(完整word版)高中直线与方程练习题--有答案
完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
高中数学直线与方程精选题目(附答案)

高中数学直线与方程精选题目(附答案)高中数学直线与方程精选题目(附答案)1.经过A (2,0),B (5,3)两点的直线的倾斜角为( ) A .45° B .135° C .90°D .60°解析:选A ∵A (2,0),B (5,3),∴直线AB 的斜率k =3-05-2=1. 设直线AB 的倾斜角为θ(0°≤θ<180°),则tan θ=1,∴θ=45°.故选A.2.点F (3m +3,0)到直线3x -3my =0的距离为( ) A. 3 B.3mC .3D .3m解析:选A 由点到直线的距离公式得点F (3m +3,0)到直线3x -3my =0的距离为3·3m +33m +3= 3.3.和直线3x -4y +5=0关于x 轴对称的直线方程为( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 设所求直线上的任一点为(x ,y ),则此点关于x 轴对称的点的坐标为(x ,-y ),因为点(x ,-y )在直线3x -4y +5=0上,所以3x +4y +5=0.4.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 依题意得:直线3x -y =33的斜率为3,∴其倾斜角为60°.∴-3n =-3,-mn=tan 120°=-3,得m =3,n =1.5.直线y =ax +1a的图象可能是( )解析:选B 根据斜截式方程知,斜率与直线在y 轴上的截距同正负. 6.已知两点A (3,0),B (0,4),动点P (x ,y )在线段AB 上运动,则xy ( ) A .无最小值且无最大值 B .无最小值但有最大值 C .有最小值但无最大值D .有最小值且有最大值解析:选D 线段AB 的方程为x 3+y4=1(0≤x ≤3),于是y =41-x 3(0≤x ≤3),从而xy =4x 1-x 3=-43x -322+3,显然当x =32∈[0,3]时,xy 取最大值为3;当x =0或3时,xy 取最小值0.7.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且它们间的距离是5,则m +n =( )A .0B .1C .-1D .2解析:选A 由题意,所给两条直线平行,∴n =-2.由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),∴m +n =0. 8.若动点A(x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则线段AB 的中点M 到原点的距离的最小值为( )A .2 3B .3 3C .3 2D .4 2解析:选C 由题意知,M 点的轨迹为平行于直线l 1,l 2且到l 1,l 2距离相等的直线l ,故其方程为x +y -6=0,∴M 到原点的距离的最小值为d =62=3 2.9.直线l 过点(-3,0),且与直线y =2x -3垂直,则直线l 的方程为( ) A .y =-12(x -3)B .y =-12(x +3)C .y =12(x -3)D .y =12(x +3)解析:选B 因为直线y =2x -3的斜率为2,所以直线l 的斜率为-12.又直线l 过点(-3,0),故所求直线的方程为y =-12(x +3),选 B.10.直线l 过点A (3,4)且与点B (-3,2)的距离最远,那么l 的方程为( ) A .3x -y -13=0 B .3x -y +13=0 C .3x +y -13=0D .3x +y +13=0解析:选C 由已知可知,l 是过A 且与AB 垂直的直线,∵k AB =2-4-3-3=13,∴k l =-3,由点斜式得,y -4=-3(x -3),即3x +y -13=0.11.等腰直角三角形ABC 的直角顶点为C (3,3),若点A (0,4),则点B 的坐标可能是( ) A .(2,0)或(4,6) B .(2,0)或(6,4) C .(4,6)D .(0,2)解析:选A 设B 点坐标为(x ,y ),根据题意知?k AC ·k BC =-1,|BC |=|AC |,∴3-43-0×y -3x -3=-1,(x -3)2+(y -3)2=(0-3)2+(4-3)2,解得 x =2,y =0或x =4,y =6.12.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0 解析:选D 依题意,设直线l :y -4=k (x -3),即kx -y +4-3k =0,则有|-5k +2|k 2+1=|k +6|k 2+1,因此-5k +2=k +6,或-5k +2=-(k +6),解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0.13.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________. 解析:∵直线x -2y +5=0与直线2x +my -6=0互相垂直,∴12×-2m =-1,∴m =1. 答案:114.若x +ky =0,2x +3y +8=0和x -y -1=0三条直线交于一点,则k =________. 解析:∵直线x +ky =0,2x +3y +8=0和x -y -1=0三条直线交于一点,解方程组 2x +3y +8=0,x -y -1=0,得x =-1,y =-2,∴直线x +ky =0过点(-1,-2),解得k =-12.答案:-1215.若过点P (1-a,1+a )与点Q (3,2a )的直线的倾斜角是钝角,则实数a 的取值范围是________.解析:k =2a -(1+a )3-(1-a )=a -1a +2<0,得-2<1.<="" p="">答案:(-2,1)16.已知直线l 的斜率为16,且和坐标轴围成的三角形的面积为3,则直线l 的方程为________________.解析:设直线l 的方程为x a +y b =1,∴12|ab |=3,且-b a =16,解得a =-6,b =1或a =6,b =-1,∴直线l 的方程为x -6+y =1或x6-y =1,即x -6y +6=0或x -6y -6=0.答案:x -6y +6=0或x -6y -6=017.(本小题满分10分)已知直线l 的倾斜角为135°,且经过点P(1,1). (1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标.解:(1)∵k =tan 135°=-1,∴l :y -1=-(x -1),即x +y -2=0.(2)设A ′(a ,b ),则b -4a -3×(-1)=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).18.(本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.解:设点P 的坐标为(a,0)(a >0),点P 到直线AB 的距离为 D.由已知,得S △ABP =12|AB |·d =12(3-1)2+(3-2)2·d =5,解得d =2 5. 由已知易得,直线AB 的方程为x -2y +3=0,所以d =|a +3|1+(-2)2=25,解得a =7或a =-13(舍去),所以点P 的坐标为(7,0).19.(本小题满分12分)已知直线l :y =kx +2k +1. (1)求证:直线l 恒过一个定点.(2)当-3<="" 的取值范围.="" 解:(1)证明:由y="" 轴上方,求实数k="" +1,得y="" +2).="" +2k="" -1=k="" =kx="">(2)设函数f (x )=kx +2k +1,显然其图象是一条直线(如图).若当-3<="">f (-3)≥0,f (3)≥0.即-3k +2k +1≥0,3k +2k +1≥0,解得-15≤k ≤1.所以实数k 的取值范围是-15,1. 20.(本小题满分12分)已知点A (m -1,2),B (1,1),C (3,m 2-m -1). (1)若A ,B ,C 三点共线,求实数m 的值; (2)若AB ⊥BC ,求实数m 的值.解:(1)因为A ,B ,C 三点共线,且x B ≠x C ,则该直线斜率存在,则k BC =k AB ,即m 2-m -22=1m -2,解得m =1或1-3或1+ 3.(2)由已知,得k BC =m 2-m -22,且x A -x B =m -2.①当m -2=0,即m =2时,直线AB 的斜率不存在,此时k BC =0,于是AB ⊥BC ;②当m -2≠0,即m ≠2时,k AB =1m -2,由k AB ·k BC =-1,得1m -2·m 2-m -22=-1,解得m =-3.综上,可得实数m 的值为2或-3.21.(本小题满分12分)直线过点P43,2且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线满足下列条件:①△AOB 的周长为12;②△AOB 的面积为6.若存在,求出方程;若不存在,请说明理由.解:设直线方程为x a +yb =1(a >0,b >0),由条件①可知,a +b +a 2+b 2=12.由条件②可得12ab =6.又直线过点P 43,2,∴43a +2b =1,联立,得a +b +a 2+b 2=12,12ab =6,43a +2b=1,解得?a =4,b =3.∴所求直线方程为x 4+y3=1.22.(本小题满分12分)已知点P (2,-1).(1)求过点P 且与原点O 的距离为2的直线的方程;(2)求过点P 且与原点O 的距离最大的直线的方程,并求出最大距离;(3)是否存在过点P 且与原点O 的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.解:(1)①当直线的斜率不存在时,方程x =2符合题意.②当直线的斜率存在时,设斜率为k ,则直线方程为 y +1=k (x -2),即kx -y -2k -1=0. 根据题意,得|2k +1|k 2+1=2,解得k =34.则直线方程为3x -4y -10=0.故符合题意的直线方程为x -2=0或3x -4y -10=0.(2)过点P 且与原点的距离最大的直线应为过点P 且与OP 垂直的直线.则其斜率k=2,所以其方程为y+1=2(x-2),即2x-y-5=0.最大距离为 5.(3)不存在.理由:由于原点到过点(2,-1)的直线的最大距离为5,而6>5,故不存在这样的直线.。
高中数学《直线与方程》练习题(含答案)

高中数学《直线与方程》同步练习(含答案)1. 经过点P(−1, 2)并且在两坐标轴上的截距的绝对值相等的直线有( )A.0条B.1条C.2条D.3条2. 已知直线l:y=3x−2的纵截距是()A.−3B.−2C.3D.23. 动点P(cosθ, sinθ)(θ∈R)关于直线y=x−2的对称点是P′,则|PP′|的最大值()A.2√2−2B.√2+1C.2√2D.2√2+24. 若直线y=0的倾斜角为α,则α的值是()A.0B.π4C.π2D.不存在5. 下列命题中真命题为()A.过点P(x0, y0)的直线都可表示为y−y0=k(x−x0)B.过两点(x1, y1),(x2, y2)的直线都可表示为(x−x1)(y2−y1)=(y−y1)(x2−x1)C.过点(0, b)的所有直线都可表示为y=kx+bD.不过原点的所有直线都可表示为xa +yb=16. 过点(2, 4)可作在x轴,y轴上的截距相等的直线共()A.1条B.2条C.3条D.4条7. 直线3x−√3y+1=0的倾斜角是( )A.30∘B.60∘C.45∘D.150∘8. 经过两点M(6, 8),N(9, 4)的直线的斜率为()A.4 3B.−43C.34D.−349. 过两直线l1:2x−y+1=0,l2:x+3y−2=0的交点,且在两坐标轴上截距相等的直线方程可以为()A.7x+7y+4=0B.7x+7y−4=0C.7x−7y+6=0D.7x−7y−6=010. 若不论m取何实数,直线l:mx+y−1+2m=0恒过一定点,则该定点的坐标为()A.(−2, 1)B.(2, −1)C.(−2, −1)D.(2, 1)11. 设直线y=2x−1交曲线C于A(x1, y1),B(x2, y2)两点,(1)若|x1−x2|=√2,则|AB|=________;(2)|y1−y2|=√2,则|AB|=________.12. 已知点M(1, 1)平分线段AB,且A(x, 3),B(3, y),则x=________,y=________.13. 设复数z=x+yi(x, y∈R)且|z+i|+|z−i|=4,则点(x, y)的轨迹方程是________.14. 直线2x−3y−12=0与坐标轴围成的三角形的面积为________.15. 已知ab<0,bc<0,则直线ax+by=c的图象一定不过第________象限.16. 直线y=−x+b与5x+3y−31=0的交点在第一象限,则b的取值范围是________.17. 若三点A(−2, 3),B(3, −2),C(12, a)共线,则a的值为________.18. 过点A(2, −1)和B(4, 5)的直线方程是________.19. 已知直线l1:ax+2y+6=0,直线l2:x+(a−1)y+a2−1=0.当a________时,l1与l2相交;当a________时,l1⊥l2;当a________时,l1与l2重合;当a________时,l1 // l2.20. 已知θ∈R,则直线x|sinθ|−√3y+1=0的倾斜角的取值范围是________.21. 求m为何值时,这三条直线l1:4x+y=4,l2:mx+y=0,l3:2x−3my=4,不能构成三角形.22. 已知直线l经过两条直线l1:3x+y−5=0和l2:x+y−3=0的交点M.(1)若直线l与直线2x+y+2=0垂直,求直线l的方程;(2)求经过点M并且在两个坐标轴上的截距的绝对值相等的直线方程.23. 已知点A(−1, 2),B(2, 1)在y轴上,求点Q,使|QA|=|QB|,并且求|QA|值.24. 已知:A(2, 5),B(6, −1),C(9, 1),求证:AB⊥BC.25. 直线l经过两直线2x−y+4=0与x−y+5=0的交点,且与直线l1:x+y−6=0平行.(1)求直线l的方程;(2)若点P(a, 1)到直线l的距离与直线l1到直线l的距离相等,求实数a的值.26. 求经过点(5, 10)且与原点的距离为5的直线方程.27. 根据条件写出直线的方程(1)经过点A(8, −2),斜率是−12.(2)经过点P1(3, −2),P2(5, −4).28. 求过点P(0, 1)的直线l,使它包含在两已知直线l1:2x+y−8=0和l2:x−3y+10=0间的线段被点P平分.29. 已知直线l1:ax+3y+1=0,l2:x+(a−2)y+a=0.(1)若l1⊥l2,求实数a的值;(2)当l1 // l2时,求直线l1与l2之间的距离.30. 已知直线l1:x+my+1=0和l2:(m−3)x−2y+(13−7m)=0.(1)若l1⊥l2,求实数m的值;(2)若l1 // l2,求l1与l2之间的距离d.参考答案一、 选择题1.D2.B3.D4.A5.B6.B7.B8.B9.B 10.A 二、 填空题11.解:(1)K AB =y 1−y2x 1−x 2=2,即(y 1−y 2)=2(x 1−x 2),|AB|=√(x 1−x 2)2+(y 1−y 2)2=√5|x 1−x 2|=√5×√2=√10, (2)由(1)可得,(y 1−y 2)=2(x 1−x 2), |AB|=√(x 1−x 2)2+(y 1−y 2)2=√55|x 1−x 2|=√2×√55=√105. 12. 1,1 13.y 24+x 23=114. 12 15. 二 16. 315<b <31317. 1218. 3x −y −7=019. a ≠−1且a ≠2,=23,a =2,a =−1 20. [0∘, 30∘] 三、 解答题21.解:①当直线l 1:4x +y −4=0平行于l 2:mx +y =0时,m =4. ②当直线l 1:4x +y −4=0平行于l 3:2x −3my −4=0时,m =−16, ③当l 2:mx +y =0平行于l 3:2x −3my −4=0时,−m =23m ,m 无解.④当三条直线经过同一个点时,把直线l 1与l 2的交点(44−m , −4m4−m )代入l 3:2x −3my −4=0得 84−m −3m ×−4m4−m −4=0,解得m =−1或23, 综上,满足条件的m 为4、或−16、或−1、或23. 22.解:(1)解方程组{3x +y −5=0,x +y −3=0,得x =1,y =2,M(1,2).与2x +y +2=0垂直的直线为x −2y +c =0, M(1,2)点代入得c =3.直线l 的方程为x −2y +3=0. (2)当截距为0时,设y =kx ,过点M(1,2), 则得k =2,即y =2x ;当截距不为0时,设x a +y a =1,或x a +y−a =1,过点M(1,2),则得a =3或a =−1,即x +y −3=0,或x −y +1=0,这样的直线有3条:y =2x, x +y −3=0,或x −y +1=0. 23.解:设Q(0, y),∵ |QA|=|QB|, ∴ √1+(y −2)2=√22+(y −1)2, 化为y =0. ∴ Q(0, 0), |QA|=√5.24.证明:∵ A(2, 5),B(6, −1),C(9, 1), ∴ AB →=(4, −6),BC →=(3, 2), ∴ AB →⋅BC →=4×3+(−6)×2=0,∴ AB →⊥BC →, ∴ AB ⊥BC .25.解:(1)由{2x −y +4=0x −y +5=0,解得{x =1y =6.即两直线的交点为(1, 6),∵ 直线l 1:x +y −6=0的斜率为−1, ∴ 直线l 的斜率为−1,∴ 直线l 的方程为y −6=−(x −1),即x +y −7=0; (2)由题意知,√2=√2整理得:|a −6|=1.解得:a =7或a =5.26.解:当直线无斜率时,方程为x −5=0,满足到原点的距离为5;当直线有斜率时,设方程为y −10=k(x −5),即kx −y +10−5k =0, 由点到直线的距离公式可得√k 2+(−1)2=5,解得k =34, ∴ 直线的方程为:3x −4y +25=0综合可得所求直线的方程为:x −5=0或3x −4y +25=0 27.解:(1)由题意得:直线方程为y +2=−12(x −8), 整理得:x +2y −4=0;(2)由题意得:直线方程为y +2=−2−(−4)3−5(x −3),整理得:x +y −1=0.28.解:根据题意,直线l 1:2x +y −8=0可化为 y =−2x +8;设直线l 1上的一点P 1(x 1, −2x 1+8),则P 1关于点P 的对称点是P 2(−x 1, 2−(−2x 1+8)); P 2在直线l 2:x −3y +10=0上,即−x 1−3(2x 1−6)+10=0, 解得x 1=4, ∴ y 1=0;∴ 所求的直线方程是x4+y =1,即x +4y −4=0. 29. 解:(1)由l 1⊥l 2可得:a +3(a −2)=0,…4分 解得a =32;…6分(2)当l 1 // l 2时,有{a(a −2)−3=03a −(a −2)≠0,…8分解得a =3,…9分此时,l 1,l 2的方程分别为:3x +3y +1=0,x +y +3=0即3x +3y +9=0, 故它们之间的距离为d =√32+32=4√23.…12分.30.解:(1)∵ 直线l 1:x +my +1=0和l 2:(m −3)x −2y +(13−7m)=0, ∴ 当l 1⊥l 2时,1⋅(m −3)−2m =0,解得m =−3;(2)由l 1 // l 2可得m(m −3)+2=0,解得m =1或m =−2, 当m =2时,l 1与l 2重合,应舍去,当m =1时,可得l 1:x +y +1=0,l 2:−2x −2y +6=0,即x +y −3=0, 由平行线间的距离公式可得d =√12+12=2√2。
《必修2》第三章“直线与方程”测试题(含标准答案)

《必修2》第三章“直线与方程”测试题一.选择题:1. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D 2.若直线20x ay ++=和2310x y ++=互相垂直,则a =( ) A .32-B .32C .23-D .23 3.过11(,)x y 和22(,)x y 两点的直线的方程是( )111121212112211211211211...()()()()0.()()()()0y y x x y y x x A B y y x x y y x x C y y x x x x y y D x x x x y y y y ----==---------=-----=4.直线2350x y +-=关于直线y x =对称的直线方程为( )A 、3x+2y-5=0B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=0 5 如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )AB 3- CD 36)ABCD7 已知0,0ab bc <<,则直线ax by c +=通过( )A 第一、二、三象限B 第一、二、四象限C 第一、三、四象限D 第二、三、四象限8.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=09.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )A 5B 4C 10D 810 直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A23B32 C 32-D 23-二.填空题:11. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 12 方程1=+y x 表示的图形所围成的封闭区域的面积为_________13 点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________14 直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l的方程是15 已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 23y x =-+三、解答题16.求过点(5,4)A --的直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为517. 一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点为(0,0)时,求此直线方程18.直线13y x =-+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等,求m 的值19.已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点。
(完整版)必修2第三章直线与方程测试题

第三章直线与方程测试题(一)一.选择题(每题 5 分,共 12 小题,共 60 分)1.若直线过点( 3,3)且倾斜角为30 0,则该直线的方程为()A. y3x 63x 433B. yC. yx 4D. y x 23332.假如A(3,1) 、 B(2, k) 、 C (8,11),在同向来线上,那么k 的值是()。
A.6B.7C. 8D.93.假如直线 x by90 经过直线 5x 6 y 170 与直线 4x 3y 20 的交点,那么 b 等于().A.2B.3C.4D. 54. 直线(2m25m 2) x (m 24) y 5m0 的倾斜角是450,则 m 的值为()。
A.2B. 3C. -3D.- 25.两条直线3x 2 y m0 和 ( m 21) x 3 y 2 3m0的地点关系是( )A. 平行B.订交C.重合D.与m相关* 6.到直线2x y 1 0 的距离为5的点的会合是( ) 5A. 直线2x y 2 0B.直线C. 直线2x y0 或直线 2x y 2 0D. 直线2x y02 x y0或直线 2x y 2 07 直线x 2 y b0 与两坐标轴所围成的三角形的面积不大于1,那么 b 的取值范围是()A. [2,2]B. (, 2] [2, )C. [2,0)(0,2]D. (, )*8 .若直线l与两直线y 1 , x y 7 0 分别交于M,N两点,且MN的中点是P(1, 1),则直线 l 的斜率是()2A .B .3233C.2D .329.两平行线3x2y10 , 6x ay c 0 之间的距离为 2 13 ,则 c 2的值是 ( )13a A .± 1 B. 1 C. -1 D . 210.直线x 2 y 10 对于直线x1对称的直线方程是()A .x 2 y 10B.2 x y 1 0C.2x y 30D.x 2 y 3 0**11 .点P到点A (1,0)和直线x1的距离相等,且 P 到直线 y x 的距离等于2,这样的点P 2共有()A .1 个B. 2 个C.3 个D. 4 个*12 .若y a | x | 的图象与直线y x a(a 0) ,有两个不一样交点,则a 的取值范围是()A .0 a 1 0 B .a1C.a0 且 a 1 D .a1二.填空题(每题 5 分,共 4 小题,共20 分)13. 经过点(2, 3) ,在 x 轴、y轴上截距相等的直线方程是;或。
(完整版)必修二《直线与方程》单元测试题(含详细答案)

第三章《直线与方程》单元检测试题 时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )1 .已知点A (1 ,邓),B (-1, 3>/3),则直线AB 的倾斜角是()A. 60°B. 30°C. 120°D. 150°[答案]C2 .直线l 过点P ( —1,2),倾斜角为45° ,则直线l 的方程为()A. x —y+1=0B. x-y- 1 = 0C. x-y-3= 0D. x-y+3=0[答案]D3 .如果直线 ax+ 2y+2=0与直线3x —y —2=0平行,则a 的值为(A. - 3 C. [答案]B4 .直线二—1在y 轴上的截距为()a b2A. | b |B. — bC. b 2D. ± b[答案]B5 .已知点A (3,2) , B ( -2, a ), C (8,12)在同一条直线上,则 a 的值是( )A. 0B. - 4C. — 8D. 4[答案]C6 .如果 AB :0, B «0,那么直线 Ax+ By+ C= 0不经过( )A.第一象限B.第二象限C.第三象限D.第四象限[答案]D7 .已知点A (1 , —2), B ( m,2),且线段 AB 的垂直平分线的方程是 x+2y-2=0,则实数m 的值是()B. - 6 D.A. - 2 D. 1[答案]C8.经过直线l i : x —3y+4=0和l 2: 2x + y=5= 0的交点,并且经过原点的直线方程是 ()A. 19x-9y= 0B. 9x+19y=0C. 3x+ 19y =0D. 19x-3y=0[答案]C9.已知直线(3k-1)x+(k+2)y-k=0,则当k 变化时,所有直线都通过定点 ( )_ 1 2 A. (0,0) B. (7,-) 2 1 1 1 c (7,7) D (7, ―)[答案]C10 .直线x-2y+ 1 = 0关于直线x=1对称的直线方程是( )A. x + 2y-1 = 0B. 2x+y-1 = 0C. 2x+ y —3=0D. x+2y-3=0[答案]D11 .已知直线l 的倾斜角为135° ,直线11经过点A (3,2) , B(a, —1),且11与l 垂直, 直线 g 2x + by+1 = 0与直线l 1平行,则a+ b 等于()A. - 4B. - 2C. 0D. 2[答案]B12 .等腰直角三角形 ABC\ / C= 90。
高中数学直线方程练习题(附答案)

高中数学直线方程练习题一.选择题(共12小题)1.已知A(﹣2,﹣1),B(2,﹣3),过点P(1,5)的直线l与线段AB有交点,则l的斜率的范围是()A.(﹣∞,﹣8]B.[2,+∞)C.(﹣∞,﹣8]∪[2,+∞)D.(﹣∞,﹣8)∪(2,+∞)2.已知点A(1,3),B(﹣2,﹣1).若直线l:y=k(x﹣2)+1与线段AB相交,则k的取值范围是()A.[,+∞)B.(﹣∞,﹣2]C.(﹣∞,﹣2]∪[,+∞)D.[﹣2,]3.已知点A(﹣1,1),B(2,﹣2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是()A.(﹣∞,]∪[2,+∞) B.[,2] C.(﹣∞,﹣2]∪[﹣,+∞)D.[﹣,﹣2]4.已知M(1,2),N(4,3)直线l过点P(2,﹣1)且与线段MN相交,那么直线l的斜率k的取值范围是()A.(﹣∞,﹣3]∪[2,+∞)B.[﹣,]C.[﹣3,2]D.(﹣∞,﹣]∪[,+∞)5.已知M(﹣2,﹣3),N(3,0),直线l过点(﹣1,2)且与线段MN相交,则直线l的斜率k的取值范围是()A.或k≥5 B.C.D.6.已知A(﹣2,),B(2,),P(﹣1,1),若直线l过点P且与线段AB有公共点,则直线l的倾斜角的范围是()A.B.C.D.∪7.已知点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1)与线段AB始终没有交点,则直线l的斜率k的取值范围是()A.<k<2 B.k>2或k<C.k>D.k<28.已知O为△ABC内一点,且,,若B,O,D三点共线,则t的值为()A.B.C.D.9.经过(3,0),(0,4)两点的直线方程是()A.3x+4y﹣12=0B.3x﹣4y+12=0 C.4x﹣3y+12=0 D.4x+3y﹣12=010.过点(3,﹣6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B.x+y+3=0C.x﹣y+3=0 D.x+y+3=0或2x+y=011.经过点M(1,1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x﹣y=012.已知△ABC的顶点A(2,3),且三条中线交于点G(4,1),则BC边上的中点坐标为()A.(5,0) B.(6,﹣1)C.(5,﹣3)D.(6,﹣3)二.填空题(共4小题)13.已知直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0,若l1∥l2,则实数a的值是.14.直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=.15.设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,当m=时,l1∥l2,当m=时,l1⊥l2.16.如果直线(2a+5)x+(a﹣2)y+4=0与直线(2﹣a)x+(a+3)y﹣1=0互相垂直,则a的值等于.三.解答题(共11小题)17.已知点A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1)且与线段AB始终有交点,则直线l的斜率k的取值范围为.18.已知x,y满足直线l:x+2y=6.(1)求原点O关于直线l的对称点P的坐标;(2)当x∈[1,3]时,求的取值范围.19.已知点A(1,2)、B(5,﹣1),(1)若A,B两点到直线l的距离都为2,求直线l的方程;(2)若A,B两点到直线l的距离都为m(m>0),试根据m的取值讨论直线l 存在的条数,不需写出直线方程.20.已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(﹣1,0).(1)求证:直线l恒过定点,并求出定点坐标;(2)求点P到直线l的距离的最大值.21.已知直线方程为(2+m)x+(1﹣2m)y+4﹣3m=0.(Ⅰ)证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线的方程.22.已知光线经过已知直线l1:3x﹣y+7=0和l2:2x+y+3=0的交点M,且射到x 轴上一点N(1,0)后被x轴反射.(1)求点M关于x轴的对称点P的坐标;(2)求反射光线所在的直线l3的方程.(3)求与l3距离为的直线方程.23.已知直线l:y=3x+3求(1)点P(4,5)关于l的对称点坐标;(2)直线y=x﹣2关于l对称的直线的方程.24.已知点M(3,5),在直线l:x﹣2y+2=0和y轴上各找一点P和Q,使△MPQ 的周长最小.25.已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.26.已知直线l:5x+2y+3=0,直线l′经过点P(2,1)且与l的夹角等于45,求直线l'的一般方程.27.已知点A(2,0),B(0,6),O为坐标原点.(1)若点C在线段OB上,且∠ACB=,求△ABC的面积;(2)若原点O关于直线AB的对称点为D,延长BD到P,且|PD|=2|BD|,已知直线L:ax+10y+84﹣108=0经过点P,求直线l的倾斜角.高中数学直线方程练习题参考答案与试题解析一.选择题(共12小题)1.(2016秋•滑县期末)已知A(﹣2,﹣1),B(2,﹣3),过点P(1,5)的直线l与线段AB有交点,则l的斜率的范围是()A.(﹣∞,﹣8]B.[2,+∞)C.(﹣∞,﹣8]∪[2,+∞)D.(﹣∞,﹣8)∪(2,+∞)【分析】利用斜率计算公式与斜率的意义即可得出.【解答】解:k PA==2,k PB==﹣8,∵直线l与线段AB有交点,∴l的斜率的范围是k≤﹣8,或k≥2.故选:C.【点评】本题考查了斜率计算公式与斜率的意义,考查了推理能力与计算能力,属于中档题.2.(2016秋•碑林区校级期末)已知点A(1,3),B(﹣2,﹣1).若直线l:y=k (x﹣2)+1与线段AB相交,则k的取值范围是()A.[,+∞)B.(﹣∞,﹣2]C.(﹣∞,﹣2]∪[,+∞)D.[﹣2,]【分析】由直线系方程求出直线l所过定点,由两点求斜率公式求得连接定点与线段AB上点的斜率的最小值和最大值得答案.【解答】解:∵直线l:y=k(x﹣2)+1过点P(2,1),连接P与线段AB上的点A(1,3)时直线l的斜率最小,为,连接P与线段AB上的点B(﹣2,﹣1)时直线l的斜率最大,为.∴k的取值范围是.故选:D.【点评】本题考查了直线的斜率,考查了直线系方程,是基础题.3.(2016秋•雅安期末)已知点A(﹣1,1),B(2,﹣2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是()A.(﹣∞,]∪[2,+∞) B.[,2] C.(﹣∞,﹣2]∪[﹣,+∞)D.[﹣,﹣2]【分析】利用斜率计算公式、斜率与倾斜角的关系及其单调性即可得出.【解答】解:直线l:x+my+m=0经过定点P(0,﹣1),k PA==﹣2,k PB==﹣.∵直线l:x+my+m=0与线段AB(含端点)相交,∴≤≤﹣2,∴.故选:B.【点评】本题考查了斜率计算公式、斜率与倾斜角的关系及其单调性,考查了推理能力与计算能力,属于中档题.4.(2016秋•庄河市校级期末)已知M(1,2),N(4,3)直线l过点P(2,﹣1)且与线段MN相交,那么直线l的斜率k的取值范围是()A.(﹣∞,﹣3]∪[2,+∞)B.[﹣,]C.[﹣3,2]D.(﹣∞,﹣]∪[,+∞)【分析】画出图形,由题意得所求直线l的斜率k满足k≥k PN或k≤k PM,用直线的斜率公式求出k PN和k PM的值,解不等式求出直线l的斜率k的取值范围.【解答】解:如图所示:由题意得,所求直线l的斜率k满足k≥k PN或k≤k PM,即k≥=2,或k≤=﹣3,∴k≥2,或k≤﹣3,故选:A.【点评】本题考查直线的斜率公式的应用,体现了数形结合的数学思想.5.(2013秋•迎泽区校级月考)已知M(﹣2,﹣3),N(3,0),直线l过点(﹣1,2)且与线段MN相交,则直线l的斜率k的取值范围是()A.或k≥5 B.C.D.【分析】求出边界直线的斜率,作出图象,由直线的倾斜角和斜率的关系可得.【解答】解:(如图象)即P(﹣1,2),由斜率公式可得PM的斜率k1==5,直线PN的斜率k2==,当直线l与x轴垂直(红色线)时记为l′,可知当直线介于l′和PM之间时,k≥5,当直线介于l′和PN之间时,k≤﹣,故直线l的斜率k的取值范围是:k≤﹣,或k≥5故选A【点评】本题考查直线的斜率公式,涉及数形结合的思想和直线的倾斜角与斜率的关系,属中档题.6.(2004秋•南通期末)已知A(﹣2,),B(2,),P(﹣1,1),若直线l过点P且与线段AB有公共点,则直线l的倾斜角的范围是()A.B.C.D.∪【分析】先求出直线的斜率的取值范围,再根据斜率与倾斜角的关系以及倾斜角的范围求出倾斜角的具体范围.【解答】解:设直线l的斜率等于k,直线的倾斜角为α由题意知,k PB==﹣,或k PA==﹣设直线的倾斜角为α,则α∈[0,π),tanα=k,由图知0°≤α≤120°或150°≤α<180°故选:D.【点评】本题考查直线的倾斜角和斜率的关系,直线的斜率公式的应用,属于基础题.7.已知点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1)与线段AB始终没有交点,则直线l的斜率k的取值范围是()A.<k<2 B.k>2或k<C.k>D.k<2【分析】求出PA,PB所在直线的斜率,数形结合得答案.【解答】解:点A(2,3),B(﹣3,﹣2),若直线l过点P(1,1),∵直线PA的斜率是=2,直线PB的斜率是=.如图,∵直线l与线段AB始终有公共点,∴斜率k的取值范围是(,2).故选:A.【点评】本题考查了直线的倾斜角和直线的斜率,考查了数形结合的解题思想方法,是基础题.8.(2017•成都模拟)已知O为△ABC内一点,且,,若B,O,D三点共线,则t的值为()A.B.C.D.【分析】以OB,OC为邻边作平行四边形OBFC,连接OF与BC相交于点E,E 为BC的中点.由,可得=2=2,点O是直线AE的中点.根据,B,O,D三点共线,可得点D是BO与AC的交点.过点O作OM∥BC交AC于点M,则点M为AC的中点.即可得出.【解答】解:以OB,OC为邻边作平行四边形OBFC,连接OF与BC相交于点E,E为BC的中点.∵,∴=2=2,∴点O是直线AE的中点.∵,B,O,D三点共线,∴点D是BO与AC的交点.过点O作OM∥BC交AC于点M,则点M为AC的中点.则OM=EC=BC,=,∴DM=MC,∴AD=AM=AC,∴t=.故选:B.【点评】本题考查了向量共线定理、向量三角形与平行四边形法则、平行线的性质,考查了推理能力与计算能力,属于中档题.9.(2016秋•沙坪坝区校级期中)经过(3,0),(0,4)两点的直线方程是()A.3x+4y﹣12=0B.3x﹣4y+12=0 C.4x﹣3y+12=0 D.4x+3y﹣12=0【分析】直接利用直线的截距式方程求解即可.【解答】解:因为直线经过(3,0),(0,4)两点,所以所求直线方程为:,即4x+3y﹣12=0.故选D.【点评】本题考查直线截距式方程的求法,考查计算能力.10.(2016秋•平遥县校级期中)过点(3,﹣6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B.x+y+3=0C.x﹣y+3=0 D.x+y+3=0或2x+y=0【分析】当直线过原点时,用点斜式求得直线方程.当直线不过原点时,设直线的方程为x+y=k,把点(3,﹣6)代入直线的方程可得k值,从而求得所求的直线方程,综合可得结论.【解答】解:当直线过原点时,方程为y=﹣2x,即2x+y=0.当直线不过原点时,设直线的方程为x+y=k,把点(3,﹣6)代入直线的方程可得k=﹣3,故直线方程是x+y+3=0.综上,所求的直线方程为x+y+3=0或2x+y=0,故选:D.【点评】本题考查用待定系数法求直线方程,体现了分类讨论的数学思想,注意当直线过原点时的情况,这是解题的易错点,属于基础题.11.(2015秋•运城期中)经过点M(1,1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x﹣y=0【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(1,1)代入所设的方程得:a=2,则所求直线的方程为x+y=2;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(1,1)代入所求的方程得:k=1,则所求直线的方程为y=x.综上,所求直线的方程为:x+y=2或x﹣y=0.故选:D.【点评】此题考查直线的一般方程和分类讨论的数学思想,要注意对截距为0和不为0分类讨论,是一道基础题.12.(2013春•泗县校级月考)已知△ABC的顶点A(2,3),且三条中线交于点G(4,1),则BC边上的中点坐标为()A.(5,0) B.(6,﹣1)C.(5,﹣3)D.(6,﹣3)【分析】利用三角形三条中线的交点到对边的距离等于到所对顶点的距离的一半,用向量表示即可求得结果.【解答】解:如图所示,;∵△ABC的顶点A(2,3),三条中线交于点G(4,1),设BC边上的中点D(x,y),则=2,∴(4﹣2,1﹣3)=2(x﹣4,y﹣1),即,解得,即所求的坐标为D(5,0);故选:A.【点评】本题考查了利用三角形三条中线的交点性质求边的中点坐标问题,是基础题.二.填空题(共4小题)13.(2015•益阳校级模拟)已知直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0,若l1∥l2,则实数a的值是﹣3.【分析】根据l1∥l2,列出方程a(a+1)﹣2×3=0,求出a的值,讨论a是否满足l1∥l2即可.【解答】解:∵l1∥l2,∴a(a+1)﹣2×3=0,即a2+a﹣6=0,解得a=﹣3,或a=2;当a=﹣3时,l1为:﹣3x+3y+1=0,l2为:2x﹣2y+1=0,满足l1∥l2;当a=2时,l1为:2x+3y+1=0,l2为:2x+3y+1=0,l1与l2重合;所以,实数a的值是﹣3.故答案为:﹣3.【点评】本题考查了两条直线平行,斜率相等,或者对应系数成比例的应用问题,是基础题目.14.(2015秋•天津校级期末)直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=﹣7.【分析】根据两直线平行的条件可知,(3+a)(5+a)﹣4×2=0,且5﹣3a≠8.进而可求出a的值.【解答】解:直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则(3+a)(5+a)﹣4×2=0,即a2+8a+7=0.解得,a=﹣1或a=﹣7.又∵5﹣3a≠8,∴a≠﹣1.∴a=﹣7.故答案为:﹣7.【点评】本题考查两直线平行的条件,其中5﹣3a≠8是本题的易错点.属于基础题.15.(2015秋•台州期末)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,当m=﹣1时,l1∥l2,当m=时,l1⊥l2.【分析】利用直线平行、垂直的性质求解.【解答】解:∵直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,l1∥l2,∴=≠,解得m=﹣1;∵直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,l1⊥l2,∴1×(m﹣2)+3m=0,解得m=;故答案为:﹣1,.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意直线的位置关系的合理运用.16.(2016春•信阳月考)如果直线(2a+5)x+(a﹣2)y+4=0与直线(2﹣a)x+(a+3)y﹣1=0互相垂直,则a的值等于a=2或a=﹣2.【分析】利用两条直线互相垂直的充要条件,得到关于a的方程可求.【解答】解:设直线(2a+5)x+(a﹣2)y+4=0为直线M;直线(2﹣a)x+(a+3)y﹣1=0为直线N①当直线M斜率不存在时,即直线M的倾斜角为90°,即a﹣2=0,a=2时,直线N的斜率为0,即直线M的倾斜角为0°,故:直线M与直线N互相垂直,所以a=2时两直线互相垂直.②当直线M和N的斜率都存在时,k M=(,k N=要使两直线互相垂直,即让两直线的斜率相乘为﹣1,故:a=﹣2.③当直线N斜率不存在时,显然两直线不垂直.综上所述:a=2或a=﹣2故答案为:a=2或a=﹣2【点评】本题考查两直线垂直的充要条件,若利用斜率之积等于﹣1,应注意斜率不存在的情况.三.解答题(共11小题)17.(2016秋•兴庆区校级期末)已知点A(1,1),B(﹣2,2),直线l过点P (﹣1,﹣1)且与线段AB始终有交点,则直线l的斜率k的取值范围为k≤﹣3,或k≥1.【分析】由题意画出图形,数形结合得答案.【解答】解:如图,∵A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1),又,∴直线l的斜率k的取值范围为k≤﹣3,或k≥1.故答案为:k≤﹣3,或k≥1.【点评】本题考查直线的斜率,考查了数形结合的解题思想方法,是中档题.18.(2015春•乐清市校级期末)已知x,y满足直线l:x+2y=6.(1)求原点O关于直线l的对称点P的坐标;(2)当x∈[1,3]时,求的取值范围.【分析】(1)设对称后的点P(a,b),根据点的对称即可求原点O关于直线l 的对称点P的坐标.(2)根据斜率公式可知,表示的为动点(x,y)到定点(2,1)的两点的斜率的取值范围.【解答】解:(1)设原点O关于直线l的对称点P的坐标为(a,b),则满足,解得a=,b=,故;(2)当x∈[1,3]时,的几何意义为到点C(2,1)的斜率的取值范围.当x=1时,y=,当x=3时,y=,由可得A(1,),B(3,),从而k BC==,k AC==﹣,∴k的范围为(﹣∞,﹣]∪[,+∞)【点评】本试题主要是考查了直线的方程以及点关于直线对称点的坐标的求解和斜率几何意义的灵活运用.19.(2016秋•浦东新区校级月考)已知点A(1,2)、B(5,﹣1),(1)若A,B两点到直线l的距离都为2,求直线l的方程;(2)若A,B两点到直线l的距离都为m(m>0),试根据m的取值讨论直线l 存在的条数,不需写出直线方程.【分析】(1)要分为两类来研究,一类是直线L与点A(1,2)和点B(5,﹣1)两点的连线平行,一类是线L过两点A(1,2)和点B(5,﹣1)中点,分类解出直线的方程即可;(2)根据A,B两点与直线l的位置关系以及m与两点间距离5的一半比较,得到满足条件的直线.【解答】解:∵|AB|==5,|AB|>2,∴A与B可能在直线l的同侧,也可能直线l过线段AB中点,①当直线l平行直线AB时:k AB=,可设直线l的方程为y=﹣x+b依题意得:=2,解得:b=或b=,故直线l的方程为:3x+4y﹣1=0或3+4y﹣21=0;②当直线l过线段AB中点时:AB的中点为(3,),可设直线l的方程为y﹣=k(x﹣3)依题意得:=2,解得:k=,故直线l的方程为:x﹣2y﹣=0;(2)A,B两点到直线l的距离都为m(m>0),AB平行的直线,满足题意得一定有2条,经过AB中点的直线,若2m<|AB|,则有2条;若2m=|AB|,则有1条;若2m>|AB|,则有0条,∵|AB|=5,综上:当m<2.5时,有4条直线符合题意;当m=2.5时,有3条直线符合题意;当m>2.5时,有2条直线符合题意.【点评】本题考查点到直线的距离公式,求解本题关键是掌握好点到直线的距离公式与中点坐标公式,对空间想像能力要求较高,考查了对题目条件分析转化的能力20.(2015秋•眉山校级期中)已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(﹣1,0).(1)求证:直线l恒过定点,并求出定点坐标;(2)求点P到直线l的距离的最大值.【分析】(1)把直线方程变形得,2x+y+m(y+2)=0,联立方程组,求得方程组的解即为直线l恒过的定点.(2)设点P在直线l上的射影为点M,由题意可得|PM|≤|PQ|,再由两点间的距离公式求得点P到直线l的距离的最大值【解答】(1)证明:由2x+(1+m)y+2m=0,得2x+y+m(y+2)=0,∴直线l恒过直线2x+y=0与直线y+2=0的交点Q,解方程组,得Q(1,﹣2),∴直线l恒过定点,且定点为Q(1,﹣2).(2)解:设点P在直线l上的射影为点M,则|PM|≤|PQ|,当且仅当直线l与PQ垂直时,等号成立,∴点P到直线l的距离的最大值即为线段PQ的长度,等于=2.【点评】本题考查了直线系方程问题,考查了点到直线的距离公式,正确理解题意是关键,是中档题.21.(2010秋•常熟市期中)已知直线方程为(2+m)x+(1﹣2m)y+4﹣3m=0.(Ⅰ)证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线的方程.【分析】(Ⅰ)直线方程按m集项,方程恒成立,得到方程组,求出点的坐标,即可证明:直线恒过定点M;(Ⅱ)若直线分别与x轴、y轴的负半轴交于A,B两点,说明直线的斜率小于0,设出斜率根据直线过的定点,写出直线方程,求出△AOB面积的表达式,利用基本不等式求出面积的最小值,即可得到面积最小值的直线的方程.【解答】(Ⅰ)证明:(2+m)x+(1﹣2m)y+4﹣3m=0化为(x﹣2y﹣3)m=﹣2x ﹣y﹣4.(3分)得∴直线必过定点(﹣1,﹣2).(6分)(Ⅱ)解:设直线的斜率为k(k<0),则其方程为y+2=k(x+1),∴OA=|﹣1|,OB=|k﹣2|,(8分)S△AOB=•OA•OB=|(﹣1)(k﹣2)|=|﹣|..(10分)∵k<0,∴﹣k>0,∴S=[﹣]=[4+(﹣)+(﹣k)]≥4.△AOB当且仅当﹣=﹣k,即k=﹣2时取等号.(13分)∴△AOB的面积最小值是4,(14分)直线的方程为y+2=﹣2(x+1),即y+2x+4=0.(15分)【点评】本题是中档题,考查直线恒过定点的知识,三角形面积的最小值的求法,基本不等式的应用,考查计算能力,转化思想的应用.22.(2016秋•枣阳市校级月考)已知光线经过已知直线l1:3x﹣y+7=0和l2:2x+y+3=0的交点M,且射到x轴上一点N(1,0)后被x轴反射.(1)求点M关于x轴的对称点P的坐标;(2)求反射光线所在的直线l3的方程.(3)求与l3距离为的直线方程.【分析】(1)联立方程组,求出M的坐标,从而求出P的坐标即可;(2)法一:求出直线的斜率,从而求出直线方程即可;法二:求出直线PN的方程,根据对称性求出直线方程即可;(3)设出与l3平行的直线方程,根据平行线的距离公式求出即可.【解答】解:(1)由得,∴M(﹣2,1).所以点M关于x轴的对称点P的坐标(﹣2,﹣1).…(4分)(2)因为入射角等于反射角,所以∠1=∠2.直线MN的倾斜角为α,则直线l3的斜斜角为180°﹣α.,所以直线l3的斜率.故反射光线所在的直线l3的方程为:.即.…(9分)解法二:因为入射角等于反射角,所以∠1=∠2.根据对称性∠1=∠3,∴∠2=∠3.所以反射光线所在的直线l3的方程就是直线PN的方程.直线PN的方程为:,整理得:.故反射光线所在的直线l3的方程为.…(9分)(3)设与l3平行的直线为,根据两平行线之间的距离公式得:,解得b=3,或,所以与l3为:,或.…(13分)【点评】本题考查了点对称、直线对称问题,考查求直线方程,是一道中档题.23.(2015秋•嘉峪关校级期末)已知直线l:y=3x+3求(1)点P(4,5)关于l的对称点坐标;(2)直线y=x﹣2关于l对称的直线的方程.【分析】(1)设点P(4,5)关于直线y=3x+3对称点P′的坐标为(m,n),得到关于m,n的方程组,求得m、n的值,可得P′的坐标;(2)求出交点坐标,在直线y=x﹣2上任取点(2,0),得到对称点坐标,求出直线方程即可.【解答】解:(1)设点P(4,5)关于直线y=3x+3对称点P′的坐标为(m,n),则由,求得m=﹣2,n=7,故P′(﹣2,7).(2)由,解得:交点为,在直线y=x﹣2上任取点(2,0),得到对称点为,所以得到对称的直线方程为7x+y+22=0【点评】本题主要考查求一个点关于某直线的对称点的坐标的方法,利用了垂直、和中点在对称轴上这两个条件,属于中档题.24.(2014秋•宜秀区校级期中)已知点M(3,5),在直线l:x﹣2y+2=0和y轴上各找一点P和Q,使△MPQ的周长最小.【分析】本题实际是求点M关于l的对称点M1,点M关于y轴的对称点M2,求得直线M1M2的方程,与y轴交点为Q,与直线l:x﹣2y+2=0的交点为P.【解答】解:由点M(3,5)及直线l,可求得点M关于l的对称点M1(5,1).同样容易求得点M关于y轴的对称点M2(﹣3,5).据M1及M2两点可得到直线M1M2的方程为x+2y﹣7=0.得交点P(,).令x=0,得到M1M2与y轴的交点Q(0,).解方程组x+2y﹣7=0,x﹣2y+2=0,故点P(,)、Q(0,)即为所求.【点评】本题考查直线关于直线对称的问题,三角形的几何性质,是中档题.25.(2010•广东模拟)已知直线l经过点P(3,1),且被两平行直线l1;x+y+1=0和l2:x+y+6=0截得的线段之长为5,求直线l的方程.【分析】法一如图,若直线l的斜率不存在,直线l的斜率存在,利用点斜式方程,分别与l1、l2联立,求得两交点A、B的坐标(用k表示),再利用|AB|=5可求出k的值,从而求得l的方程.法二:求出平行线之间的距离,结合|AB|=5,设直线l与直线l1的夹角为θ,求出直线l的倾斜角为0°或90°,然后得到直线方程.就是用l1、l2之间的距离及l 与l1夹角的关系求解.法三:设直线l1、l2与l分别相交于A(x1,y1),B(x2,y2),则通过求出y1﹣y2,x1﹣x2的值确定直线l的斜率(或倾斜角),从而求得直线l 的方程.【解答】解:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、l2的交点分别为A′(3,﹣4)或B′(3,﹣9),截得的线段AB的长|AB|=|﹣4+9|=5,符合题意.若直线l的斜率存在,则设直线l的方程为y=k(x﹣3)+1.解方程组得A(,﹣).解方程组得B(,﹣).由|AB|=5.得(﹣)2+(﹣+)2=52.解之,得k=0,直线方程为y=1.综上可知,所求l的方程为x=3或y=1.解法二:由题意,直线l1、l2之间的距离为d==,且直线L被平行直线l1、l2所截得的线段AB的长为5,设直线l与直线l1的夹角为θ,则sinθ==,故θ=45°.由直线l1:x+y+1=0的倾斜角为135°,知直线l的倾斜角为0°或90°,又由直线l过点P(3,1),故直线l的方程为:x=3或y=1.解法三:设直线l与l1、l2分别相交A(x1,y1)、B(x2,y2),则x1+y1+1=0,x2+y2+6=0.两式相减,得(x1﹣x2)+(y1﹣y2)=5.①又(x1﹣x2)2+(y1﹣y2)2=25.②联立①、②可得或由上可知,直线l的倾斜角分别为0°或90°.故所求的直线方程为x=3或y=1.【点评】本题是中档题,考查直线与直线的位置关系,直线与直线所成的角,直线的点斜式方程,斜率是否存在是容易出错的地方,注意本题的三种方法.26.(2009秋•重庆期末)已知直线l:5x+2y+3=0,直线l′经过点P(2,1)且与l的夹角等于45,求直线l'的一般方程.【分析】设出直线l′的斜率为k′,通过直线的夹角公式求出直线的斜率,然后求出直线的方程.【解答】解:设直线l′的斜率为k′,则,…(7分),…(10分)直线l′:7x﹣3y﹣11=0和3x+7y﹣13=0;…(13分)【点评】本题是基础题,考查直线方程的求法,夹角公式的应用,注意夹角公式与到角公式的区别,考查计算能力.27.已知点A(2,0),B(0,6),O为坐标原点.(1)若点C在线段OB上,且∠ACB=,求△ABC的面积;(2)若原点O关于直线AB的对称点为D,延长BD到P,且|PD|=2|BD|,已知直线L:ax+10y+84﹣108=0经过点P,求直线l的倾斜角.【分析】(1)依据条件求出AC的斜率,可得点C的坐标,即得边长BC,点A 的横坐标就是三角形的高,代入三角形的面积公式进行计算.(2)利用对称的特点,待定系数法求出原点O关于直线AB的对称点D的坐标,由题意可得=2,把相关向量的坐标代入,利用两个向量相等的条件求出点P的坐标,再把点P的坐标代入代入直线l的方程,求出a,即得直线l的斜率,由斜率求直线l的倾斜角.【解答】解:(1)∵点C在线段OB上,且∠ACB=,∴∠ACO=,故AC 的倾斜角为,故AC的斜率为﹣1,设点C(0,b),由﹣1=得b=2,即点C(0,2),BC=4,点A到BC的距离为2,故△ABC的面积为×4×2=4.(2)设D(m,n),点P(c,d),AB的方程+=1,即3x+y﹣6=0,由得m=,n=,故D(,),=(﹣c,﹣d),=(﹣,),由题意知,=2,∴﹣c=﹣,﹣d=,解得c=,d=﹣,故P(,﹣),把P(,﹣)代入直线l:ax+10y+84﹣108=0,得a•+10•+84﹣108=0,即得a=10.∴直线l的斜率为=﹣,故直线l的倾斜角为120°.【点评】本题考查直线的倾斜角的定义,倾斜角与斜率的关系;点关于直线的对称点的坐标求法,两个向量相等时向量坐标间的关系.。
(完整)高中数学直线与方程习题及解析.docx

1.一条光线从点 A(-1,3)射向 x 轴,经过 x 轴上的点 P 反射后通过点 B(3,1),求 P 点的坐标.3-0=-31- 01解 设 P( x,0) ,则 k PA =, k PB ==,依题意,- 1- x x + 1 3- x 3- x由光的反射定律得k PA =- k PB ,即 3= 1,解得 x =2,即 P(2,0).x +1 3- x2.△ ABC 为正三角形,顶点A 在 x 轴上, A 在边 BC 的右侧,∠ BAC 的平分线在 x 轴上,求边 AB 与 AC 所在直线的斜率.解如右图,由题意知 ∠BAO = ∠ OAC = 30°,∴ 直线 AB 的倾斜角为 180°- 30°= 150°,直线 AC 的倾斜角为 30°,∴ k AB = tan 1503=°- 3 ,AC3k = tan 30 =° 3 .2f a , f b , f c的大小. 3.已知函数 f(x)= log ( x + 1), a>b>c>0,试比较a b c解画出函数的草图如图,f xx 可视为过原点直线的斜率.f c f b f a由图象可知:c>b>a.4. (1) 已知四点 A(5,3), B(10,6),C(3,- 4), D(- 6,11),求证: AB ⊥ CD .(2)已知直线 l 1 的斜率 k 1= 3,直线 l 2 经过点 A(3a ,- 2), B(0, a 2+ 1)且 l 1⊥ l 2,求实数4 a 的值.(1)证明 由斜率公式得:k AB = 6- 3 310-5 = 5,11- - 45 k CD = - 6- 3 =- 3,则 k AB ·k CD =- 1, ∴ AB ⊥CD .(2)解∵ l 1⊥ l 2,∴ k 1·k 2=- 1,3× a 2+ 1- - 2即 =- 1,解得 a =1 或 a =3.40- 3a5. 如图所示, 在平面直角坐标系中, 四边形 OPQR 的顶点坐标按逆时针顺序依次为O(0,0)、P(1, t)、 Q(1- 2t,2+ t)、R(- 2t,2),其中 t>0. 试判断四边形 OPQR 的形状.解由斜率公式得k OP=t - 0= t,1- 0QR 2- 2+ t=-t= t,k OR2- 0=-1,k =- 2t- 1- 2t- 1=t - 2t- 0k PQ=2+ t -t2=-1.=1- 2t- 1- 2t t∴k OP=k QR, k OR= k PQ,从而 OP∥ QR, OR∥PQ .∴四边形 OPQR 为平行四边形.又k OP·k OR=- 1,∴ OP⊥ OR,故四边形 OPQR 为矩形.6.已知四边形ABCD 的顶点 A(m, n), B(5,- 1), C(4, 2), D(2,2) ,求 m 和 n 的值,使四边形 ABCD 为直角梯形.解∵四边形 ABCD 是直角梯形,∴有 2 种情形:(1)AB∥CD , AB⊥ AD,由图可知: A(2,- 1).(2)AD∥ BC, AD ⊥ AB,k AD= k BCk AD·k AB=- 1n-2= 3m- 2-1?n- 2 n+1·=- 1m- 2 m- 516m=5.∴8n=-516m= 2m=5.综上或n=- 18n=-57.已知直线 l1与 l 2的方程分别为7x+ 8y+ 9= 0,7x+ 8y-3= 0.直线 l 平行于 l 1,直线 l 与 l1的距离为 d1,与 l2的距离为 d2,且 d1∶d2= 1∶ 2,求直线 l 的方程.解因为直线 l 平行 l1,设直线 l 的方程为 7x+ 8y+ C= 0,则 d1=|C- 9||C-- 3 |,d2=. 72+ 8272+82又2d1= d2,∴2|C-9|= |C+ 3|.解得 C= 21 或 C= 5.故所求直线l 的方程为7x+ 8y+ 21= 0 或 7x+8y+ 5= 08.△ ABC 中, D 是 BC 边上任意一点(D 与 B,C 不重合 ) ,且 |AB|2= |AD |2+ |BD | ·|DC|.求证:△ ABC 为等腰三角形.证明作 AO⊥ BC,垂足为 O,以 BC 所在直线为 x 轴,以 OA 所在直线为 y 轴,建立直角坐标系 (如右图所示 ).设A(0,a), B(b,0), C(c,0), D (d,0).因为 |AB|2= |AD |2+ |BD | |DC· |,所以,由距离公式可得b2+ a2= d2+ a2+ (d- b)(c- d),即- (d- b)(b+d)=( d-b)( c-d).又 d-b≠ 0,故- b- d= c- d,即- b= c.所以 |AB|= |AC|,即△ ABC 为等腰三角形.9.一束平行光线从原点 O(0,0) 出发,经过直线l:8x+ 6y= 25 反射后通过点 P(- 4,3),求反射光线与直线l 的交点坐标.解设原点关于 l 的对称点 A 的坐标为 (a,b),由直线 OA 与 l 垂直和线段 AO 的中点在 l 上得b4a·-3=- 1a=4,解得,8×a b b=3 2+ 6×2= 25∴A 的坐标为 (4,3) .∵ 反射光线的反向延长线过A(4,3) ,又由反射光线过P(- 4,3),两点纵坐标相等,故反射光线所在直线方程为y=3.y= 3x=78,由方程组,解得8x+ 6y=25y= 37∴反射光线与直线l 的交点坐标为8,3 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题: 1.直线x-3y+6=0的倾斜角是( )
A 600
B 1200
C 300
D 1500
2. 经过点A(-1,4),且在x 轴上的截距为3的直线方程是( )
A x+y+3=0
B x-y+3=0
C x+y-3=0
D x+y-5=0 3.直线(2m 2
+m-3)x+(m 2
-m)y=4m-1与直线2x-3y=5平行,则的值为( )
A-23或1 B1 C-89 D -8
9或1 4.直线ax+(1-a)y=3与直线(a-1)x+(2a+3)y=2互相垂直,则a 的值为( )
A -3
B 1
C 0或-
2
3
D 1或-3 5.圆(x-3)2+(y+4)2
=2关于直线x+y=0对称的圆的方程是( )
A. (x+3)2
+(y-4)2
=2 B. (x-4)2
+(y+3)2
=2 C .(x+4)2
+(y-3)2
=2 D. (x-3)2
+(y-4)2
=2 6、若实数x 、y 满足3)
2(22
=++y x ,则
x
y 的最大值为( )
A.
3 B. 3- C.
33 D. 3
3- 7.圆1)3()1(22
=++-y x 的切线方程中有一个是
( )
A .x -y =0
B .x +y =0
C .x =0
D .y =0
8.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于
( )
A .1
B .13-
C .2
3
- D .2- 9.设直线过点(0,),a 其斜率为1,且与圆22
2x y +=相切,则a 的值为
( )
A.4± B.± C.2± D.
10. 如果直线12,l l 的斜率分别为二次方程2
410x x -+=的两个根,那么1l 与2l 的夹角为( )
A .
3π B .4π C .6π
D .
8
π
11.已知{(,)|0}M
x y y y ==≠,{(,)|}N x y y x b ==+,若M N ≠∅I ,则
b ∈
( )
A .[-
B .(-
C .(-
D .[-
12.一束光线从点(1,1)A -出发,经x 轴反射到圆2
2:(2)(3)1C x y -+-=上的最短路径是
( )
A .4
B .5
C .1
D .
二、填空题:
13过点M (2,-3)且平行于A (1,2),B (-1,-5)两点连线的直线方程是
14、直线l 在y 轴上截距为2,且与直线l `:x+3y-2=0垂直,则l 的方程是
15.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为________.
16圆2
24460x
y x y +-++=截直线50x y --=所得的弦长为 _________
17.已知圆M :(x +cos θ)2
+(y -sin θ)2
=1,
直线l :y =kx ,下面四个命题:
(A )对任意实数k 与θ,直线l 和圆M 相切; (B )对任意实数k 与θ,直线l 和圆M 有公共点;
(C )对任意实数θ,必存在实数k ,使得直线l 与和圆M 相切; (D )对任意实数k ,必存在实数θ,使得直线l 与和圆M 相切. 其中真命题的代号是______________(写出所有真命题的代号). 18已知点M (a ,b )在直线1543=+y x 上,则2
2b a +的最小值为
三、解答题:
19、平行于直线2x+5y-1=0的直线l 与坐标轴围成的三角形面积为5,求直线l 的方程。
20、已知∆ABC 中,A(1, 3),AB 、AC 边上的中线所在直线方程分别为x y -+=
210 和y -=10,
求∆ABC 各边所在直线方程.
21.已知ABC ∆的顶点A 为(3,-1),AB 边上的中线所在直线方程为610590x y +-=,B ∠的平
分线所在直线方程为4100x y -+=,求BC 边所在直线的方程.
22.设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线
:20l x y -=的距离为
5
,求该圆的方程.
23.设M 是圆2
2680x
y x y +--=上的动点,O 是原点,N 是射线OM 上的点,若150||||=⋅ON OM ,
求点N 的轨迹方程。
24.已知过A (0,1)和(4,)B a 且与x 轴相切的圆只有一个,求a 的值及圆的方程.
C C C
D B A 7.C .圆心为(1
,),半径为1,故此圆必与y 轴(x =0)相切,选C.
8.D .由12
120A A B B +=可解得.
9.C .直线和圆相切的条件应用, 2,2
2,0±=∴=∴=+-a a a y x ,选C;
10.A .由夹角公式和韦达定理求得. 11.C
.数形结合法,注意
0y y =≠等价于229(0)x y y +=>
12.A .先作出已知圆C 关于x 轴对称的圆'C ,问题转化为求点A 到圆'C 上的点的最短路径,即
|'|14AC -=.
16.8或-
1=,解得a =8或-18.
17.(B )(D ).圆心坐标为(-cos θ,sin θ)d =
|sin |1
θϕ≤--=(+)故填(B )(D ) 18、3。
19、2x +5y-10=0 或2x +5y+10=0
20、x – y + 2 = 0、x + 2y – 7 = 0、x - 4y – 1 = 0
21.设11(410,)B y y -,由AB 中点在610590x y +-=上,
可得:0592
1
10274611=--⋅+-⋅
y y ,y 1
= 5,所以(10,5)B . 设A 点关于4100x y -+=的对称点为'(',')A x y ,
则有)7,1(14
131********A x y y x '⇒⎪⎪⎩⎪⎪⎨
⎧-=⋅-'+'=+-'⋅-+'.故:29650BC x y +-=.
22.设圆心为(,)a b ,半径为r ,由条件①:
2
21r a =+,由条件②:222r b =,从而有:2221b a -=.由
|2|15a b =⇒-=,解方程组2221|2|1
b a a b ⎧-=⎨
-=⎩可得:11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩,所以2
222r
b ==.故所求圆的方程是22(1)(1)2x y -+-=或22(1)(1)2x y +++=.
23.设(,)N x y ,11(,)M x y .由(0)OM ON λλ=>u u u u r u u u r 可得:11x x
y y
λλ=⎧⎨
=⎩,
由22150
150||||y x ON OM +=⇒=⋅λ.故122122
150150x
x x y y y x y ⎧=⎪+⎪⎨
⎪=
⎪+⎩
,因为点M 在已知圆上.
所以有015081506)150()150(
2
222222222=+⋅-+⋅-+++y x y
y x x y x y y x x ,
化简可得:34750x y +-=为所求. 24.设所求圆的方程为2
20x
y Dx Ey F ++++=.因为点
A 、
B 在此圆上,所以10E F ++=,
① ,24160D aE F
a ++++=② ③④又知该圆与
x 轴(直线
0y =)相切,所以由
2040
D F ∆=⇒-=,③ 由①、②、③消去
E 、F
可得:
221
(1)41604
a D D a a -++-+=, ④ 由题意方程④有唯一解,当1a =时,4,5,4D E F =-=-=;当1a ≠时由0∆=可解得0a =,
这时8,17,16D E
F =-=-=.
综上可知,所求a 的值为0或1,当0a =时圆的方程为22817160x y x y +--+=;当1
a =时,圆的方程为2
24540x y x y +--+=.。