解直角三角形的应用(4) 教案
人教版九年级数学下册:28.2解直角三角形的应用(教案)

1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是指在直角三角形中,锐角的正弦、余弦和正切值。它们是解决直角三角形问题的关键,广泛应用于工程测量、建筑设计等领域。
2.案例分析:接下来,我们来看一个具ห้องสมุดไป่ตู้的案例。这个案例展示了如何利用锐角三角函数测量建筑物的高度,以及它如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“解直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-正弦、余弦、正切函数的定义及图形表示;
-锐角三角函数在解直角三角形中的应用,特别是如何根据已知信息求解未知边或角;
-实际问题中的直角三角形求解,如测量物体高度、计算角度等。
举例:在求解直角三角形的问题中,重点在于让学生掌握如何使用正弦、余弦、正切函数,以及如何将实际问题转化为数学模型。
2.教学难点
4.在课堂总结环节,学生对本节课的知识点掌握程度较好,但仍有个别学生存在疑问。我意识到,在课后需要关注这部分学生的辅导,确保他们能够跟上教学进度。
5.本次教学中,我尽量采用生动形象的语言和丰富的教学手段,以提高学生的学习兴趣。但从学生的反馈来看,仍有改进空间。在今后的教学中,我将尝试更多有趣的教学方法,激发学生的学习热情。
人教版九年级数学下册:28.2解直角三角形的应用(教案)
一、教学内容
人教版九年级数学下册:28.2解直角三角形的应用。本节课我们将围绕以下内容进行教学:
沪科版数学九年级上册23.2《解直角三角形及其应用》(第4课时)教学设计

沪科版数学九年级上册23.2《解直角三角形及其应用》(第4课时)教学设计一. 教材分析《解直角三角形及其应用》是沪科版数学九年级上册第23.2节的内容,主要介绍了解直角三角形的知识和方法,以及如何应用这些知识解决实际问题。
本节课的内容是学生在学习了锐角三角函数和直角三角形的性质的基础上进行的,是初中的重要内容,也是中考的热点。
教材通过例题和练习题的形式,让学生掌握解直角三角形的方法,并能够应用到实际问题中。
二. 学情分析九年级的学生已经掌握了锐角三角函数和直角三角形的性质,对解三角形的概念和基本方法有一定的了解。
但是,解直角三角形的应用能力和解决实际问题的能力还有待提高。
因此,在教学过程中,教师需要通过引导和操练,让学生熟练掌握解直角三角形的方法,并能够灵活应用到实际问题中。
三. 教学目标1.知识与技能目标:让学生掌握解直角三角形的方法,并能够应用这些方法解决实际问题。
2.过程与方法目标:通过小组合作和讨论,培养学生的合作意识和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和积极的学习态度。
四. 教学重难点1.重点:解直角三角形的方法和应用。
2.难点:解直角三角形在实际问题中的应用。
五. 教学方法1.引导法:教师通过提问和引导,激发学生的思考,让学生主动探索解直角三角形的方法。
2.操练法:教师通过设计不同难度的练习题,让学生反复操练解直角三角形的方法,提高解题能力。
3.小组合作法:教师学生进行小组合作和讨论,培养学生的合作意识和解决问题的能力。
六. 教学准备1.教具:黑板、粉笔、多媒体设备。
2.学具:练习本、直尺、圆规。
3.教学资源:教材、教学参考书、练习题。
七. 教学过程1.导入(5分钟)教师通过提问和复习锐角三角函数和直角三角形的性质,引导学生思考如何解直角三角形。
2.呈现(10分钟)教师通过讲解和展示教材中的例题,讲解解直角三角形的方法,并引导学生思考如何应用这些方法解决实际问题。
湘教版-数学-九年级上册-4.4解直角三角形的应用 教案

专题一
1如图所示,小敏同学想测量一颗大树的高度。
她站在B处仰望树顶,测得仰角为
30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,
则这棵树的高度为()
A. 23m
B. (3+1.6)m
C. (23+1.6)m
D. 3m
专题二
2、2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队
利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象。
已知A、B两点相距4m,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度。
(精确到0.1m,参考数据:2≈1.41,3≈1.73 )
四、训练巩固:
永乐桥摩天轮是天津市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A的仰角为45︒,再往摩天轮的方向前进50 m至D处,测得最高点A的仰角为60︒.求该兴趣小组测得的摩天轮的高度AB (3 1.73
≈,结果保留整数).
学习反思A
B C
D
45°
60°。
湘教版数学九年级上册4.4《解直角三角形的应用》教学设计4

湘教版数学九年级上册4.4《解直角三角形的应用》教学设计4一. 教材分析湘教版数学九年级上册4.4《解直角三角形的应用》是本册教材中的一个重要内容,主要让学生掌握解直角三角形的应用方法,进一步体会数学与实际生活的联系。
本节课的内容包括直角三角形的识别,锐角三角函数的求解,以及直角三角形在实际问题中的应用。
通过本节课的学习,学生能够灵活运用直角三角形的知识解决实际问题,提高解决问题的能力。
二. 学情分析九年级的学生已经掌握了直角三角形的基本知识,对锐角三角函数有一定的了解。
但是,学生在实际应用中可能会遇到一些困难,如不知如何将实际问题转化为直角三角形问题,对一些特殊情况的处理还不够熟练等。
因此,在教学过程中,教师需要引导学生将实际问题与直角三角形知识相结合,并通过练习加强学生对特殊情况的处理能力。
三. 教学目标1.知识与技能目标:学生能够识别直角三角形,熟练运用锐角三角函数求解直角三角形问题,并将直角三角形的知识应用于实际问题中。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生解决实际问题的能力,提高学生的数学思维能力。
3.情感态度与价值观目标:学生能够感受到数学与实际生活的联系,增强学习数学的兴趣,培养学生的自信心。
四. 教学重难点1.重点:学生能够识别直角三角形,掌握锐角三角函数的求解方法,并将直角三角形的知识应用于实际问题中。
2.难点:如何将实际问题转化为直角三角形问题,以及对一些特殊情况下的直角三角形问题的处理。
五. 教学方法1.情境教学法:通过生活实例引入直角三角形的问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.小组合作学习:学生进行小组讨论,鼓励学生发表自己的观点,培养学生的合作意识。
3.案例教学法:通过分析具体案例,让学生学会将实际问题转化为直角三角形问题,提高学生解决问题的能力。
六. 教学准备1.教学课件:制作教学课件,包括直角三角形的识别、锐角三角函数的求解等内容的展示。
华师大版数学九年级上册《解直角三角形》说课稿4

华师大版数学九年级上册《解直角三角形》说课稿4一. 教材分析华师大版数学九年级上册《解直角三角形》这一节的内容是在学生已经学习了锐角三角函数的基础上进行的。
这部分内容主要让学生了解直角三角形的性质,掌握解直角三角形的方法,以及熟练运用解直角三角形的知识解决实际问题。
教材从生活实际出发,通过让学生观察和分析实际问题,引出直角三角形的性质和解直角三角形的方法。
然后,通过例题和练习题的讲解和练习,使学生掌握解直角三角形的方法,并能够运用到实际问题中。
二. 学情分析学生在学习这一节内容时,已经掌握了锐角三角函数的知识,对三角函数有一定的理解。
但是,对于解直角三角形的方法和应用,可能还比较陌生。
因此,在教学过程中,需要引导学生从生活实际出发,理解直角三角形的性质和解直角三角形的方法,并通过大量的练习,使学生能够熟练掌握解直角三角形的方法,并能够运用到实际问题中。
三. 说教学目标教学目标主要包括三个方面:知识与技能、过程与方法、情感态度与价值观。
1.知识与技能:使学生了解直角三角形的性质,掌握解直角三角形的方法,能够熟练运用解直角三角形的知识解决实际问题。
2.过程与方法:通过观察、分析实际问题,引导学生发现直角三角形的性质,学会解直角三角形的方法,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用,培养学生的创新精神和实践能力。
四. 说教学重难点教学重点是使学生掌握解直角三角形的方法,并能够熟练运用到实际问题中。
教学难点是引导学生发现直角三角形的性质,理解解直角三角形的方法。
五. 说教学方法与手段在教学过程中,我会采用问题驱动法、案例教学法和小组合作法等教学方法。
同时,利用多媒体教学手段,如PPT、视频等,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示一些生活中的实际问题,引导学生观察和分析,引出直角三角形的性质和解直角三角形的方法。
解直角三角形及其应用教案(教学设计)

解直角三角形及其应用【教学目标】知识与技能:1.使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力。
3.渗透数形结合的数学思想,培养学生良好的学习习惯。
过程与方法:通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力。
情感态度与价值观:渗透数形结合的数学思想,培养学生良好的学习习惯。
【教学难点】1.重点:直角三角形的解法。
2.难点:三角函数在解直角三角形中的灵活运用。
【教学准备】多媒体课件【教学过程】一、复习旧知、引入新课引入:我们一起来解决关于比萨斜塔问题。
二、探索新知、分类应用活动一:理解直角三角形的元素提问:在三角形中共有几个元素?什么叫解直角三角形?总结:一般地,直角三角形中,除直角外,共有5个元素,即3条边和2个锐角,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。
活动二:直角三角形的边角关系直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系sin ;cos ;tan a b a A A A c c b ===。
(2)三边之间关系222a b =c +。
(3)锐角之间关系∠A+∠B=90°。
活动三:解直角三角形例1:在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且,,解这个三角形。
例2:在Rt △ABC 中,∠B=35°,b=20,解这个三角形。
三、总结消化、积累经验1.理解直角三角形的边角之间的关系、边之间的关系、角的关系。
2.解决有关问题。
四、跟踪训练、巩固提升1.在下列直角三角形中不能求解的是( )。
解直角三角形及其应用(第4课时)教学PPT
性质4
射影定理:在直角三角形中,斜边上的高是两直角边在斜 边上射影的比例中项;每一条直角边是这条直角边在斜边 上的射影和斜边的比例中项。
03
解直角三角形方法论述
利用相似三角形法求解
01
02
03
04
寻找相似三角形
在已知直角三角形中,通过寻 找与待求三角形相似的三角形 ,建立相似关系。
设定未知数
在相似三角形中,设定待求的 边长或角度为未知数。
建立比例关系
根据相似三角形的性质,建立 已知边长与未知边长的比例关 系。
求解未知数
通过解比例关系式,求出未知 数的值。
利用三角函数法求解
确定已知量
在已知直角三角形中,确定已知的角度或边长。
建立三角函数关系式
将已知量与待求量通过三角函数关系式联系起来 。
选择三角函数
根据已知量,选择合适的三角函数(正弦、余弦 、正切等)。
分组讨论,分享解题思路和方法
学生分组讨论,分享各自的解题思路 和方法。
教师巡视各组讨论情况,给予必要的 指导和帮助。
鼓励学生互相学习、互相帮助,共同 进步。
教师点评,总结易错点和注意事项
教师对学生的练习和讨论进行点评,肯定优点和进 步。
针对学生在练习和讨论中出现的易错点和问题,进 行总结和归纳。
水坝设计
在水坝设计中,需要计算水坝的 高度和倾斜角度。通过测量水坝 顶部和底部的夹角以及水坝的长 度,可以利用解直角三角形的方
法进行计算。
其他领域应用举例
航海
物理
在航海中,需要确定船只的航向和距离。 通过测量船只与目标之间的夹角和距离, 可以利用解直角三角形的方法进行计算。
在物理学中,需要计算物体的运动轨迹和 速度。通过测量物体运动的夹角和距离, 可以利用解直角三角形的方法进行计算。
九年级数学下册《解直角三角形的应用问题》教案、教学设计
3.培养学生团结协作、互相帮助的精神,使其在合作学习中体验到团队的力量;
4.培养学生具备一定的审美观念,欣赏直角三角形在几何图形中的美感;
5.引导学生关注社会、关注生活,运用所学数学知识为生活服务,提高学生的社会责任感。
二、学情分析
四、教学内容与过程
(一)导入新课
1.教师通过多媒体展示生活中的一些直角三角形应用实例,如建筑物的直角三角形结构、测量高度等,引发学生对直角三角形的好奇心和探究欲望。
师:“同学们,你们在生活中见到过直角三角形吗?它们有什么特别之处呢?今天我们将一起探讨直角三角形的应用问题。”
2.教师提出问题,引导学生思考:
(四)课堂练习
1.教师布置一些具有代表性的练习题,让学生独立完成。
师:“下面,请同学们完成这些练习题。它们涵盖了直角三角形的不同类型,希望你们能够运用所学知识进行解答。”
2.教师对学生的练习情况进行点评,指出解题过程中的优点和不足。
师:“通过练习,我发现大部分同学已经掌握了解直角三角形的方法。但还有一些细节需要注意,如准确度、计算过程等。希望大家能够不断改进,提高解题能力。”
4.了解并掌握一些常见的直角三角形应用问题解题思路和方法,如平面几何中的角度问题、路程问题等。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.采用情境教学法,通过设置与生活密切相关的实际问题,激发学生的学习兴趣和探究欲望;
2.引导学生运用合作学习、探究学习的方式,培养学生主动发现问题、分析问题、解决问题的能力;
3.学生在合作学习中,容易出现依赖心理,需要教师引导他们积极参与、主动思考;
湘教版 九年级上册 4.3《解直角三角形的应用》教案
《解直角三角形的应用》教案教学目标知识与能力:1、能够把数学问题转化成数学问题.2、能够错助于计算器进行有三角函数的计算,并能对结果的意义进行说明,发展数学的应用意识和解决问题的能力.过程与方法:经历探索实际问题的过程,进一步体会三角函数在解决实际问题过程中的应用.教学重点能够把数学问题转化成数学问题,能够借助于计算器进行有三角函数的计算.教学难点能够把数学问题转化成解直角三角形问题,会正确选用适合的直角三角形的边角关系. 教学过程一、问题引入,了解仰角、俯角的概念.提出问题:某飞机在空中A处的高度AC=1500米,此时从飞机看地面目标B的俯角为1 8°,求A、B间的距离.提问:1、俯角是什么样的角?,如果这时从地面B点看飞机呢,称∠ABC是什么角呢?这两个角有什么关系?2、这个△ABC是什么三角形?图中的边角在实际问题中的意义是什么,求的是什么,在这个几何图形中已知什么,又是求哪条线段的长,选用什么方法?教师通过问题的分析与讨论与学生共同学习也仰角与俯角的概念,也为运用新知识解决实际问题提供了一定的模式.二、测量物体的高度或宽度问题.1、提出老问题,寻找新方法.我们学习中介绍过测量物高的一些方法,现在我们又学习了锐角三角函数,能不能利用新的知识来解决这些问题呢.利用三角函数的前提条件是什么?那么如果要测旗杆的高度,你能设计一个方案来利用三角函数的知识来解决吗?学生分组讨论体会用多种方法解决问题,解决问题需要适当的数学模型.2、运用新方法,解决新问题.(1)从1.5米高的测量仪上测得古塔顶端的仰角是30°,测量仪距古塔60米,则古塔高()米.(2)从山顶望地面正西方向有C 、D 两个地点,俯角分别是45°、30°,已知C 、D 相距100米,那么山高( )米.(3)要测量河流某段的宽度,测量员在洒一岸选了一点A ,在另一岸选了两个点B 和C ,且B 、C 相距200米,测得∠ACB =45°,∠ABC =60°,求河宽(精确到0.1米).在这一部分的练习中,引导学生正确来图,构造直角三角形解决实际问题,渗透建模的数学思想.三、与方位角有关的决策型问题1、提出问题一艘渔船正以30海里/时的速度由西向东追赶鱼群,在A 处看见小岛C 在北偏东60°的方向上;40min 后,渔船行驶到B 处,此时小岛C 在船北偏东30°的方向上.已知以小岛C 为中心,10海里为半径的范围内是多暗礁的危险区.这艘渔船如果继续向东追赶鱼群,有有进入危险区的可能?2、师生共同分析问题按以下步骤时行:(1)根据题意画出示意图,(2)分析图中的线段与角的实际意义与要解决的问题,(3)不存在直角三角形时需要做辅助线构造直角三角形,如何构造?(4)选用适当的边角关系解决数学问题,(5)按要求确定正确答案,说明结果的实际意义.3、学生练习某景区有两景点A 、B ,为方便游客,风景管理处决定在相距2千米的A 、B 两景点之间修一条笔直的公路(即线段AB ).经测量在A 点北偏东60°的方向上在B 点北偏西45°的方向上,有一半径为0.7千米的小水潭,问水潭会不会影响公路的修建?为什么?A ED学生可以分组讨论来解决这一问题,提出不同的方法.课堂小结1、由学生谈利用三角函数知识来解决实际问题的步骤,再次体会建立数学模型解决问题的过程.2、总结具体几种类型的图形构造直角三角形的方法:。
九年级数学《解直角三角形(4)》教案
28.2解直角三角形(第4课时)》教学评价1、评价量规:随堂提问、练习反馈、作业反馈2、评价策略:坚持“及时评价与激励评价相结合,定量化评价与定性化评价相统一”的原则,最大限度地做到面向全体学生,充分关注学生的个性差异,将学生自评、生生互评和教师概括引领、激励测进式点评有机结合,既有即兴评价,又有概要性评价;既有学生的自评,又有师生、生生之间的互评,力求在评价中帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
教学流程活动流程活动内容及目的活动一创设情境,导入新课从实际生活入手,提出问题,引导学生思考,引入新课。
活动二诱导尝试,探究新知出示问题1及例题,学生思考与研究解决问题的方向与方法,教师诱导讲解。
借助图形将实际问题转化为解直角三角形的问题,分析其数量关系,并将其归结为直角三角形中元素之间的关系。
师生共解决课本90提出的如何测山高的问题,由此总结“曲面”的问题要通过“化整为零”将“曲面”化成“直面”来解决。
活动三变式训练,巩固新知通过有梯次的三个训练题组,题组一、二旨在检查学生对所学知识的掌握情况;题组三旨在巩固加深对知识的理解,提高学生数学素养。
活动四全课小结,内化新知将知识归类细化,纳入已有的知识体系。
活动五推荐作业,延展新知分类推荐、分层要求,将探究兴趣由课内延伸到课外;及时捕捉学生学习状况,适时进行有效诊断评价、反馈补救、长善救失。
教学程序问题与情境师生互动媒体使用与教学评价活动一创设情境,导入新课问题1:如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24°,求斜坡上相邻两树的坡面距离是多少(精确到0.1m).从实际生活入手,提出问题,引【教师活动】(1)出示问题(2)引导学生回顾思考,什么是株距、倾斜角?怎样求坡面距离?(3)教师揭示本节课题。
【学生活动】(1)阅读理解问题;(2)同桌相互交流,探索什么是株距、倾斜角?怎样求坡面距离?【媒体使用】(1)出示问题【设计意图】(1)从实际生活入手提出问题,引导学生思考,引入本节新课。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题解直角三角形的应用(四)
一、教学目标
1、巩固用三角函数有关知识解决问题,学会解决坡度问题.
2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.
3、培养学生用数学的意识,渗透理论联系实际的观点.
二、教学重点、难点
重点:解决有关坡度的实际问题.
难点:理解坡度的有关术语.
三、教学过程
(一)复习引入
1.讲评作业:将作业中学生普遍出现问题之处作一讲评.
2.创设情境,导入新课.
例同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33
水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m).同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚.这时,教师应根据学生想学的心情,及时点拨.(二)教学互动
通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决.但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义.
1.坡度与坡角
结合图6-34,教师讲述坡度概
念,并板书:坡面的铅直高度h
和水平宽度l的比叫做坡度(或叫做坡比),一般用i表示。
即i=,常写成i=1:m的形式如i=1:2.5把坡面与水平面的夹角α叫做坡角.引导学生结合图形思考,坡度i与坡角α
之间具有什么关系?答:i=h
l
=tan 这一关系在实际问题中经常用到,教师不妨设置练
习,加以巩固.
练习(1)一段坡面的坡角为60°,则坡度i=______; ______,坡角α______度.
为了加深对坡度与坡角的理解,培养学生空间想象力,教师还可以提问: (1)坡面铅直高度一定,其坡角、坡度和坡面水平宽度有什么关系?举例说明. (2)坡面水平宽度一定,铅直高度与坡度有何关系,举例说明.
答:(1)
如图,铅直高度AB 一定,水平宽度BC 增加,α将变小,坡度减小,因为 tan α=AB BC ,AB 不变,tan α随BC 增大而减小
(2) 与(1)相反,水平宽度BC 不变,α将随铅直高度增大而增大,tan α 也随之增大,因为tan α=BC AB
不变时,tan α随AB 的增大而增大2.
讲授新课
引导学生回头分析引题,图中ABCD 是梯形,若BE ⊥AD ,CF ⊥AD ,梯形就被分割成Rt △ABE ,矩形BEFC 和Rt △CFD ,AD=AE+EF+FD ,AE 、DF 可在△ABE 和△CDF 中通过坡度求出,EF=BC=6m ,从而求出AD .
以上分析最好在学生充分思考后由学生完成,以培养学生逻辑思维能力及良好的学习习惯.
坡度问题计算过程很繁琐,因此教师一定要做好示范,并严格要求学生,选择最简练、准确的方法计算,以培养学生运算能力.
解:作BE ⊥AD ,CF ⊥AD ,在Rt △ABE 和Rt △CDF 中,
∴AE=3BE=3×23=69(m).
FD=2.5CF=2.5×23=57.5(m).
∴AD=AE+EF+FD=69+6+57.5=132.5(m).
因为斜坡AB 的坡度i =tan α=13
≈0.3333,
α≈18°26′答:斜坡AB的坡角α约为18°26′,坝底宽AD为132.5米,斜坡AB的长约为72.7米.
其实这是旧人教版的一个例题,由于新版里这样的内容和题目并不少,但是对于题目里用的术语新版少提,基于学生的接受情况应插讲这一内容。
(三)巩固再现
利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图6-35阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求:
①横断面(等腰梯形)ABCD的面积;
②修一条长为100米的渠道要挖去的土方数.
四、布置作业。