广义积分的审敛法

合集下载

广义积分敛散性的判别

广义积分敛散性的判别

比较判别法
比较判别法是一种通过比较被积函数与已知收敛或发散的函数来判定广义积分敛散性的方法。如果被 积函数小于已知收敛的函数,则该广义积分收敛;如果被积函数大于已知发散的函数,则该广义积分 发散。
应用比较判别法时,需要选择合适的已知函数作为比较对象,以便准确判断被积函数的敛散性。
拉贝判别法
拉贝判别法是一种通过判断被积函数 的单调性和无界性来判定广义积分敛 散性的方法。如果被积函数在积分区 间上单调递减且无界,则该广义积分 收敛;如果被积函数在积分区间上单 调递增或无界,则该广义积分发散。
VS
应用拉贝判别法时,需要准确判断被 积函数的单调性和无界性,以便准确 判断该广义积分的敛散性。
06
广义积分的计算方法
分部积分法
总结词
分部积分法是一种通过将积分拆分为两个或 更多部分来简化积分的方法。
详细描述
分部积分法是将一个积分转换为两个或更多 个积分的和或差,以便更容易地计算每个积 分。这种方法通常用于处理难以直接积分的 函数。
柯西准则
如果存在某个正数$T$,使得在区间$(-infty, T]$和$[T, +infty)$上,函数$f(x)$均收敛,则函数$f(x)$的广义积 分收敛。
04
广义积分的应用
在物理中的应用
描述连续介质性质
01
广义积分可以用来描述连续介质在时间和空间上的性质,例如
温度分布、电荷密度等。
解决物理问题
换元积分法
总结词
换元积分法是一种通过引入新的变量来简化积分的方法。
详细描述
换元积分法是通过引入新的变量来简化积分的计算。这种方法通常用于处理具有复杂或 难以处理的边界条件的积分。通过引入新的变量,可以将原始积分转换为更易于处理的

06 第六节 广义积分审敛法

06  第六节  广义积分审敛法

第六节 广义积分审敛法判定一个广义积分的收敛性,是一个重要的问题. 当被积函数的原函数求不出来,或者求原函数的计算过于复杂时,利用广义积分的定义来判断它的收敛性就不适用了. 因此,我们需要其它方法来判断广义积分的收敛性.分布图示★ 无穷限广义积分的审敛法★ 比较审敛原理 ★ 例1 ★ 例2★ 例3 ★ 例4 ★ 例5★ 绝对收敛 ★ 例6 ★ 例7★ 无界函数广义积分的比较审敛原理★ 例8 ★ 例9 ★ 例10★ Γ-函数 ★ Γ-函数的几个重要性质★ 例11 ★ 例12★ 内容小结 ★ 习题5-6★ 返回内容要点一、无穷限广义积分的审敛法二、无界函数的广义积分审敛法三、-Γ函数: 定义 性质例题选讲无穷限广义积分的审敛法例1 (E01) 判别广义积分⎰+∞+1341x dx 的敛散性. 解 因为,111103/4434x x x =<+<这里,134>=ρ故由推论1知,题设广义积分收敛. 例2 (E02) 判别广义积分⎰+∞+121x x dx 的敛散性. 解 因为,111lim 22=+⋅+∞→x x x x 这里,12>=p 故由推论2知,题设广义积分收敛.例3 判别广义积分⎰∞++122/31dx x x 的敛散性. 解 因为 ,1lim 1lim 2222/3+∞=+=++∞→∞→x x x x x x x x 故根据推论2知,题设广义积分发散.例4 (E03) 判别广义积分dx xe x ⎰∞+-+11的敛散性. 解 因为当1≥x 时,,11xx e x >+- 故由推论1知,题设广义积分发散 .例5 (E04) 判别广义积分⎰+∞1arctan dx xx 的敛散性. 解 因为,2arctan lim arctan lim π==+∞→+∞→x x x x x x 故根据推论2知,题设广义积分发散 . 例6 判别广义积分⎰+∞-0sin bxdx e ax 的收敛性,其中b a ,都是常数,且.0>a解 ,sin ax ax e bx e --≤而dx e ax ⎰+∞-0收敛 .∴dx bx e ax |sin |0-+∞⎰收敛,故题设广义积分收敛 .例7 (E05) 判别广义积分⎰+∞a dx x x 23sin )0(>a . 解 由于,1|sin |223xx x ≤而dx x a ⎰+∞21收敛,故dx x x a |sin |23∞+⎰收敛,即dx xx a ⎰+∞23sin 绝对收敛 .无界函数的广义积分审敛法 例8 (E06) 判别广义积分⎰31ln xdx 的收敛性. 解 被积函数在点1=x 的右邻域内无界.又由洛必达法则知 ,011lim ln 1)1(lim 11>=-++→→xx x x x 故根据推论4知,题设广义积分发散.例9 判别广义积分⎰101sin dx xx 的收敛性. 解 因为,11sinx x x ≤而⎰10x dx 收敛,根据比较审敛原理知, 广义积分dx xx ⎰101sin 收敛,从而题设广义积分也收敛.例10 (E07) 判别广义积分⎰-20cos 1πdx x x m的收敛性.解 由于0=x 是m xx x f cos 1)(-=的瑕点,且 ),0(12121~cos 122→=--x x x x x x m mm 所以,当,12<-m 即3<m 时,题设广义积分收敛 ;当,12≥-m 即3≥m 时,题设广义积分发散 .例11计算下列各式的值:;)3(2)6()1(ΓΓ.)21()25()2(ΓΓ 解 )1(由公式得:;302345!22!5)3(2)6(=⋅⋅=⋅=ΓΓ )2(由公式得:)21()23(23)21()25(ΓΓ=ΓΓ.43)21()21(2123=ΓΓ⋅=例12 计算下列广义积分:(1) ;03⎰+∞-dx e x x(2) 已知),(r Γ计算);0(,01>⎰+∞-λλdx e x x r (3) ).0(,022>⎰+∞-a dx e x a 解 )1( )4(30Γ=⎰-+∞dx e x x !3=.6=)2( 令,t x =λ则.dt dx =λ于是dt e t dx e x t r x r λλλ1)(1010--∞+--∞+⎰=⎰dt e t t r r --∞+⎰=101λ.)(r r λΓ= )3( 令,ax t =则.adx dt =于是⎰+∞-022dx e x a ⎰+∞-=021dt e a t 2211⎪⎭⎫ ⎝⎛Γ⋅=a .2a π=。

广义积分与收敛性判定

广义积分与收敛性判定

广义积分与收敛性判定广义积分是微积分中的重要概念之一,它扩展了定积分的概念,用于求解某些无界函数的积分。

而广义积分的收敛性判定则是确定广义积分是否存在有限值的关键方法。

本文将介绍广义积分的定义、性质以及几种常见的收敛性判定方法。

一、广义积分的定义广义积分是对某些函数在无界区间上的积分进行推广,定义如下:设函数f(x)在区间[a, +∞)上有定义,如果对于任意的正数M,存在一个实数A使得当x ≥ A时,有1/(M(x)) ≤ f(x) ≤ 1/(N(x))成立(其中M(x)和N(x)是[x, +∞)上的两个函数),则称f(x)在区间[a, +∞)上绝对可积。

如果极限∫(x→+∞) f(x)dx存在,且与A的选取无关,那么称该极限为函数f(x)在区间[a, +∞)的广义积分,记作∫[a, +∞) f(x)dx。

二、广义积分的性质广义积分具有线性性、区间可加性和保号性等性质,使得我们可以进行算术操作和区间分割来计算广义积分。

具体性质如下:(1)线性性质:对于任意实数α和β,以及可积函数f(x)和g(x),有∫[a, +∞) [αf(x) + βg(x)]dx = α∫[a, +∞) f(x)dx + β∫[a, +∞) g(x)dx。

(2)区间可加性:对于可积函数f(x),如果a ≤ c ≤ b,那么∫[a, b) f(x)dx = ∫[a, c) f(x)dx + ∫[c, b) f(x)dx。

(3)保号性:如果对于区间[a, +∞)上的可积函数f(x),有f(x) ≥ 0成立,则∫[a, +∞) f(x)dx ≥ 0。

三、收敛性判定方法确定广义积分的收敛性是对其进行求解的重要步骤。

下面介绍几种常见的收敛性判定方法。

(1)比较判定法:设在区间[a, +∞)上,函数f(x)和g(x)满足0 ≤ f(x) ≤ g(x),如果∫[a, +∞) g(x)dx收敛,则∫[a, +∞) f(x)dx也收敛;如果∫[a, +∞) f(x)dx发散,则∫[a, +∞) g(x)dx也发散。

第八节广义积分的审敛法

第八节广义积分的审敛法
• 收益流 收益若是连续地获得,则收益被 看作是一种随时间连续变化的收益流。
• 收益流量 收益流对时间的变化率。
• 收益流将来值 将收益流存入银行并加上 利息之后的存款值。
• 收益流现值 收益流的现值是这样一笔款 项,若将它存入银行,将来从收益流中 获得的总收益,与包括利息在内的银行 存款值有相同的价值。
•由边际函数求原函数 •由变化率求总量 •收益流的现值和将来值
思考题
设有一项计划现在(即 t 0 )需一项投入 a (元),可
获得一项在 [0,T ] 中的常数收益流量 b (元),若连续
复利的利率为 r ,求收益的资本价值.
思考题解答
v T bertdt a b(1 erT ) a
1000 7x 50 x
二、由变化率求总量
例2 某工厂生产某商品在时刻 t 的总产量的变
化率为 x't 100 12t (单位∕小时).
求 t 2 到 t 4 这两小时的总产量.
解 Q
4
x(t )dt
2
=
4
2
100+12t
dt
[100 6t 2 ]42 272.
三、收益流的现值和将来值
若有一笔收益流的收益流量为 pt 元 / 年,
考虑从现在开始t 0到 T 年后这一时间段的
将来值和现值. 以连续复利率计息 分析 在区间[0,T ]内任取一小区间 [t, t dt], 在 [t, t dt]内所获得的金额近似为 pt dt ,从 t 0 开始, pt dt 这一金额是在 t 年后的将来 获得 ,从而在 [t, t dt]内
0
r
即收入的资本价值为b (1 e rT ) a。
r
当收益流量是无限期时,即T 时,

论广义积分的收敛性

论广义积分的收敛性

论广义积分的收敛性摘要广义积分是定积分概念的推广至无限区间和有限区间上的无界函数的情形,而定积分的的主要特点是积分区间有界,并且在此区间上被积函数为有界函数,而这两个限制条件不能很好地解决实际中的有些问题,于是突破这两条限制的束缚便得到其推广形式即广义积分。

大部分的广义积分不可被直接计算,有的虽然能计算出它的值,但计算过程十分麻烦,因此判断广义积分的收敛性就成为广义积分求值的一个决定性条件。

本文就针对敛散性论述广义积分,针对几种不同类别的广义积分形式,讨论几种比较常用的判别方技巧。

1.首先我们可以利用收敛积分的余部可以判定所求积分是否收敛.对于⎰+∞adxx f )(和⎰+∞bdxx f )(,如果b>a,则⎰+∞bdxx f )(称为⎰+∞adxx f )(的余部。

因为改变下限积分的值(a 不是奇点),或对被积函数乘以非零常数,都不改变积分的敛散性,即∀b>a,k ≠0,都有⎰+∞adxx f )(收敛⇔⎰+∞bdxx f )(收敛,⎰+∞adxx f )(收敛⇔⎰+∞bdxx kf )(收敛.另外,如果f (x ),g(x)的广义积分都收敛,那么线性组合αf(x)+βg(x)的广义积分也收敛,对于其余类型的广义积分,也有类似的结论.2.对于两个端点都是奇点的广义积分,我们可以任取区间内的任意一点x 0,把积分分成两半,再分别判断这两半积分的收敛性.例如定义广义积分 f x dx +∞−∞,设函数f(x)在区间(−∞,+∞)上内闭有界可积,除端点外再没有奇点.取一点x 0,定义⎰+∞∞-)(dx x f = f x dx x 0−∞+ f x dx +∞x 0,如果右端这两个广义积分都收敛,就称左端的广义积分收敛(否则称其发散).对于内闭有界可积,且在积分区间I 内有有限个奇点的广义积分,为了方便地得到广义积分是否收敛,我们可以把积分区间上的几点去掉,这样以奇点为分点,广义积分的区间就被分成许多个小区间I =I 1∪I 2∪···∪I n .于是就可以定义⎰I dx x f )(=⎰I dx x f 1)(+⎰I dx x f 2)(+···+⎰I dx x f n)(如果右端每个广义积分都收敛,就称左端这个广义积分收敛(否则就称发散).3.对于广义积分 f x dx +∞a,如果函数f(x)在区间 a ,+∞ 上以+∞为唯一奇点,且内闭有界可积,并且有原函数F (x ),那么f x dx =lim x→+∞f x dx =xa +∞alim x→+∞F x −F (a ).不论这个极限如何,都把这个公式写为f x dx =F x +∞a|a +∞.如果极限lim x→+∞F (x )存在,那么广义积分收敛,否则就发散.4.我们知道Cauchy 收敛准则可以用来判定函数的敛散性,这对于积分也同样适用.因为广义积分的四种基本类型可以相互转化,故只讨论 f x dx +∞a 这一种形式即可. f x dx+∞a收敛⇔∀ε>0,∃X >当x 1,x 2>X 时,| f x dx x2x 1|<ε⇔lim t→+∞ρ t =0,ρ t ≝qp t sup≤≤⎰qp)(dxx f5.夹逼收敛原理也可以判断积分是否收敛.设f x ≤g (x )≤ (x )(x ≥a ),如果积分 f x dx , x dx +∞a+∞a都收敛,那么积分 g x dx +∞a也收敛.另外绝对收敛的广义积分也一定收敛,由夹逼收敛定理可证明这条结论. 6.对于非负函数的广义积分还有三个特殊的判别方法. (1)收敛准则在区间 a ,+∞ 上,设函数f (x )≥0,那么广义积分 f x dx +∞a收敛⇔变上限积分 f x dx ta (t ≥a )有界(2)控制收敛判定法在区间 a ,+∞ 上,对非负函数f x ,g x ,设g(x)是f(x)的上控制函数,即存在 x 0≥a ,使得0≤f x ≤g(x),∀x ≥x 0.如果上控制函数g(x)的广义积分收敛,那么被控制函数f(x)的广义积分也收敛. (3)比较判定法在区间 a ,+∞ 上,设f(x),g(x)都是非负函数并且有极限limx→+∞f (x )g (x )=l (存在或为+∞).(i) 当l ∈(0,+ ∞)时,两个函数的广义积分有相同的收敛性. (ii)当l =0时,由 g x dx +∞a收敛,推出 f x dx +∞a收敛. (iii) 当l =+∞时,由 g x dx +∞a发散,推出 f x dx +∞a发散. 7. 在Abel 条件或Dirichlet 条件下,广义积分 f x g (x )dx +∞a都收敛.Abel条件 (1) f(x)单调有界. (2) g(x)广义积分收敛.f(x)=0. (2) g(x)的变上限积分有界.Dirichlet条件 (1)f(x)单调,limx→+∞总结以上列举的众多判定广以积分收敛性的方法,有助于我们更好地掌握广义积分的性质,提高运算效率。

广义积分敛散性判别法的应用

广义积分敛散性判别法的应用

广义积分敛散性判别法的应用主要的广义积分敛散性证明方法如下:套定义验证比较判别法、等价无穷小Cauchy准则Dirichlet判别法Abel判别法另外本文还有用Cauchy准则来处理广义积分有关的证明题的例题总结.1 广义积分的定义定义1.1[无穷积分]如果 f(x) 在任意有限区间 [a,A] 都是Riemann可积, 且极限 limA→+∞∫aAf(x)dx 存在, 则把无穷积分定义为∫a+∞f(x)dx=limA→+∞∫aAf(x)dx.否则称无穷积分是发散的.此外,∫−∞+∞f(x)dx=∫a+∞f(x)dx+∫−∞af(x)dx.这与Cauchy主值积分不同:(V.P.)∫−∞+∞f(x)dx=limA→+∞∫−AAf(x)dx.广义积分与Riemann积分有类似性质, 运算法则(分部积分、变量替换等)可以推广过来.定义1.2 [瑕积分]如果 f(x) 在任意有限区间 [a′,b],(a<a′<b) 都是Riemann可积, 且极限 lima′→a+∫a′bf(x)dx 存在, 则把瑕积分定义为∫abf(x)dx=lima′→a+∫a′bf(x)dx.否则称无穷积分发散.例1.1 无穷积分∫1+∞1xpdx 当 p>1 时, 该无穷积分收敛;当 p≤1 时, 该无穷积分发散.例1.2 瑕积分∫011xpdx. 当 p<1 时, 该瑕积分收敛; 当 p≥1 时, 该瑕积分发散.例1.3 ∫−∞+∞11+x2dx=arctan⁡x|−∞0+arctan⁡x|0+∞=π例1.4 ∫−1111−x2dx=arcsin⁡x|−10+arcsin⁡x|01=π.如果被积函数 f(x) 恒大于0, 我们有如下结论.定理1.5 设 f≥0, 则无穷积分∫a+∞f(x)dx 收敛当且仅当 F(A)=∫aAf(x)dx 是 A∈[a,+∞) 的有界函数.2 比较判别法与等价无穷小定理2.1 设 0≤f≤Mg,M>0 为常数,(这个不等式对充分大的x都成立就行了). 则当无穷积分∫a+∞g(x)dx 收敛时, 无穷积分∫a+∞fdx 也收敛. 当无穷积分∫a+∞fdx 发散时, 无穷积分∫a+∞g(x)dx 发散. 瑕积分的结果类似.在比较判别法中, M的寻找可以用极限去找. 如果极限 l=limx→∞f(x)g(x) 存在, 则(1) 当 0<l<∞时, 积分∫a+∞f(x)dx 与∫a+∞g(x)dx 同敛散.(2) 当 l=0 时, 如果∫a+∞g(x)dx 收敛, 则∫a+∞f(x)dx 也收敛.(3) 当 l=+∞时, 如果∫a+∞g(x)dx 发散, 则∫a+∞f(x)dx 也发散.注:对瑕积分有类似结论..例2.2 判断积分∫0+∞dxexx 的敛散性.提示:无. \QED例2.3 积分∫01dxln⁡x 是发散的.证明:注意到 limx→0+1ln⁡x=0, 于是0不是瑕点, 1是瑕点. 我们只需要考虑∫1/21dxln⁡x. 由于∫1/21dxln⁡x=∫01/2dtln⁡(1−t),且 ln⁡(1−t)∼−t(t→0), 则积分∫1/21dxln⁡x 与−∫01/2dtt 同敛散. 则原积分是发散的. \QED例2.4 积分∫01ln⁡x1−xdx 是收敛的.证明: 0,1 都是瑕点. 把积分区间拆成 (0,1/2) 与 (1/2,1). (在 (0,1/2) 区间内, 出现瑕点的地方是 ln⁡x, 而在 (1/2,1) 区间内, 出现瑕点的地方是 11−x, 没出现瑕点的地方可以视作有限数)注意0>∫01/2ln⁡x1−xdx>2∫01/2ln⁡xdx,而∫01/2ln⁡xdx=xln⁡x|01/2−∫01/2dx=12(ln⁡12−1),则∫01/2ln⁡x1−xdx 收敛. 另一方面,∫1/21ln⁡x1−xdx=∫01/2ln⁡(1−t)tdt,并注意到 limt→0+ln⁡(1−t)t=−1, 则∫1/21ln⁡x1−xdx 收敛. \QED3 用Cauchy准则验证收敛性定理3.1 [Cauchy准则] f(x) 在 [a,+∞) 上的积分收敛的充分必要条件是: ∀ε>0,∃M=M(ε),当 B>A>M 时, |∫abf(x)dx|<ε.例3.2 积分∫0+∞cos⁡x2dx 是收敛的.证明:我们只需要看被积函数在 [1,+∞) 的积分即可. 作变量代换 x=t, 则∫1+∞cos⁡x2dx=12∫1+∞cos⁡ttdt.则|∫ABcos⁡ttdt|=|sin⁡tt|AB+12sin⁡tt3/2dt|≤1A+1B+12∫ABt −3/2dt=2A→0(B>A→+∞).因此积分是收敛的. \QED注:f在 [a,+∞) 积分存在不能推出 f(x)→0(x→+∞). 需要添加条件. 详见第6小节.例3.3 积分∫0+∞|cos⁡x2|dx 是发散的.证明:【方法一】只需要考虑 cos⁡t 的一个周期. 由于∫(mπ)2(mπ+π)2|cos⁡x2|dx=12∫mπ(m+1)π|cos⁡t|tdt>12(m+1)π∫mπ(m+1)π|cos⁡t|dt=22(m+1)π>2π1m+1+m+2=2π(m+2−m+1).固定m, 取 n>m, 则∫(mπ)2(nπ)2|cos⁡x2|dx>2π(n+1−m+1)→∞(n→∞).因此原积分是发散的. \QED【方法二】(比较判别法). 由于 |cos⁡x2|≥cos2⁡x2=12(1+cos⁡2x2), 由例3.2, 积分∫1+∞cos⁡(2x2)dx 是收敛的, 但是积分 \int_1^{+\infty}1dx 发散, 则原积分发散. \QED注:方法二的技巧在例4.3、例6.5也用到了. 也就是说当 |x|≤1 时, 根据幂函数 y=xα的性质, 必有 x2≤|x|≤1. 利用这个技巧可以去掉绝对值.。

广义积分的审敛法

广义积分的审敛法

二、无界函数的广义积分的审敛法
定理6 (比较审敛法2) 设函数 f ( x) 在区间(a,b]
上连续,且 f ( x) 0, lim f ( x) .如果存在 xa0
常数
M
0及
q
1,使得
f
(x)
M ( x a)q
(a
x
b), 则广义积分 b f ( x)dx 收敛;如果存在常数 a
N
0及
广义积分的审敛法
一、无穷限的广义积分的审敛法
不通过被积函数的原函数判定广义积分收 敛性的判定方法.
定理1 设函数 f ( x) 在区间[a,) 上连续,
且 f ( x) 0.若函数 F ( x)
x
f (t)dt
a
在 [a,) 上有界,则广义积分
f
(
x
)dx
收敛

a
由定理1,对于非负函数的无穷限的广义积 分有以下比较收敛原理.
三、 函数
定义 (s) ex xs1dx (s 0) 0
特点: 1.积分区间为无穷;
2.当 s 1 0 时被积函数在点 x 0 的 右领域内无界.
设 I1
1 e x x s1dx,
0
I2
e x x s1dx,
1
(1) 当 s 1 时, I1 是常义积分; 当 0 s 1 时,
x
x
f
(
x
)dx

散.
a
例2 判别广义积分 dx 的收敛性. 1 x 1 x2
解 lim x2 1 1, 所给广义积分收敛.
x
x 1 x2
例3
判别广义积分
1
x3 1
/2

广义积分定义

广义积分定义

广义积分定义广义积分是微积分中的一个重要概念,它在数学和物理学等领域都有广泛的应用。

广义积分的定义是对于一类无界函数或者在某些点上发散的函数,通过一种特殊的处理方法来进行求解。

下面将对广义积分的定义和性质进行详细介绍。

我们来看广义积分的定义。

对于一个定义在区间[a, b)上的函数f(x),如果在[a, b)上存在一个数c,使得对于任意的c < t < b,函数f(x)在区间[a, t]上是可积的,那么我们称函数f(x)在区间[a, b)上是广义可积的。

此时,我们将广义可积函数在区间[a, b)上的积分定义为极限值:∫(a to b) f(x) dx = lim(t→b-) ∫(a to t) f(x) dx其中,积分号∫表示对x的积分,a和b分别是积分的上下限,f(x)是被积函数,dx表示积分变量。

广义积分的定义中有两个关键点,一个是上限t趋近于b时的极限,另一个是被积函数在[a, t]上可积。

这两个条件保证了广义积分的存在性。

接下来,我们来讨论广义积分的性质。

首先是线性性质,即对于任意的实数a和b,以及广义可积函数f(x)和g(x),有以下等式成立:∫(a to b) [af(x) + bg(x)] dx = a∫(a to b) f(x) dx + b∫(ato b) g(x) dx其次是区间可加性,即对于任意的c,a,b满足a < c < b,以及广义可积函数f(x),有以下等式成立:∫(a to b) f(x) dx = ∫(a to c) f(x) dx + ∫(c to b) f(x) dx再次是保号性,即如果在[a, b)上的广义可积函数f(x)非负,那么广义积分的值也是非负的。

最后是比较定理,包括比较判别法、比较审敛法和比较收敛法。

比较判别法用于判断广义积分的敛散性,如果存在一个广义可积函数g(x),使得在[a, b)上的广义可积函数f(x)满足|f(x)| ≤ g(x),那么广义积分∫(a to b) f(x) dx一定收敛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 Qe
− ax
sin bx ≤ e
− ax
, 而 ∫ e − ax dx 收敛 .
0
∴∫
+∞
0
所以所给广义积分收敛. e − ax sin bx dx 收敛 . 所以所给广义积分收敛
二、无界函数的广义积分的审敛法
(比较审敛法 2) 设函数 f ( x ) 在区间 (a , b] 定理6 上连续, 上连续,且 f ( x ) ≥ 0, lim f ( x ) = +∞ .如果存在
x →a + 0
存在, 则广义积分

b
a
f ( x )dx 收敛; 收敛;
x →a + 0
如果存在常数 q ≥ 1,使得 lim ( x − a )q f ( x ) = d > 0 (或 lim ( x − a )q f ( x ) = +∞ ), 则广义积
x →a + 0
发散. 分 ∫ f ( x )dx 发散.
f ( x ) dx .
收敛. 收敛
定义 满足定理 5条件的广义积分 称为绝对收敛 .
+∞
∫a
+∞
f ( x )dx
对 敛 广 积 绝 收 的 义 分∫ f (x)dx 必 收 . 定 敛
a
例5 判别广义积分

+∞
0
e − ax sin bxdx (a , b 都是
+∞
常数a > 0) 的收敛性 .
+∞ +∞
例1 判别广义积分 解 Q0 <

+∞ 3
1
dx 的收敛性 . 4 x +1 4 p = > 1, 3
3
1 1 < 3 4 = 4/ 3 , 4 x x +1 x
1
根据比较审敛法1 根据比较审敛法1,
广义积分 ∫
+∞ 3
1
dx 收敛 . 4 x +1
极限审敛法1 (极限审敛法1) 设函数 f ( x ) 在区间 [a ,+∞ ) 定理4 (a > 0) 上连续,且 f ( x ) ≥ 0. 如果存在常数 p > 1, 上连续, 存在, 收敛; 使得 lim x f ( x ) 存在,则 ∫ f ( x )dx 收敛;
a
b
例6
判别广义积分

3
1
dx 的收敛性 . ln x
的左邻域内无界. 解 Q 被积函数在点 x = 1 的左邻域内无界.
由洛必达法则知
1 1 lim ( x − 1) = lim = 1 > 0, x →1+ 0 ln x x →1+ 0 1 x 根据极限审敛法2,所给广义积分发散 所给广义积分发散. 根据极限审敛法 所给广义积分发散
一、无穷限的广义积分的审敛法
不通过被积函数的原函数判定广义积分收 敛性的判定方法. 敛性的判定方法
定理1 上连续, 定理1 设函数 f ( x ) 在区间 [a ,+∞ ) 上连续, 且 f ( x ) ≥ 0.若函数 F ( x ) = ∫ f ( t )dt
a x
上有界, 在 [a ,+∞ ) 上有界,则广义积分
三、Γ − 函数
定义 Γ( s ) = ∫ e x dx ( s > 0)
−x s −1 0 +∞
特点: 积分区间为无穷; 特点 1.积分区间为无穷 积分区间为无穷
2.当 s − 1 < 0 时被积函数在点 x = 0 的 右领域内无界 .
设 I1 = ∫ e x dx , I 2 = ∫ e − x x s −1dx ,
π 3.余元公式 Γ( s ) Γ(1 − s ) = ( 0 < s < 1). sin πs
+∞ 0 +∞
4.在 Γ( s ) = ∫ e − x x s −1dx 中,作代换 x = u 2, 有 Γ( s ) = 2 ∫ e
0 − u2
u 2 s −1du.
四、小结
广义积分审敛法
无无极无无无无无比比比 比比比比比1 无无无无无无无无无比比比 极极比比比2
a a +∞ +∞
也收敛; 也收敛;如果 0 ≤ g ( x ) ≤ f ( x ) (a ≤ x < +∞ ), 并 发散, 也发散. 且 ∫ g ( x )dx 发散,则 ∫ f ( x )dx 也发散.
a a +∞ +∞
证 设 a < b < +∞ ,由 0 ≤ f ( x ) ≤ g ( x )及 ∫ g ( x )dx
x →a + 0
M (a < x 常数 M > 0 及 q < 1,使得 f ( x ) ≤ q ( x − a) ≤ b ), 则广义积分

b
a
f ( x )dx 收敛;如果存在常数 收敛;
N N > 0 及 q ≥ 1,使得 f ( x ) ≥ (a < x ≤ b ), q ( x − a) 则广义积分
根据极限审敛法1 所给广义积分发散. 根据极限审敛法1,所给广义积分发散.
+∞
上连续, 定理5 设函数 f ( x ) 在区间 [a ,+∞ ) 上连续, 如果 ∫
+∞ a
f ( x ) dx 收敛;则 ∫ f ( x )dx 也收敛. 收敛; 也收敛.
a
+∞
1 证 令 ϕ ( x ) = ( f ( x ) + f ( x ) ). 2 +∞ Q ϕ ( x ) ≥ 0,且 ϕ ( x ) ≤ f ( x ) , ∫ f ( x )dx 收敛 ,

+∞
0
e
− xn
dx ( n > 0);
1 p 2. ∫ (ln ) dx . 0 x
1
为自然数) : 三、证明(其中 n 为自然数) 证明(
π Γ ( 2n ) = 2
2 n −1
1 Γ( n)Γ( n + ). 2
练习题答案
一、1、收敛; 2、收敛; 3、发散; 4、收敛; 、收敛; 、收敛; 、发散; 、收敛; 1 1 二、 1、 Γ( ), n > 0; n n 2、 Γ( p + 1), p > −1.
极极比比比1 比比比比比2
绝 对


练 习 题
的收敛性: 一、判别下列广义积分 的收敛性: x2 1. ∫ dx; 4 2 0 x + x +1 2 dx 3. ∫ ; 3 1 (ln x )
+∞ +∞
2. 4.
∫ ∫
1
sin
2
1 3
1 dx; 2 x dx ; 2 x − 3x + 2
函数表示下列积分, 二、用 Γ − 函数表示下列积分,并 指出这些积分的 收敛范围: 收敛范围: 1.
a
∴ ∫ ϕ ( x )dx 也收敛 . 但 f ( x ) = 2ϕ ( x ) − f ( x ) ,
a
+∞
∴ ∫ f ( x )dx = 2 ∫ ϕ ( x )dx − ∫ f ( x ) dx ,
a a a
b
b
b


+∞
a
f ( x )dx = 2 ∫ ϕ ( x )dx − ∫
a
+∞
+∞
a
Байду номын сангаас
x3/ 2 dx 的收敛性 . 例3 判别广义积分 ∫ 1 1 + x2 x3/ 2 x2 x = +∞ , = lim 解 Q xlim x 2 2 x → +∞ 1 + x → +∞ 1 + x
+∞
根据极限审敛法1 所给广义积分发散. 根据极限审敛法1,所给广义积分发散.
arctan x dx 的收敛性 . 例4 判别广义积分 ∫ 1 x arctan x π = lim arctan x = , 解 lim x x → +∞ x → +∞ x 2
a
+∞
收敛, 收敛,得
b a

b
a
f ( x )dx ≤ ∫ g ( x )dx ≤ ∫ g ( x )dx .
a a
b
+∞
上有上界. 即 F (b ) = ∫ f ( x )dx 在 [a ,+∞ ) 上有上界.
由定理1 由定理1知

+∞
a
f ( x )dx 收敛. 收敛.
+∞ a
如果 0 ≤ g ( x ) ≤ f ( x ), 且 ∫ g ( x )dx发散, 则 ∫ f ( x )dx 必定发散 .
根据极限审敛法 1, I 2 也收敛 .
Γ(s )
由 (1), ( 2) 知

+∞
0
e − x x s −1dx 对 s > 0 均收敛 .
o s
Γ-函数的几个重要性质: 函数的几个重要性质:
1.递推公式 Γ( s + 1) = sΓ( s ) ( s > 0). 2.当 s → +0 时, ( s ) → +∞ . Γ
a +∞
Q 如果 ∫ f ( x )dx 收敛,由第一部分知 收敛,
a
+∞
也收,这与假设矛盾. ∫ g( x )dx 也收,这与假设矛盾.
a
+∞
例如, 例如, 广义积分 ∫
+∞
a
相关文档
最新文档