关于正弦函数和余弦函数的计算公式
简单易懂的三角函数正弦余弦和正切

简单易懂的三角函数正弦余弦和正切三角函数是数学中重要的概念之一,它们在几何学和三角测量中发挥着至关重要的作用。
本文将详细介绍三角函数中的正弦、余弦和正切,并解释它们的定义、性质和应用。
一、正弦函数(sin)正弦函数是以圆的弧长和半径的比值定义的。
给定一个角度θ(单位为弧度),我们可以通过以下公式来计算它的正弦值:sin(θ) = 对边 / 斜边其中,对边表示角θ对应的直角三角形中与θ相对的边的长度,斜边表示直角三角形中斜边的长度。
正弦函数的定义域是所有实数,其值域在-1到1之间。
正弦函数的图像是一个周期性的波形,它在0到2π之间重复。
正弦函数在数学和物理学中有广泛的应用,比如描绘波动、震动和周期性现象等。
二、余弦函数(cos)余弦函数也是以圆的弧长和半径的比值定义的。
给定一个角度θ,我们可以通过以下公式来计算它的余弦值:cos(θ) = 邻边 / 斜边其中,邻边表示角θ对应的直角三角形中与θ相邻的边的长度。
余弦函数的定义域是所有实数,其值域也在-1到1之间。
余弦函数的图像与正弦函数非常相似,它在0到2π之间同样重复。
余弦函数同样在数学和物理学中有广泛的应用,比如计算力的分解、描述周期性变化等。
三、正切函数(tan)正切函数是以正弦和余弦的比值定义的。
给定一个角度θ,我们可以通过以下公式来计算它的正切值:tan(θ) = 正弦 / 余弦 = 对边 / 邻边正切函数的定义域是所有不等于(2n + 1)π/2的实数,其中n是任意整数。
其值域是所有实数。
正切函数的图像有一些特殊的性质,比如在某些角度上取无穷大的值。
正切函数在解决直角三角形问题、物体运动中的速度和加速度等方面有着重要的应用。
综上所述,三角函数中的正弦、余弦和正切是数学中重要的概念,它们不仅在几何学和三角测量中起到关键作用,而且在物理学、工程学以及其他科学领域中有着广泛的应用。
通过理解和熟练运用这些函数,我们可以更好地理解和解决与角度有关的各种问题。
三角函数的导数三角函数的导数公式和计算方法

三角函数的导数三角函数的导数公式和计算方法三角函数的导数是微积分中的重要概念之一,在求解各种函数的导数时经常会遇到三角函数。
本文将介绍三角函数的导数公式以及计算方法。
一、三角函数的导数公式三角函数中最常见的三个函数是正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
它们的导数公式如下:1. 正弦函数(sin)的导数公式:sin'(x) = cos(x)2. 余弦函数(cos)的导数公式:cos'(x) = -sin(x)3. 正切函数(tan)的导数公式:tan'(x) = sec^2(x)其中,sec(x)表示正切函数的倒数,即:sec(x) = 1/cos(x)二、三角函数导数计算方法下面将介绍如何使用导数公式计算三角函数的导数。
1. 正弦函数(sin)的导数计算方法:对于任意实数x,使用sin(x)的导数公式即可计算sin(x)的导数。
2. 余弦函数(cos)的导数计算方法:对于任意实数x,使用cos(x)的导数公式即可计算cos(x)的导数。
3. 正切函数(tan)的导数计算方法:对于任意实数x,使用tan(x)的导数公式即可计算tan(x)的导数。
然而,需要注意的是,当x等于π/2、3π/2等奇数倍的π时,tan(x)的导数不存在。
三、三角函数的导数计算实例为了更好地理解三角函数的导数,下面举例说明。
1. 计算sin(x)的导数:对于sin(x),根据sin'(x) = cos(x),导数为cos(x)。
例如,当x=π/6时,sin'(π/6) = cos(π/6) = √3/2。
2. 计算cos(x)的导数:对于cos(x),根据cos'(x) = -sin(x),导数为-sin(x)。
例如,当x=π/4时,cos'(π/4) = -s in(π/4) = -1/√2。
3. 计算tan(x)的导数:对于tan(x),根据tan'(x) = sec^2(x),导数为sec^2(x)。
三角函数的恒等变换公式

三角函数的恒等变换公式三角函数是数学中一个重要的分支,它在几何、物理以及工程等领域有着广泛的应用。
而恒等变换公式则是在三角函数中非常重要的一种工具和概念,它们可以用来简化复杂的三角函数表达式,提供了计算和推导的便捷方法。
首先,让我们来看一下最基本的恒等变换公式:1. 正弦函数:sin^2(x) + cos^2(x) = 1这是正弦函数和余弦函数最基本的恒等变换,它表明在任意角度x下,正弦函数的平方加上余弦函数的平方等于1、这个公式是三角函数最基本的性质之一,也被称为“单位圆上的三角恒等式”,其几何意义是:一个点在单位圆上的x坐标的平方加上y坐标的平方等于1利用这个基本的恒等式,我们可以推导出其他的一些恒等变换公式:2. 余弦函数:1 + tan^2(x) = sec^2(x)1 + cot^2(x) = csc^2(x)这两个公式是针对余弦函数的恒等变换,第一个公式表明在任意角度x下,正切函数的平方加上1等于正割函数的平方,第二个公式表明在任意角度x下,余切函数的平方加上1等于余割函数的平方。
这两个公式与第一个公式的推导思路相同,都是通过将正弦函数和余弦函数转化为正切函数和余切函数,然后利用基本的恒等式得出的。
除了以上的一些基本的恒等变换公式外,还有许多其他的恒等变换公式,包括:3. 正弦函数的偶函数性质:sin(-x) = -sin(x)这个公式表明正弦函数是一个偶函数,即在任意角度x和-x下,正弦函数的值相等,且符号相反。
这个公式可以通过正弦函数定义的三角形来解释,当角度x和-x的终边相对于x轴的位置镜像对称时,正弦函数的值相等,符号相反。
4. 余弦函数的偶函数性质:cos(-x) = cos(x)这个公式表明余弦函数也是一个偶函数,即在任意角度x和-x下,余弦函数的值相等。
这个公式也可以通过余弦函数定义的三角形来解释,当角度x和-x的终边相对于y轴的位置镜像对称时,余弦函数的值相等。
5. 正弦函数的奇函数性质:sin(pi - x) = sin(x)这个公式表明正弦函数是一个奇函数,即在任意角度x和pi-x下,正弦函数的值相等,且符号相反。
正弦函数和余弦函数的计算公式

sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)?sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
2 2
α+β α-β
cosα+cosβ=2cos—--·cos—-—
2 2
α+β α-β
cosα-cosβ=-2sin—--·sin—-—
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
2
1
sinα ·sinβ=- -[cos(α+β)-cos(α-β)]
2
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
补充微分阶段的公式
(sinx)'=cosx (cosx)'=-sinx
三角函数公式及求导公式

三角函数公式及求导公式三角函数(trigonometric functions)是数学中常用的一类函数。
三角函数包括正弦函数(sine)、余弦函数(cosine)、正切函数(tangent)、余切函数(cotangent)、正割函数(secant)和余割函数(cosecant),它们的定义涉及面积比、直角三角形的边长比以及点的坐标等几何概念。
以下是常见的三角函数以及它们的定义:1. 正弦函数(sin):正弦函数的定义式为:sin(x) = (opposite/hypotenuse),其中x表示一个角的弧度,opposite表示角对边的长度,hypotenuse表示斜边的长度。
2. 余弦函数(cos):余弦函数的定义式为:cos(x) = (adjacent/hypotenuse),其中x表示一个角的弧度,adjacent表示角邻边的长度,hypotenuse表示斜边的长度。
3. 正切函数(tan):正切函数的定义式为:tan(x) = (opposite/adjacent),其中x表示一个角的弧度,opposite表示角对边的长度,adjacent表示角邻边的长度。
4. 余切函数(cot):余切函数的定义式为:cot(x) = (adjacent/opposite),其中x表示一个角的弧度,adjacent表示角邻边的长度,opposite表示角对边的长度。
5. 正割函数(sec):正割函数的定义式为:sec(x) = 1/cos(x),其中x表示一个角的弧度。
6. 余割函数(csc):余割函数的定义式为:csc(x) = 1/sin(x),其中x表示一个角的弧度。
三角函数的求导公式(derivative)是在微积分中使用的重要工具。
以下是常见的三角函数求导公式:1.正弦函数的导数:(d/dx)sin(x) = cos(x)2.余弦函数的导数:(d/dx)cos(x) = -sin(x)3.正切函数的导数:(d/dx)tan(x) = sec^2(x)4.余切函数的导数:(d/dx)cot(x) = -csc^2(x)5.正割函数的导数:(d/dx)sec(x) = sec(x)tan(x)6.余割函数的导数:(d/dx)csc(x) = -csc(x)cot(x)三角函数的导数公式可以通过一些基本的求导规则推导得出,如链式法则、乘法法则和常数倍数法则。
正弦函数和余弦函数的计算公式

正弦函数和余弦函数的计算公式文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]关于正弦函数和余弦函数的计算公式同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα·cotα=1sinα·cscα=1cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα·tanβtanα-tanβtan(α-β)=——————1+tanα·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-—2 2α+βα-βsinα-sinβ=2cos—--·sin—-—2 2α+βα-βcosα+cosβ=2cos—--·cos—-—2 2α+βα-βcosα-cosβ=-2sin—--·sin—-—2 2 1 sinα·cosβ=-[sin(α+β)+sin(α-β)]21cosα·sinβ=-[sin(α+β)-sin(α-β)]21cosα·cosβ=-[cos(α+β)+cos(α-β)]21sinα·sinβ=- -[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)补充微分阶段的公式(sinx)'=cosx (cosx)'=-sinx(tanx)'=(secx)^2(cotx)'=-(cscx)^2(secx)'=secx*tanxtx(cscx)'=-cscx*cotxarcsinx)'=(1-x^2)^(-1/2)arccosX)'=-(1-X^2)^(-1/2)arctanX)'=(1+^2)^(-1)artcotX0'=-1/(1+X^2)PS. X^2的意思是X的平方1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )asin(a)+bcos(a)=a2+b2sin(a+c) 其中 tan=baasin(a)+bcos(a)=a2+b2cos(a-c) 其中 tan=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2三角恒等式sin2θ+cos2θ=1;1+tan2θ=sec2θ;1+cot2θ=csc2θ复角公式sin(A+B)=sinAcosB+cosAsinB;sin(A–B)=sinAcosB–cosAsinB cos(A+B)=cosAcosB–sinAsinB;cos(A–B)=cosAcosB+sinAsinB 倍角公式sin2θ=2sinθcosθcos2θ=cos2θ–sin2θ=2cos2θ–1=1–2sin2θ 倍角平方sin2θ=1-cos2θ 2;cos2θ=1+cos2θ 2 积化和差2sinAcosB=sin(A+B)+sin(A–B)2cosAsinB=sin(A+B) –sin(A–B)2sinAsinB=cos(A–B) –cos(A+B)2cosAcosB=cos(A–B)+cos(A+B)三角函数基本公式sinθ=对边斜边(正弦),cosθ=邻边斜边(余弦),tanθ=sinθ cosθ(正切)cotθ=cosθ sinθ(余切),secθ= 1 cosθ(正割),cscθ= 1 sinθ(余割)1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )asin(a)+bcos(a)=a2+b2sin(a+c) 其中 tan=ba asin(a)+bcos(a)=a2+b2cos(a-c) 其中 tan=ab 1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2。
直角三角形的正弦与余弦计算
直角三角形的正弦与余弦计算直角三角形是指其中一个角度为90度的三角形。
在直角三角形中,我们可以使用正弦(sine)和余弦(cosine)来计算角度与边长之间的关系。
本篇文章将介绍如何计算直角三角形中的正弦和余弦。
1. 正弦(Sine)的计算方法正弦是一个角度与其对边长度之比的值。
在直角三角形中,我们可以使用下面的公式来计算正弦:sin(A) = 对边长度 / 斜边长度其中,A代表直角三角形中一个非直角的角度。
举个例子,假设我们有一个直角三角形,其中一个角度为30度,对边的长度为5,斜边的长度为10。
我们可以使用上述公式来计算正弦:sin(30度) = 5 / 10 = 0.5因此,这个直角三角形的正弦值为0.5。
2. 余弦(Cosine)的计算方法余弦是一个角度与其邻边长度之比的值。
在直角三角形中,我们可以使用下面的公式来计算余弦:cos(A) = 邻边长度 / 斜边长度同样以前述的例子为例,我们可以使用上述公式来计算余弦:cos(30度) = 邻边长度 / 斜边长度由于直角三角形中,邻边与对边是相等的,我们可以得到:cos(30度) = 5 / 10 = 0.5因此,这个直角三角形的余弦值为0.5。
3. 利用正弦和余弦计算角度和边长除了计算正弦和余弦的值,我们还可以利用它们来计算直角三角形中其他未知角度或边长的值。
下面是一些用于计算的基本公式:- 角度的计算:如果已知一个角度的正弦值,可以使用反正弦函数(arcsin或sin^(-1))来计算角度:A = arcsin(对边长度 / 斜边长度)如果已知一个角度的余弦值,可以使用反余弦函数(arccos或cos^(-1))来计算角度:A = arccos(邻边长度 / 斜边长度)- 边长的计算:如果已知一个角度和对边长度,可以使用正弦来计算斜边长度:斜边长度 = 对边长度 / sin(A)如果已知一个角度和邻边长度,可以使用余弦来计算斜边长度:斜边长度 = 邻边长度 / cos(A)最后,我们需要注意在计算前确认所使用的角度单位(弧度或度数)与计算工具的要求相匹配。
关于正弦函数和余弦函数的计算公式
关于正弦函数和余弦函数的计算公式同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα·cotα=1sinα·cscα=1cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα·tanβtanα-tanβtan(α-β)=——————1+tanα·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-—2 2α+βα-βsinα-sinβ=2cos—--·sin—-—2 2α+βα-βcosα+cosβ=2cos—--·cos—-—2 2α+βα-βcosα-cosβ=-2sin—--·sin—-—2 2 1sinα·cosβ=-[sin(α+β)+sin(α-β)]21cosα·sinβ=-[sin(α+β)-sin(α-β)]21cosα·cosβ=-[cos(α+β)+cos(α-β)]21sinα·sinβ=- -[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)补充微分阶段的公式(sinx)'=cosx (cosx)'=-sinx (tanx)'=(secx)^2(cotx)'=-(cscx)^2(secx)'=secx*tanxtx(cscx)'=-cscx*cotxarcsinx)'=(1-x^2)^(-1/2) arccosX)'=-(1-X^2)^(-1/2) arctanX)'=(1+^2)^(-1)artcotX0'=-1/(1+X^2)PS. X^2的意思是X的平方1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)?sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中tan©=ba a?sin(a)+b?cos(a)=a2+b2cos(a-c) 其中tan©=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2三角恒等式sin2θ+cos2θ=1;1+tan2θ=sec2θ;1+cot2θ=csc2θ复角公式sin(A+B)=sinAcosB+cosAsinB;sin(A–B)=sinAcosB–cosAsinB cos(A+B)=cosAcosB–sinAsinB;cos(A–B)=cosAcosB+sinAsinB 倍角公式sin2θ=2sinθcosθcos2θ=cos2θ–sin2θ=2cos2θ–1=1–2sin2θ倍角平方sin2θ=1-cos2θ 2;cos2θ=1+cos2θ 2积化和差2sinAcosB=sin(A+B)+sin(A–B)2cosAsinB=sin(A+B) –sin(A–B)2sinAsinB=cos(A–B) –cos(A+B)2cosAcosB=cos(A–B)+cos(A+B)三角函数基本公式sinθ=对边斜边(正弦),cosθ=邻边斜边(余弦),tanθ=sinθ cosθ(正切)cotθ=cosθ sinθ(余切),secθ= 1 cosθ(正割),cscθ= 1 sinθ(余割)1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)?sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中tan©=ba a?sin(a)+b?cos(a)=a2+b2cos(a-c) 其中tan©=ab 1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2。
关于正弦函数和余弦函数的计算公式
关于正弦函数和余弦函数的计算公式关于正弦函数和余弦函数的计算公式同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα·cotα=1sinα·cscα=1cosα·secα=1 sinα/cosα=tanα=sec α/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα·tanβtanα-tanβtan(α-β)=——————1+tanα·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-—2 2α+βα-βsinα-sinβ=2cos—--·sin—-—2 2α+βα-βcosα+cosβ=2cos—--·cos—-—2 2α+βα-βcosα-cosβ=-2sin—--·sin—-—2 2 1sinα·cosβ=-[sin(α+β)+sin(α-β)]21cosα·sinβ=-[sin(α+β)-sin(α-β)]21cosα·cosβ=-[cos(α+β)+cos(α-β)]21sinα·sinβ=- -[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)补充微分阶段的公式(sinx)'=cosx (cosx)'=-sinx(tanx)'=(secx)^2(cotx)'=-(cscx)^2(secx)'=secx*tanxtx(cscx)'=-cscx*cotxarcsinx)'=(1-x^2)^(-1/2)arccosX)'=-(1-X^2)^(-1/2)arctanX)'=(1+^2)^(-1)artcotX0'=-1/(1+X^2)PS. X^2的意思是X的平方1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)?sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin 2(a)5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中tan©=baa?sin(a)+b?cos(a)=a2+b2cos(a-c) 其中tan©=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2三角恒等式sin2θ+cos2θ=1;1+tan2θ=sec2θ;1+cot2θ=csc2θ复角公式sin(A+B)=sinAcosB+cosAsinB;sin(A–B)=sinAcosB–cosAsinBcos(A+B)=cosAcosB–sinAsinB;cos(A–B)=cosAcosB+sinAsinB倍角公式sin2θ=2sinθcosθcos2θ=cos2θ–sin2θ=2cos2θ–1=1–2sin2θ倍角平方sin2θ=1-cos2θ 2;cos2θ=1+cos2θ 2 积化和差2sinAcosB=sin(A+B)+sin(A–B)2cosAsinB=sin(A+B) –sin(A–B)2sinAsinB=cos(A–B) –cos(A+B)2cosAcosB=cos(A–B)+cos(A+B)三角函数基本公式sinθ=对边斜边(正弦),cosθ=邻边斜边(余弦),tanθ=sinθ cosθ(正切) cotθ=cosθ sinθ(余切), secθ= 1 cosθ(正割), cscθ= 1 sinθ(余割)1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)?sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin 2(a)5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中tan©=baa?sin(a)+b?cos(a)=a2+b2cos(a-c) 其中tan©=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2。
关于正弦函数和余弦函数的计算公式
关于正弦函数和余弦函数的计算公式
正弦函数和余弦函数是三角函数中的常见函数,它们的计算公式如下:
对于任意实数 x,正弦函数的计算公式为 sin(x) = 垂直边长 / 斜边长。
而余弦函数的计算公式为 cos(x) = 邻边长 / 斜边长。
其中,垂直边长和邻边长分别与角度 x 和一个单位圆相交的线段有关。
在数学上,1个单位圆是一个圆心在原点、半径为1的圆,而垂直边长与邻边长则分别与该圆的 x 轴和 y 轴交点间的距离有关。
通过正弦函数和余弦函数的计算公式,我们可以计算一些常见角度的正弦值和余弦值。
例如,sin(30°) = 1/2,cos(60°) = 1/2。
这些答案可以帮助我们在解决三角形问题时使用这两个函数来计算边长和角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα·cotα=1sinα·cscα=1cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα·tanβtanα-tanβtan(α-β)=——————1+tanα·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-—2 2α+βα-βsinα-sinβ=2cos—--·sin—-—2 2α+βα-βcosα+cosβ=2cos—--·cos—-—2 2α+βα-βcosα-cosβ=-2sin—--·sin—-—2 2 1 sinα·cosβ=-[sin(α+β)+sin(α-β)]21cosα·sinβ=-[sin(α+β)-sin(α-β)]21cosα·cosβ=-[cos(α+β)+cos(α-β)]21sinα·sinβ=- -[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)补充微分阶段的公式(sinx)'=cosx (cosx)'=-sinx(tanx)'=(secx)^2(cotx)'=-(cscx)^2(secx)'=secx*tanxtx(cscx)'=-cscx*cotxarcsinx)'=(1-x^2)^(-1/2)arccosX)'=-(1-X^2)^(-1/2)arctanX)'=(1+^2)^(-1)artcotX0'=-1/(1+X^2)PS. X^2的意思是X的平方1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)c os(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)?sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中tan©=baa?sin(a)+b?cos(a)=a2+b2cos(a-c) 其中tan©=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2三角恒等式sin2θ+cos2θ=1;1+tan2θ=sec2θ;1+cot2θ=csc2θ复角公式sin(A+B)=sinAcosB+cosAsinB;sin(A–B)=sinAcosB–cosAsinB cos(A+B)=cosAcosB–sinAsinB;cos(A–B)=cosAcosB+sinAsinB 倍角公式sin2θ=2sinθcosθcos2θ=cos2θ–sin2θ=2cos2θ–1=1–2sin2θ倍角平方sin2θ=1-cos2θ 2;cos2θ=1+cos2θ 2积化和差2sinAcosB=sin(A+B)+sin(A–B)2cosAsinB=sin(A+B) –sin(A–B)2sinAsinB=cos(A–B) –cos(A+B)2cosAcosB=cos(A–B)+cos(A+B)三角函数基本公式sinθ=对边斜边(正弦),cosθ=邻边斜边(余弦),tanθ=sinθ cosθ(正切)cotθ=cosθ sinθ(余切),secθ= 1 cosθ(正割),cscθ= 1 sinθ(余割)1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)?sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中tan©=ba a?sin(a)+b?cos(a)=a2+b2cos(a-c) 其中tan©=ab 1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2。