关于应力应变状态问题

合集下载

材料力学中的应力与应变关系

材料力学中的应力与应变关系

材料力学中的应力与应变关系材料力学是研究材料在受力作用下的力学行为和性能的学科,应力与应变关系是其中的核心内容之一。

本文将讨论材料力学中的应力与应变的概念及其数学表示,以及应力与应变之间的线性关系与非线性关系。

一、应力的概念及表示应力是指材料单位面积上的内部力,常用符号σ表示。

根据受力情况的不同,可以分为正应力、切应力和体积应力。

正应力是指与作用力方向垂直的内部力,常用符号σ表示;切应力是指与作用力方向平行的内部力,常用符号τ表示;体积应力是指作用在体积内的内部力,常用符号p表示。

正应力的数学表示为σ = F/A,其中F为作用力的大小,A为受力面积。

切应力的数学表示为τ = F/A,其中F为切力的大小,A为受力面积。

体积应力的数学表示为p = F/V,其中F为体积力的大小,V为受力体积。

二、应变的概念及表示应变是指材料在受力作用下产生的形变程度,常用符号ε表示。

根据变形方式的不同,可以分为线性应变和体积应变。

线性应变是指在受力作用下,材料产生的长度或角度发生变化,常用符号ε表示;体积应变是指在受力作用下,材料产生的体积发生变化,常用符号η表示。

线性应变的数学表示为ε = ΔL/L0,其中ΔL为长度变化量,L0为原始长度。

体积应变的数学表示为η = ΔV/V0,其中ΔV为体积变化量,V0为原始体积。

三、应力与应变的线性关系在一定范围内,应力与应变之间可以表现为线性关系。

根据胡克定律(Hooke's Law),线性弹性材料的应力与应变之间满足σ = Eε,其中E为弹性模量。

弹性模量是材料刚度的度量,表示材料单位应力产生的单位应变。

常见的弹性模量有杨氏模量、剪切模量和泊松比。

杨氏模量的数学表示为E = σ/ε,其中σ为应力,ε为线性应变。

剪切模量的数学表示为G = τ/γ,其中τ为切应力,γ为切应变。

泊松比的数学表示为ν = -εv/εh,其中εv为垂直方向的线性应变,εh为水平方向的线性应变。

应力与应变间的关系

应力与应变间的关系

22
例题7-7 边长 a = 0.1m 的铜立方块, 无间隙地放入体积较
大, 变形可略去不计的钢凹槽中, 如图 所示。 已知铜的弹 性模量 E=100GPa, 泊松比 =0.34, 当受到P=300kN 的均布 压力作用时, 求该铜块的主应力. 体积应变以及最大剪应力。
P a
y
z
x
23
y
解:铜块上截面上的压应力为
9
3、 特例
(1)平面应力状态下(假设 Z = 0 )
x
1 E
(
x
y)
y
1 E
(
y
x)
z E ( x y)
xy
xy
G
10
(2) 广义胡克定律用主应力和主应变表示时 三向应力状态下:
1
1
E [ 1
(
2
3)]
2
1 E
[
2
(
3
1)]
3
1 E
[
3
( 1
2)]
(7-7-6)
11
平面应力状态下 设 3 = 0, 则
x y z x y y z z x
y
σy
上面
x y z x y y z z x
1、各向同性材料的广义胡克定律 (1)符号规定
τ yx
τ τ yz
xy
τ τ zy xz
τ zx
右侧面
σx
(a)三个正应力分量:拉应力为正
σz
x
o
压应力为负。 z
前面
3
(b)三个剪应力分量: 若正面(外法线与坐标轴
dxdydz
dxdydz(1 1 2 3) dxdydz
dxdydz

工程力学中的应力和应变分析

工程力学中的应力和应变分析

工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。

应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。

本文将就工程力学中的应力和应变进行详细分析。

一、应力分析应力是指物体单位面积上的内部分子间相互作用力。

根据作用平面的不同,可以分为法向应力和剪切应力两种。

1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。

根据物体受力状态的不同,可以分为拉应力和压应力两种。

- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。

拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。

- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。

压应力的计算公式与拉应力类似。

2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。

剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。

二、应变分析应变是指物体由于外力的作用而产生的形变程度。

根据变形情况,可以分为线性弹性应变和非线性应变。

1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。

线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。

2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。

非线性应变的计算公式较为复杂,需要根据具体情况进行分析。

三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。

1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。

根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。

2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。

材料力学:第八章-应力应变状态分析

材料力学:第八章-应力应变状态分析
斜截面: // z 轴; 方位用 a 表示;应力为 sa , ta
正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相等,同时
sa+90 ,ta+90
E
sa+90 ,ta+90
结论: 所画圆确为所求应力圆
应力圆的绘制与应用3
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
t
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
应力圆绘制 作D, E连线中垂线,与x轴相交即为应力圆圆心
tb sb
t
sa
O
C
ta
D
sa ,ta
t
s
E
sb ,tb
O
D
sa ,ta
C
s
E
sb ,tb
由|DC|=|CE|,可得sC值:
sC
s
2 β
+
t
2 β
s
2 α
+
t
2 α
2 sα sβ
点、面对应关系
转向相同, 转角加倍 互垂截面, 对应同一直径两端
应变状态
构件内一点处沿所有方位的应变总况或集合, 称为该点处的 应变状态
研究方法
环绕研究点切取微体, 因微体边长趋于零, 微体趋于所研究 的点, 故通常通过微体, 研究一点处的应力与应变状态

第八章2应力应变状态分析

第八章2应力应变状态分析

第八章2应力应变状态分析应力应变状态分析是研究材料或结构在外力作用下所产生的应力和应变的过程。

应力是单位面积上的内力,用于描述材料或结构对外力的抵抗能力。

而应变是形变相对于初始状态的变化量,用于描述材料或结构的变形程度。

针对材料或结构的应力应变状态进行分析,可以帮助我们了解其力学性能和稳定性,为工程实践提供重要依据。

应力应变状态分析是弹性力学的基本内容之一、根据材料的力学性质和外力的作用,可以得到不同的应力应变状态。

在弹性力学中,线弹性和平面应变假定是常用的简化假设。

线弹性假定材料仅在拉伸和压缩的方向上有应力,而在横截面上的应力是均匀分布的。

一维拉伸和挤压是线弹性应力应变状态的基本类型。

平面应变假定材料在一个平面内有应力,而在垂直于该平面的方向上无应力。

二维平面应变是平面应变应力应变状态的基本类型。

在应力应变状态分析中,我们通常关注应力和应变之间的关系。

最常见的是材料的应力-应变曲线。

应力-应变曲线描述了材料在外力作用下的力学行为,可以帮助我们了解材料的强度、塑性和韧性等性能。

在弹性阶段,应力-应变曲线呈线性关系,符合胡克定律。

而在屈服点之后,材料会发生塑性变形,应力不再是线性关系。

当应力达到最大值时,材料会发生破坏。

除了应力-应变曲线外,还有一些其他重要的参数和指标可用于描述应力应变状态。

例如,弹性模量是描述材料刚度的重要参数,表示单位应力引起的单位应变量。

剪切弹性模量描述了材料抵抗剪切变形的能力。

同时,杨氏模量和泊松比也是用于描述材料力学性质的常用参数。

应力应变状态分析在材料工程、结构工程以及土木工程等领域具有重要应用。

通过对材料和结构的应力应变状态进行分析,可以帮助我们评估其性能和强度,并且对设计和优化具有指导意义。

例如,在结构工程中,通过应力应变状态分析可以确定材料的承载能力和极限状态,从而确保结构在设计荷载下的安全运行。

然而,应力应变状态分析也面临一些挑战。

首先,材料的力学性质和变形行为往往是非线性的,需要使用复杂的数学模型进行描述。

材料力学典型例题及解析7.应力应变状态典型习题解析

材料力学典型例题及解析7.应力应变状态典型习题解析

应力、应变状态分析典型习题解析1 已知矩形截面梁,某截面上的剪力F S =120 kN 及弯矩m kN 10⋅=M 。

绘出表示1、2、3及4点应力状态的微体,并求出各点的主应力。

b = 60 mm ,h = 100 mm 。

解题分析:从图中可分析1、4点是单向应力状态,2点在中性轴上为纯剪切应力状态,31取平行和垂直与梁横截面的六个平面,构成微体。

则各点处的应力状态如图示。

2、梁截面惯性矩为点微体上既有正应力又有切应力。

解:、画各点处微体的应力状态图计算各点处主应力4843333m 1050012m 10100(106012−−−×=×××==)bh I z 1点处弯曲正应力(压应力)MPa 100Pa 10100m10500m 1050m N 101064833−=×=×××⋅×==−−z I My σ1点为单向压缩受力状态,所以021==σσ,MPa 1003−=σ2点为纯剪切应力状态,MPa 30Pa 1030m10100602N1012036263=×=×××××=−τ(向下)容易得到,MPa 301=σ,02=σ,MPa303−=σ3点为一般平面应力状态弯曲正应力MPa50Pa 1050m 10500m 1025m N 101064833=×=×××⋅×==−−z I My σ弯曲切应力σ14τ2F S =120 kN题图1中性轴324hστ25 mm 31b M =10 kN·mσ3150 mm 1MPa 5.22Pa 1050.22m10500m 1060m 105.372560N 101206483393*S =×=××××××××==−−−zz bI S F τMPa6.8MPa6.58Pa)10522()2Pa 1050(2Pa 1050)2(22626622minmax −=×+×±×=+−±+=x y x yx τσσσσσσ所以 MPa 6.581=σ,02=σ,MPa 6.83−=σ4点为单向拉伸应力状态,拉伸正应力的大小与1点相等。

我所认识的应力与应变关系

我所认识的应力与应变关系经过分析,我们已经得知弹塑性问题中有15个未知量,9个方程,因此它是一个超静定问题,为了求解这一问题必须引入应力应变,它们之间一定存在必然的联系,这种联系就是我们所了解的应力应变关系。

应力应变关系即所谓的本构关系,是物质力学特性的反映,通常用本构方程来描述。

影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零,六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。

图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=,初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。

如果在进入塑性阶段卸载后再加载,例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。

此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。

若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。

图1-1、应力应变关系图从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。

我所认识的应力与应变的关系

我所认识的应力与应变的关系机械与动力工程学院我所认识的本构关系可以从三个不同的受力条件下进行分析,第一是在弹性变形下的应力与应变的关系,第二是在屈服条件下的应力与应变的关系,第三是在塑性条件下的应力与应变的关系,而对应力与应变的关系的研究也可以归结为对本构关系的研究。

首先,弹塑性力学分别从静力学和几何学的角度出发,导出了平衡方程的和几何方程,这些方程均与物体的材料性质(物理性质)无关,因而适用于任何连续介质。

但仅仅依靠平衡方程和几何方程来解决实际中的工程问题是不够的。

由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的联系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的关系,所以平衡方程与几何方程式两类完全相互独立的方程,他们之间还缺乏必要的联系。

对于所求解的问题来讲,因为您未知量的数目多于任何一类方程的个数,所以无法利用这两类方程求的全部未知量。

平衡方程:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂222222000t w Z z y x t v Y z y x t u X z y x z zy zx yz y yx xz xy x ρσττρτστρττσ (1) 几何方程:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=x w z u z w z v y w y v y u x v x u zx z yz y xy x γεγεγε (2) 为了求解具体的力学问题,还必须引进一些关系式,这些关系式即所谓的本构关系。

本构关系反映可变形体材料的固有特此那个,故也称为物理关系,它实际上是一组联系力学参数和运动学参数的方程式,即所谓的本构方程。

本构方程实际上就是一组反映可变形体材料应力和应变之间关系的方程。

在单向应力状态下,理想弹性材料的应力和应变之间的关系极其简单。

应力状态与应变状态例题

A.(1)正确、(2)不正确;
B.(1)不正确、(2)正确;
C.(1)、(2)都正确;
D.(1)、(2)都不正确。
若构件内危险点的应力状态为二向等拉,则除 ( B )强度理论以外,利用其他三个强度理论得到 的相当应力是相等的。
A.第一; B.第二; C.第三; D.第四;
r1
r2
r3 1 3
第二强度理论
3

1+
1-(2+3)
对于铸铁: 0.25
1 3 2
2
(1+)
0.8
0.5
1
2
1
2 2
2
3 2
3
1 2
3
0.6
基本习题结束
铸铁水管冬天结冰时会因冰膨胀而被胀裂, 而管内的冰却不会破坏。这是因为( B )。
第一强度理论
1 +
23 11
x 10, y 23, xy 11
max
min
x y
2
x
2
y
2
2 x
10
29.8MPa
3.72MPa
(单位 MPa)
1 29.28MPa,2 3.72MPa,3 0
1 29.28MPa< 30MPa
故满足强度要求。
某结构上危险点处的应力状态如图所示,其中σ= 116.7MPa,τ=46.3MPa。材料为钢,许用应力[σ]= 160MPa。试用第三、第四强度理论校核此结构是否安全。
xy
cos 2
0
故所给45度方向是主应力方向。
一受扭圆轴,直径d=20mm,圆轴的材料为 钢,E=200GPa,ν=0.3。现测得圆轴表面上与轴线成450 方向的应变为ε=5.2×10-4,试求圆轴所承受的扭矩。

第六章 应力应变状态分析

tg 2 0 2 xy
x y
2 300 3 200 200 2
min
2 0 2 0
max

0 28.2 0或 - 151.8 0
Dx 200,300, D y 200,300
Dx
14

x y x y cos2 xy sin 2 2 2
x y sin 2 xy cos 2 2
max x y min 2
x y 2 xy 2
2
2 xy 1 0 arctan tan 2 0 2 x y y x
D13
D12
D23 D3
D2
D1

2
max 13
1 3
2
13作用面?
答: bdhf
a
b f d h
c
e
g
1
3
18
例题3-1:图示单元体,求:(1)主应力和最大切应力; (2)画出三向应力圆。 y
40Mpa x
z
解: 1.先把它转化为一个平面应力状态
x 120MPa , y 40MPa , xy 30MPa
2
E
1 1 11 12 13 1 2 3 E 1 2 21 22 23 2 3 1 E 1 3 31 32 33 3 1 2 E




x y x y 2 2 2
2
2 xy 面存在一一对应关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
02、4、已知平面应力状态如图(应力单位MPa),试计算主应力大小及方位,在图上标出主应力方位。(15分)(2009北工大)
题二.4图
03、5、已知铸铁构件上危险点的应力状态如图3-5所示。若铸铁拉伸许用应力[σ]+=30MPa,试校核该点处的强度。(15分)(2008华南理工)
04、5、(20分)如图所示的平面应力状态,求主应力并画出主单元体,应力单位为MPa。(2009燕山大学)
; ;
习题:P2557.7、7.9、7.10、7.12、7.14、7.19、7.26、7.27、7.28、7.37、
四种常用强度理论:
最大拉应力理论(第一强度理论)
最大伸长线应变理论(第二强度理论)
最大切应力理论(第三强度理论)
畸变能密度理论(第四强度理论)
01、十、图示为一平面应力状态下的单元体。试证明任意互相垂直截面上的正应力之和为常数。即: 或 。(7分)(2009吉大)
题5图
05、五、(15分)木制的构件中的某一微元应力如图所示,图中所示的角度为木纹方向与铅垂方向的夹角。试求:(1)面内平行于木纹方向的剪应力;(2)垂直木纹方向的正应力;(3)该点的三个主应力和最大剪应力。(2008南航)
(答案: , , , , ,
题五图
06、4、如图所示,直角三角形单元体,已知其斜边上无应力。则该应力状态为_____向应力状态,且应力分量σx与σy之间的大小关系为__________。(6分)(2007武汉理工)
题二图
18、四、已知某钢结构危险点处的应力状态如图所示,E=200GPa,μ=0.25。试求:(1)图示单元体的主应力;(2)最大剪应力;(3)最大线应变;(4)画出相应的三向应力圆草图。(15分)(2005吉大)
题四图
19、6、(15分)现测的如图所示的矩形截面梁表面K点处的应变 。已知材料的弹性模量E=200GPa,泊松比μ=0.25,a=0.5m,b=60mm,h=100mm。试求作用在梁上的载荷M。(2009燕山大学)
题二、5图
22、三、(20分)图示简支梁,由№18工字形铸铁梁构成,许用拉应力为 ,许用压应力为 。在外载荷作用下,测得横截面A底边的纵向正应变 。已知梁的弹性模量E=100GPa,a=1m。试校核梁的强度。(2008北科大)(提示:①求q值;②确定 值;③强度校核。)
题三图
23、四、(15分)为了监测受扭空心圆杆的扭矩大小,在圆杆内表面沿45°方向粘贴应变片,已知材料为45钢,切变模量G=80GPa,泊松比μ=0.3。杆件外径D=100mm,内径d=80mm,材料的许用切应力为[τ]=100MPa,今测得应变片的应变读数为590×10-6,试问:(1)杆件承受的扭矩有多大?(2)材料强度是否足够?(2008南航)
题一4图
07、三、某点的两个方向面的应力如图,求其主应力、最大切应力及主平面的方位。(15分)
(答案:σ1=500MPa,σ2=100MPa,σ3=0MPa,τmax=250MPa。以A方向面的法线为基准,顺时针方向旋转60°即为作用着σ1的主方向;逆时针旋转30°即为作用着σ2的主方向)(2006南航)
关于应力应变状态问题(含组合变形)
2009年10月29日星期四
应力应变状态重点公式:
基本公式:
应力圆的绘制及其应用:①、强调单元体的面与应力圆上的点一一对应关系。即:点面对应,转向相同,转角两倍。②、确定任意斜截面上的应力;②、确定主应力的大小和方向;③、三向应力圆的绘制及其应用。
广义胡可定律及其公式:
(四图
24、六、(15分)直径D=100mm的圆杆,自由端有集中力FP和集中力偶M作用,测得沿母线1方向的线应变ε1=5×10-4,沿与母线方向成45°的2方向的线应变ε2=3×10-4,圆杆材料弹性模量E=200GPa,泊松比μ=0.3,许用应力[σ]=150MPa,设圆杆变形在弹性范围内,试求:(1)集中力FP和集中力偶M的大小;(2)用单元体表示危险点的应力状态;(3)用第三强度理论校核该杆的强度。(2008南航)
题3图
16、五、(15分)某结构危险点的应力状态如图所示,已知E=200GPa,μ=0.3,α=45°,试求图示单元体:(1)主应力;(2)最大切应力;(3)最大线应变;(4)画出相应的三向应力圆草图;(5)在三向应力圆上标出指定斜截面上应力所对应的点D。(2008吉大)
题五图
17、二、(15分)某构件危险点的应力状态如图。材料的E=200GPa,μ=0.3,σs=240MPa,σb=400MPa,试求:1、主应力;2、最大切应力;3、最大线应变;4、画出应力圆草图;5、设n=1.6,校核其强度。(2007吉大)
题三、6图
11、5.如图示单元体,试证明切应力互等定理仍然成立。即τ=τ′。(5分)(2008华南理工)(提示:对Z轴求矩即可)
12、10、单元体的应力状态如图所示,已知材料常数E=200GPa,μ=0.3,试求:(1)画出其三向应力圆;(2)求出三个主应力及其对应的主平面方向;(3)计算最大的线应变,最大的切应力和最大切应变(角应变)(15分)(2008西交)
题三图
08、四、(20分)一点处(平面应力状态)两相交平面上的应力如图3所示。求σ值以及该点的主应力和最大剪应力。(2006华东理工)
图3
09、6、已知A点应力状态如图所示,求斜面上的剪应力 及A点的主应力 , 和 。(20分)(2008湖南大学)
10、6.自平面受力物体内取出一微体,其上受应力及 如图示。求此点的三个主应力及画出其主单元体。(15分)(2006华南理工)
题6图
20、四、(20分)图示纯弯曲梁,已知外力偶矩Me,截面对中性轴的惯性矩Iz,材料的弹性常数E、v,AB线段与梁轴线夹角为45°,其长度为a。求线段AB的长度改变量。(2005西南交大)
题四图
21、5、图示矩形截面钢梁受两个集中力作用,材料的弹性模量E=200GPa,泊松比υ=0.32,梁长l=2m,a=400mm,b=60mm,h=120mm。在距中性层h/4的点m处测得与x轴成45°方向的线应变, ,试求力F大小。(15分)(2008北工大)
题10图
13、5、某构件危险点应力状态如图所示,材料的许用应力为 ,试按第三强度理论校核该构件。(20分)(2009湖南大学)
14、6、试求图示应力状态的主应力值和最大切应力值(图中应力单位为MPa)(13分)(2009江苏大学)
15、3、(10分)单元体各面上的应力如图所示,求该微分单元体上的最大剪应力值。(2009燕山大学)
相关文档
最新文档