示为一个向量,然后通过向量的点积和叉积来计算夹角。
这个方法虽然比较抽象,但是它的推导过程非常严密,也是空间向量运算的基础之一。
除了可以用于计算直线夹角之外,空间角定理还可以用于解决其他几何问题。
例如,我们可以利用它来计算球体的表面积和体积。
对于一个球体,我们可以将它切割成很多小块,然后计算每一小块的表面积和体积,并将它们加起来得到最终的结果。
在这个过程中,我们需要用到空间角定理来计算每一小块的表面积和体积。
空间角定理在物理学中也有广泛的应用。
例如,在电场和磁场的相互作用中,我们可以用它来计算两个电荷或者两个磁极之间的力和力矩。
在开发物理学理论和设计物理实验时,空间角定理也常常被用到。
总之,空间角定理是空间几何中非常重要的一个定理,它可以用于计算直线之间的夹角,解决球体表面积和体积的问题,以及在物理学中的应用等等。
对于那些热爱数学和物理的人来说,学习空间角定理是非常值得的。
第65题 空间角的计算-2018之高中数学(文)黄金100题系列 含解析

OCC 1D 1D B 1ABA 1第65题 空间角的计算I .题源探究·黄金母题【例1】在正方体ABCD —A 1B 1C1D 1中。
求直线A 1B 和平面A 1B 1CD 所成的角。
【解析】连接B 1C 交于O , 连结A 1O ,因为1111A B ⊥平面B BCC ,11BO ⊂面B BCC 111A B B C ∴⊥⊥BO,BO ,11DCB ∴⊥BO 面A ,A 1O 为A 1B 在平面A 1B 1CD 上的射影,1BAO ∠是A 1B与平面A 1B 1CD 平面所成的角。
在1RtA BO 中,由12AB =,22BO =,知0130BAO ∠=即A 1B 与平面A 1B 1CD 平面所成的角为030【名师点睛】解决直线与平面所成角问题主要分三步;“找”、“证"、“算”,即;先要通过定义找垂线,看射影(转化为斜线与射影所成的平面角),然后回到定义进行证明,最后进行角的计算(一般放到三角形中).II .考场精彩·真题回放【例2】【2014新课标2】直三棱柱ABC —A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A 。
110B 。
25C 。
30D.22【答案】C【解析】画出图形,找出BM 与AN所成角的平面角,利用解三角形求出BM 与 AN 所成角的余弦值.解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1 的中点,如图:BC 的中点为O,连结ON,1112MN B C OB ==且11MN B C ,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB=22211226B M BB +=+=在△ANO 中,由余弦定理可得:cos∠ANO=222630210256AN ON AO AN NO +-==⨯⨯故选:C .【例3】【2016高考新课标1文数】平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( ) (A )32(B )22(C )33(D )13【答案】A【解析】分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角。
高一数学空间角的知识点

高一数学空间角的知识点在高一数学的学习中,我们会接触到许多重要的概念和知识点。
其中,空间角作为数学中的一个重要概念,起着非常关键的作用。
本文将通过对空间角的介绍和相关知识点的探讨,帮助读者深入理解和掌握高一数学中的空间角。
一、什么是空间角?空间角是指位于同一平面内的两条射线之间的夹角。
它可以用来描述物体的旋转或者两个线段之间的方向关系。
空间角的大小通常用角的弧度或者度数来表示。
在几何学中,我们通常使用度数来度量空间角。
二、空间角的计算方法计算空间角时,我们需要先确定两条射线的起始点、共同点和终点。
在具体计算时,可以借助坐标轴或者向量的方法来帮助我们进行求解。
下面通过几个具体的例子来说明空间角的计算方法。
1. 用坐标轴计算空间角假设有两条射线分别为AB和AC,我们可以在坐标轴上确定它们的位置。
设A点的坐标为(0,0,0),B点的坐标为(x1,y1,z1),C 点的坐标为(x2,y2,z2)。
首先计算向量AB和向量AC的点积,即(x1,y1,z1)·(x2,y2,z2)。
然后计算向量AB和向量AC的模长,即|AB|和|AC|。
最后计算空间角,使用向量的点积公式cosθ =(x1,y1,z1)·(x2,y2,z2) / (|AB|·|AC|)。
2. 用向量计算空间角利用向量的方法,我们可以将空间角转化为向量间的夹角。
首先计算向量AB和向量AC的内积,即AB·AC。
然后计算向量AB 和向量AC的模长,即|AB|和|AC|。
最后计算空间角,使用向量的内积公式cosθ = AB·AC / (|AB|·|AC|)。
三、空间角的性质空间角具有一些重要的性质,这些性质有助于我们更深入地理解和应用空间角。
1. 空间角的值域空间角的值域为[-1, 1]。
当两条射线共线时,空间角等于0;当两条射线垂直时,空间角等于1或者-1,具体取决于旋转方向。
2. 空间角的加法公式空间角的加法公式是指当两个角相加时,结果等于新的角的余角。
空间角及其计算

建筑学中的应用
建筑设计
空间角在建筑设计中具有重要应用,如确定建筑物的朝向、布局和采光等。通 过合理利用空间角,可以优化建筑物的空间布局和采光效果,提高居住和使用 质量。
室内设计
在室内设计中,空间角的应用同样重要。通过合理调整室内家具和装饰品的摆 放角度,可以营造出更加舒适和美观的室内环境。
物理学中的应用
物理学
在物理学的力学、电磁学和光学等 领域,空间角也具有重要应用,如 描述带电粒子的运动轨迹、光的折 射和反射等。
02
空间角的计算方法
几何法
定义
几何法是利用空间几何知识,通 过作垂线、平行线、中线等手段, 将空间角转化为平面角或线线角,
然后进行计算的方法。
步骤
1. 作出相关垂线、平行线或中线; 2. 将空间角转化为平面角或线线 角;3. 利用平面几何知识计算角
空间角在其他领域的应用拓展
航天工程
利用空间角计算,优化航天器的轨道设计和姿态控制,提高航天 任务的可靠性和成功率。
机器人技术
通过空间角的计算,实现机器人的精准定位和自主导航,拓展机器 人在工业、医疗等领域的应用。
虚拟现实与游戏设计
利用空间角技术,提升虚拟环境的真实感和沉浸感,为游戏玩家和 设计师提供更加丰富的体验。
空间角及其计算
• 空间角的基本概念 • 空间角的计算方法 • 空间角的应用实例 • 空间角与空间几何的关系 • 空间角的未来发展与展望
01
空间角的基本概念
定义与性质
定义
空间角是指两个非平行直线或平 面在三维空间中形成的角度。
性质
空间角具有方向性,其大小和方 向可以通过几何学和三角函数来 描述。
光学研究
在光学研究中,空间角是描述光线传播方向和角度的重要参数。通过测量和计算 空间角,可以研究光线的反射、折射和散射等现象,进一步探索光与物质之间的 相互作用。
空间角问题高三数学知识点

空间角问题高三数学知识点空间角问题是高三数学中的重要知识点之一。
在解决空间角问题时,我们需要熟练掌握一系列概念、定理和计算方法。
本文将系统介绍空间角问题的相关内容,包括空间角的定义、分类和性质,以及求解空间角问题的具体方法和技巧。
一、空间角的定义和分类1.1 空间角的定义空间角是在三维空间中由两条射线形成的角。
它可以看作是平面角在立体空间中的推广。
通常用小写的希腊字母表示空间角,如α、β、γ等。
1.2 空间角的分类根据空间角的大小和位置关系,空间角可以分为以下几种类型:1) 零角:两条射线重合,形成的角为零角。
2) 锐角:两条射线夹角小于90度,形成的角为锐角。
3) 直角:两条射线夹角等于90度,形成的角为直角。
4) 钝角:两条射线夹角大于90度但小于180度,形成的角为钝角。
5) 平角:两条射线夹角等于180度,形成的角为平角。
二、空间角的性质空间角具有一系列重要的性质,掌握这些性质有助于我们解决空间角问题。
2.1 垂直性质若两个空间角互为互补角,则它们所对的两条射线垂直。
2.2 同位角性质若两个空间角由相同的两条射线所形成(其中一条射线相互重合),则这两个空间角互为同位角。
同位角具有以下性质:1) 同位角相等:若两个同位角中的一个角为α,则另一个角也为α。
2) 同位角的补角关系:若两个同位角中的一个角为α,则另一个角为180度减α的补角。
2.3 对顶角性质若两个空间角互为对顶角,则它们所对的两条射线互相重合。
三、求解空间角问题的方法和技巧3.1 判断空间角的类型在解决空间角问题时,首先要能够准确地判断空间角的类型。
可以通过观察两条射线的位置关系和夹角的大小来判断空间角是锐角、直角、钝角还是平角。
3.2 应用对顶角和同位角的性质对顶角和同位角的性质在求解空间角问题时经常被应用。
通过利用对顶角和同位角的性质,可以得到空间角的相关信息,进而解决问题。
3.3 运用向量方法在空间角问题的求解中,向量方法也是一种重要的技巧。
空间角的求法

空间角的求法一、异面直线所成角的求法平移法常见三种平移方式:直接平移;中位线平移(尤其是图中显现了中点):补形平移法。
“补形法”是立体几何中一种常见的方式,通过补形,可将问题转化为易于研究的几何体来处置,利用"补形法”找两异面直线所成的角也是经常使用的方式之一。
(1)直接平移法4、伍例1如图,PA丄矩形ABCD,已知PA=AB=8,BCJ0,求AD与PC所成角的正切值。
(尊)(2)中位线平移法:构造三角形找中位线,然后利用中位线的性质,将异面宜线所成的角转化为平面问题,解三角形求之。
例2设S是正三角形ABC所在平面外的一点,SA=SB=SC,且Z ASB= Z BSC= Z CSA= y , M、N别离是AB和SC的中点,求异面直线SM与BN所成的角的余弦值。
(巧)(3)补形平移法:在已知图形外补作一个相同的几何体,以利于找出平行线。
例3在正方体ABCD -中,E是CC】的中点,求直线AC与EDi所成角的余弦值。
(竺)A ______ G ____二、线而角的兰种求法1 •直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。
一般是解由斜线段,垂线段, 斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它能够起到联系各线段的作用。
例1四面体ABCS 中,SA, SB, SC 两两垂直,ZSBA=45°, ZSBC=60°, M 为AB 的中点,求:(1) BC 与 平面SAB 所成的角;(60。
) (2) SC 与平面ABC 所成的角。
(冷-)(“垂线”是相对的,SC 是面SAB 的垂线,又是面ABC 的斜线。
作面的垂线常依照面面垂直的性质定理,其 思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。
)2•利用公式sinO = *:其中&是斜线与平面所成的角,力是垂线段的长,/是斜线段的长,其中求出垂线段的 长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。
高中数学空间的角的计算
面-线-面
0,2
语言叙述
二面角 半平面-线-半平面
0,
语言叙述或符号表示
要点三:直线和平面的夹角 1. 有关概念 斜线:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫作平面的斜.线.,斜 线和平面的交点叫作斜.足.. 射影:过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫作斜线在这个平 面上的射影. 斜线与平面的夹角:平面的一条斜线与它在该平面内的射影的夹角叫作该直线与此平面 的夹角. 如图, l 是平面 的一条斜线,斜足为 O , OA 是 l 在平面 内的射影, POA 就是直 线 l 与平面 的夹角.
3. “平面间的夹角”不同于“二面角” (1)二面角的有关概念 半平面:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫半平面. 二面角:从一条直线出发的两个半平面所组成的图形叫二面角. 如图,可记作二面角 -a- 或 - AB - .
2
(2)区别: 构成 范围
表示法
平面间的夹角
2
5
举一反三:
【变式 1】 如图,在四棱锥 P ABCD 中,底面 ABCD 是正方形,侧棱 PD ⊥底面 ABCD , PD DC ,点 E 是 PC 的中点,作 EF ⊥ PB 交 PB 于点 F .
(1)求证: PB ⊥平面 EFD ;
(2)求平面 与平面 的夹角的大小.
【变式 2】在四棱锥 P ABCD 中,侧面 PCD ⊥底面 ABCD ,PD ⊥ CD ,E 为 PC 中点, 底面 ABCD 是直角梯形, AB ∥ CD , ADC=90 , AB AD PD 1, CD 2 . 设 Q 为侧
11
一、选择题
S
C
B
D
A
高中数学立体几何中的空间角解析
高中数学立体几何中的空间角解析立体几何是高中数学中的重要内容之一,其中空间角是立体几何中的一个重要概念。
本文将以具体的题目为例,详细介绍空间角的定义、性质和解题技巧,帮助高中学生更好地理解和应用空间角。
一、空间角的定义和性质空间角是指由两条射线在同一平面内围成的角,也可以理解为由两条射线在三维空间中围成的角。
具体来说,设有两条射线OA和OB,它们在同一平面内,那么角AOB就是由这两条射线所围成的空间角。
空间角的度量单位与平面角相同,可以用度(°)或弧度(rad)来表示。
在解题中,我们通常使用度来度量空间角。
空间角具有以下性质:1. 两条射线的方向不同,所围成的空间角大小在0°到180°之间;2. 如果两条射线的方向相同,所围成的空间角大小为0°;3. 如果两条射线的反向延长线相交,所围成的空间角大小为180°。
二、空间角的解题技巧1. 利用空间角的定义和性质进行解题在解题过程中,我们可以根据空间角的定义和性质来推导出一些结论,从而解决问题。
例如,如果题目给出了两条射线的夹角,我们可以利用空间角的定义直接得出答案;如果题目给出了两条射线的方向,我们可以根据空间角的性质判断空间角的大小。
举例:已知射线OA与射线OB的夹角为60°,射线OC与射线OB的夹角为120°,求射线OA与射线OC的夹角。
解析:根据空间角的定义,射线OA与射线OC的夹角等于射线OA与射线OB的夹角加上射线OB与射线OC的夹角。
即所求角度为60°+120°=180°。
根据空间角的性质,当两条射线的反向延长线相交时,所围成的空间角大小为180°。
因此,射线OA与射线OC的夹角为180°。
2. 利用平面角的知识解决空间角问题在解决空间角问题时,我们还可以利用平面角的知识进行推导和计算。
由于空间角是由两条射线在同一平面内围成的角,所以可以将空间角转化为平面角进行计算。
空间中的角的求法
空间角的求法一.空间角:1.异面直线所成的角: 0°<θ≤90°2.直线与平面所成的角: 0°≤θ≤90°3.二面角: 0°<θ≤180°二.空间角的求法:(计算思想主要是转化):1.几何法:(1)把空间角转化为平面角,利用三角形的边角关系进行计算(余弦定理),如图所示(2)计算步骤:一作、二证、三点、四算2.向量法:把空间角的计算转化为空间向量的坐标运算来求解(1)异面直线所成的角:把异面直线所成角化为向量的夹角。
一般地,异面直线l1、l2的方向向量夹角的余弦为:cosa ba bβ⋅=⋅,则所求异面直线所成角(范围)与其相等或互补。
(2)直线和平面所成的角:利用斜线和射影的夹角或考虑法向量,设θ为直线l 与平面α所成的角,ϕ为直线l 的方向向量v 与平面α的法向量n 之间的夹角,则有2πϕθ=-或θπϕ+=2,所以sin cos n v n vθϕ⋅==特别地 0=ϕ时,2πθ=,α⊥l ;2πϕ=时,0=θ,α⊆l 或α//l 。
(3)二面角的求法:①从平面的法向量考虑,设 21,n n 分别为平面βα,的法向量,二面角β--αl 的大小为θ,向量21,n n 的夹角为ϕ,则有π=ϕ+θ或 ϕ=θ(图5),所以1212cos n n n n ϕ⋅=⋅ 。
θωαlvnωθαvln因为二面角的大小有时为锐角、直角,有时也为钝角。
所以在计算之前不妨先依题意判断一下所求二面角的范围,然后根据计算取“相等角”或取“补角”。
②如果AB 、CD 分别是二面角l αβ--的两个面内与棱l 垂直的异面直线,则二面角的大小为,AB CD 〈〉。
三.例题与练习:例1.如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =,E 、F 分别是线段AB 、BC 上的点,且1EB FB == ,求直线1EC 与1FD 所成的角。
空间角的几何求法
空间角的几何求法一、 异面直线所成角(线线角)范围:(0,]2πθ∈先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得。
【典例分析】例1. 已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC = AD = CD = DE = 2,AB = 1,F 为CD 的中点. (1)求证:AF ⊥平面CDE ; (2)求异面直线AC ,BE 所成角余弦值;【变式】在长方体中,,,则异面直线与所成角的余弦值为。
二、直线与平面所成角(线面角)范围:[0,]2πθ∈【典例分析】例1.如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【变式】如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;1111ABCD A B C D -1AB BC ==13AA =1AD 1DB例2. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2, M 为PC 的中点。
(1)求证:BM∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。
【变式】如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(1)求证:平面VAB ⊥平面VCD ;(2)试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6.三、平面与平面所成角(面面角)范围:[0,]θπ∈(1)定义法:当点A 在二面角α- -β的棱 上时,可过A 分别在α、β内作棱 的垂线,AB 、AC ,由定义可知∠BAC 即为二面角α- -β的平面角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第65题 空间角的计算I .题源探究·黄金母题【例1】如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD,PD=DC,点E 是PC 的中点,作EF ⊥PB 交PB 于点F.图3.2-7EADBCPF(1)求证:PA//平面EDB; (2)求证:PB ⊥平面EFD; (3)求二面角C-PB-D 的大小.【答案】(1)见解析(2)见解析(3)600.【解析】如图所示建立空间直角坐标系,点D 为坐标原点,设DC=1.yxz 图3.2-8GE A DBCPF(3)解:已知PB ⊥EF,由(2)可知PB ⊥DF,故∠EFD 是二面角C-PB-D 的平面角.设点F 的坐标为(x,y,z),则)1,,(-=z y x .因为k =,所以0=⋅, 所以(1,1,-1)·(k,k,1-k)=k+k-1+k=3k-1=0,所以31=k ,点F 的坐标为)32,31,31(。
又点E 的坐标为)21,21,0(,所以)61,61,31(--=,因为cos FE FD EFD FE FD⋅∠==,1111121(,,)(,,)1366333612663--⋅---==•即∠EFD=600,即二面角C-PB-D 的大小为600.【点睛】直线与平面平行与垂直的证明,二面角大小的求解是高热点中的热点,几乎每年必考,而此例题很好的展现了,用向量方法证明直线与平面平行与垂直,还给出了用向量方法求二面角的大小.II .考场精彩·真题回放【例2】【2017课标II 理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A .32B .155C .105D .33【答案】C【解析】分析:如图所示,补成四棱柱1111ABCD A B C D - , 11,2,BC D BC ∠=则所求角为201121221cos603,5BD C D AB =+-⨯⨯⨯=== 因此1210cos 55BC D ∠== ,故选C 。
【名师点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角。
求异面直线所成的角要特别注意异面直线之间所成角的范围。
【例3】【2016高考浙江】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.【答案】69【解析】分析:设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得6AC =,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由6(0,2A ,302B ,6(0,2C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直, 266CD CH CA ===, 则63OH =,53066DH ==, 因此可设30630,,)636D αα-, 则3030630'()6236BD αα=--, 与CA 平行的单位向量为(0,1,0)n =,所以cos cos ',BD n θ=<>''BD n BD n⋅==6395cos α-,所以cos 1α=时, cos θ取最大值6. HD'DCB AzyxO【点睛】先建立空间直角坐标系,再计算与C A 平行的单位向量n 和D 'B ,进而可得直线C A 与D 'B 所成角的余弦值,最后利用三角函数的性质可得直线C A 与D 'B 所成角的余弦值的最大值.【例4】【2017浙江9】如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等.【例5】【2017课标3理16】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最小值为60°.其中正确的是________.(填写所有正确结论的编号) 【答案】②③【解析】由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥ ,又AC ⊥圆锥底面,在底面内可以过点B ,作BD a ,交底面圆C 于点D ,如图所示,连结DE ,则DE ⊥BD ,DE b ∴ ,连结AD ,等腰△ABD中,2AB AD ==当直线AB 与a 成60°角时,60ABD ∠= ,故2BD = ,又在BDE Rt △ 中,2,2BE DE =∴=,过点B作BF ∥DE ,交圆C 于点F ,连结AF ,由圆的对称性2BF DE ==ABF ∴△ 为等边三角形,60ABF ∴∠= ,即AB 与b 成60°角,②正确,①错误.由最小角定理可知③正确;很明显,可以满足平面ABC⊥直线a,直线AB与a所成的最大角为90°,④错误.正确的说法为②③.【例6】【2017课标1理18】如图,在四棱锥P-ABCD中,AB//CD,且90BAP CDP∠=∠=.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,90APD∠=,求二面角A-PB-C的余弦值.【解析】分析:(1)根据题设条件可以得出AB⊥AP,CD⊥PD.而AB∥CD ,就可证明出AB⊥平面PAD.进而证明平面PAB⊥平面PAD.(2)先找出AD中点,找出相互垂直的线,建立以F为坐标原点,FA 的方向为x轴正方向,||AB为单位长,的空间直角坐标系,列出所需要的点的坐标,设(,,)x y z=n是平面PCB的法向量,(,,)x y z=m 是平面PAB的法向量,根据垂直关系,求出(0,1,2)=--n和(1,0,1)=m,利用数量积公式可求出二面角的平面角.解析:(1)由已知90BAP CDP∠=∠=︒,得AB⊥AP,CD⊥PD.由于AB∥CD ,故AB⊥PD ,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)在平面PAD内作PF AD⊥,垂足为F,由(1)可知,AB⊥平面PAD,故AB PF⊥,可得PF⊥平面ABCD.以F为坐标原点,FA的方向为x轴正方向,||AB为单位长,建立如图所示的空间直角坐标系F xyz-.由(1)及已知可得22A,2(0,0,2P,22B,2(,1,0)2C-.所以22(,1,)22PC=--,(2,0,0)CB=,22(PA=,(0,1,0)AB=.设(,,)x y z=n是平面PCB的法向量,则PCCB⎧⋅=⎪⎨⋅=⎪⎩nn,即222220x y zx⎧-+-=⎪⎨=,可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则00PA AB ⎧⋅=⎪⎨⋅=⎪⎩m m ,即220220x z y ⎧-=⎪⎨⎪=⎩, 可取(1,0,1)=m .则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为3-. 【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.【例7】【2017课标II 理19】如图,四棱锥P -ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点。
(1)证明:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45 ,求二面角M AB D --的余弦值。
【答案】(1)证明略;10【解析】分析:(1) 取PA 的中点F ,连结EF ,BF ,由题意证得CE ∥BF ,利用线面平行的判断定理即可证得结论;(2)建立空间直角坐标系,求得半平面的法向量:()0,6,2=-m ,()0,0,1=n ,然后利用空间向量的结论可求得二面角M -AB -D 10。
解析:(1)取PA 的中点F ,连结EF ,BF 。
因为E 是PD 的中点,所以EF ∥AD ,12EF AD =, 由90BAD ABC ∠=∠=得BC ∥AD ,又12BC AD =, 所以EF BC ∥。
四边形BCEF 为平行四边形,CE ∥BF 。
又BF ⊂平面PAB ,CE ⊄平面PAB , 故CE ∥平面PAB 。
(2)由已知得BA AD ⊥,以A 为坐标原点,AB 的方向为x 轴正方向,AB 为单位长,建立如图所示的空间直角坐标系A xyz -,则()0,0,0A ,()1,0,0B ,()1,1,0C ,(3P ,(103)PC =,,,(100)AB =,,,设()(),,01M x y z x <<则()(1,,,,1,3BM x y z PM x y z =-=-,因为BM 与底面ABCD 所成的角为45°, 而()0,0,1=n 是底面ABCD 的法向量, 所以cos ,sin 45BM =n ,()222221zx y z=-++, 即()22210x y z -+-=。
①又M 在棱PC 上,设PM PC λ=,则,1,33x y z λλ===。