【精品】2019届中考数学专题复习投影与视图_三视图专题训练

合集下载

备战中考数学专题练习投影与视图(含解析)

备战中考数学专题练习投影与视图(含解析)

2019备战中考数学专题练习-投影与视图(含解析)一、单选题1.如图所示零件的左视图是()A.B.C.D.2.若一个几何体的主视图、左视图、俯视图是直径相等的圆,则这个几何体是()A.正方体B.圆锥C.圆柱 D.球3.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短4.一个几何体的主视图和左视图都是矩形,俯视图是圆,则这个几何体是()A.三棱柱B.圆柱C.三棱锥D.圆锥5.下列几何体中,其主视图为三角形的是()A.B.C.D.6.如图是一个由几个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.主视图和俯视图B.俯视图C.俯视图和左视图 D.主视图二、填空题7.投影可分为________和________;一个立体图形,共有________种视图.8.如果一个几何体的主视图和左视图都是等腰三角形,而且俯视图是一个圆,那么这个几何体是________.9.皮影戏中的皮影是由投影得到的________.10.小明的身高1.6米,他在阳光下的影长为0.8米,同一时刻,校园的旗杆影长为4.5米,则该旗杆高________米.11.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,请你画出它的主视图和左视图.三、解答题12.一组合体的三视图如图所示,该组合体是由哪几个几何体组成,并求出该组合体的表面积(单位:cm2).13.如图,边长为acm的正方体其上下底面的对角线AC、A1C1与平面H垂直.(1)指出正方体六个面在平面H上的正投影图形;(2)计算投影MNPQ的面积.四、综合题14.如图,A、B在一直线上,小明从点A出发沿AB方向匀速前进,4秒后走到点D,此时他(CD)在某一灯光下的影长为AD,继续沿AB方向以同样的速度匀速前进4秒后到点F,此时他(EF)的影长为2米,然后他再沿AB方向以同样的速度匀速前进2秒后达点H,此时他(GH)处于灯光正下方.(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明沿AB方向匀速前进的速度.15.小亮在广场上乘凉,如图所示的线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请在图中画出小亮在照明灯P照射下的影子;(2)如果灯杆长PO=12 m,小亮身高AB=1.6 m,小亮与灯杆的距离BO=13 m,请求出小亮影子的长度.16.如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=14.5米,NF=0.2米.设太阳光线与水平地面的夹角为α,当α=56.3°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的NF这层上晒太阳.(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.(参考数据:sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)答案解析部分一、单选题1.【答案】B【考点】简单组合体的三视图【解析】【解答】如图所示零件的左视图是:.故答案为:B.【分析】左视图定义:从物体左面观察所得到的图形,由此即可得出答案.2.【答案】D【考点】简单几何体的三视图【解析】【解答】解:正方体的三视图都是正方形;圆锥的主视图和左视图为等腰三角形,俯视图为圆;圆柱的主视图和左视图为矩形,俯视图为圆;球的三视图都是圆.故答案为:D.【分析】由题意知,球的三视图都是直径相等的圆。

2019年全国各地中考数学试题分类汇编(第一期) 专题34 投影与视图(含解析)

2019年全国各地中考数学试题分类汇编(第一期) 专题34 投影与视图(含解析)

投影与视图一.选择题1.(2019▪广西池河▪3分)某几何体的三视图如图所示,该几何体是()A.圆锥B.圆柱C.三棱锥D.球【分析】由已知三视图得到几何体是圆锥.【解答】解:由已知三视图得到几何体是以圆锥;故选:A.【点评】本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键.2. (2019,四川成都,3分)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A. B. C. D.【解析】此题考查立体几何里三视图的左视图,三视图的左视图,应从左面看,故选B 3.(2019,山东淄博,4分)下列几何体中,其主视图、左视图和俯视图完全相同的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A.圆柱的主视图和左视图都是矩形,但俯视图也是一个圆形,不符合题意;B.三棱柱的主视图和左视图、俯视图都不相同,不符合题意;C.长方体的主视图和左视图是相同的,都为一个长方形,但是俯视图是一个不一样的长方形,不符合题意;D.球的三视图都是大小相同的圆,符合题意.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4. (2019•湖南长沙•3分)某个几何体的三视图如图所示,该几何体是()A.B.C.D.【分析】根据几何体的三视图判断即可.【解答】解:由三视图可知:该几何体为圆锥.故选:D.【点评】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.5. (2019•湖南邵阳•3分)下列立体图形中,俯视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是正方形,故选项B不合题意;C.俯视图是圆,左视图是三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.6. (2019•湖南湘西州•4分)下列立体图形中,主视图是圆的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A.主视图是三角形,故不符合题意;B.主视图是矩形,故不符合题意;C.主视图是圆,故符合题意;D.主视图是正方形,故不符合题意;故选:C.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.7. (2019•湖南岳阳•3分)下列立体图形中,俯视图不是圆的是()A.B.C.D.【分析】俯视图是从几何体的上面看物体,所得到的图形,分析每个几何体,解答出即可.【解答】解:A.圆柱的俯视图是圆;故本项不符合题意;B.圆锥的俯视图是圆;故本项不符合题意;C.立方体的俯视图是正方形;故本项符合题意;D.球的俯视图是圆;故本项不符合题意.故选:C.【点评】本题主要考查了简单几何体的俯视图,锻炼了学生的空间想象能力.8. (2019•广东•3分)如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图9. (2019•广西贵港•3分)某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是()A.B.C.D.【分析】先细心观察原立体图形中正方体的位置关系,从正面看去,一共两列,左边有2竖列,右边是1竖列,结合四个选项选出答案.【解答】解:从正面看去,一共两列,左边有2竖列,右边是1竖列.故选:B.【点评】本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力.10.(2019▪黑龙江哈尔滨▪3分)七个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【分析】左视图有2列,从左到右分别是2,1个正方形.【解答】解:这个立体图形的左视图有2列,从左到右分别是2,1个正方形,故选:B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.11.(2019▪湖北黄石▪3分)如图,该正方体的俯视图是()A.B.C.D.【分析】俯视图是从物体上面看所得到的图形,据此判断正方体的俯视图.【解答】解:正方体的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形都是正方形,故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.12. (2019•山东省聊城市•3分)如图所示的几何体的左视图是()A.B.C.D.【考点】三视图【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从左向右看,得到的几何体的左视图是.故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.13. (2019•山东省滨州市•3分)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4【考点】三视图【分析】根据该几何体的三视图可逐一判断.【解答】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选:A.【点评】本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.14. (2019•湖北十堰•3分)如图是一个L形状的物体,则它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.15. (2019•湖北天门•3分)如图所示的正六棱柱的主视图是()A.B.C.D.【分析】主视图是从正面看所得到的图形即可,可根据正六棱柱的特点作答.【解答】解:正六棱柱的主视图如图所示:故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.16. (2019•湖北武汉•3分)如图是由5个相同的小正方体组成的几何体,该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形,如图所示:.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.17. (2019•湖北孝感•3分)下列立体图形中,左视图是圆的是()A.B.C.D.【分析】左视图是从物体左面看,所得到的图形.【解答】解:A.圆锥的左视图是等腰三角形,故此选项不合题意;B.圆柱的左视图是矩形,故此选项不合题意;C.三棱柱的左视图是矩形,故此选项不合题意;D.球的左视图是圆形,故此选项符合题意;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.18.(2019•浙江嘉兴•3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.19.(2019•浙江宁波•4分)如图,下列关于物体的主视图画法正确的是()A.B.C.D.【分析】根据主视图是从正面看到的图形,进而得出答案.【解答】解:物体的主视图画法正确的是:.故选:C.【点评】本题考查了三视图的知识,关键是找准主视图所看的方向.20.(2019•浙江衢州•3分)如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A B C D【答案】A【考点】简单组合体的三视图【解析】【解答】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案. 21.(2019•浙江绍兴•4分)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.22.(2019•浙江金华•3分)如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.【答案】D【考点】圆锥的计算【解析】【解答】解:设BD=2r,∵∠A=90°,∴AB=AD= r,∠ABD=45°,∵上面圆锥的侧面积S= ·2πr·r=1,∴r2= ,又∵∠ABC=105°,∴∠CBD=60°,又∵CB=CD,∴△CBD是边长为2r的等边三角形,∴下面圆锥的侧面积S= ·2πr·2r=2πr2=2π×= .故答案为:D.【分析】设BD=2r,根据勾股定理得AB=AD= r,∠ABD=45°,由圆锥侧面积公式得·2πr·r=1,求得r2= ,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案.23. (2019安徽)(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:几何体的俯视图是:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.24.(3分)(2019甘肃省陇南市)下列四个几何体中,是三棱柱的为()A.B.C.D.【分析】分别判断各个几何体的形状,然后确定正确的选项即可.【解答】解:A.该几何体为四棱柱,不符合题意;B.该几何体为四棱锥,不符合题意;C.该几何体为三棱柱,符合题意;D.该几何体为圆柱,不符合题意.故选:C.【点评】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.25. (2019甘肃省天水市)如图所示,圆锥的主视图是()A.B.C.D.【答案】A【解析】解:圆锥的主视图是等腰三角形,如图所示:故选:A.主视图是从正面看所得到的图形即可,可根据圆锥的特点作答.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,主视图是从物体的正面看得到的视图.10.二.填空题1. (2019•甘肃•3分)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为(18+2)cm2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).故答案为(18+2)cm2.【点评】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.三.解答题1.2.。

2019年中考数学《投影与视图》专题复习试卷(含答案)

2019年中考数学《投影与视图》专题复习试卷(含答案)

2018-2019学年初三数学专题复习投影与视图(含答案)一、单选题1.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A. 4B. 5C. 6D. 72.如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图是()A. B. C. D.3.如图所示的几何体的俯视图是A. B. C. D.4. 下列四个几何体的俯视图中与众不同的是()A. B. C. D.5.下列几何体的主视图与其他三个不同的是()A. B. C. D.6.如左图所示的正三棱柱,其主视图正确的为()A. B. C. D.7.用4个完全相同的小正方体组成如图所示的立体图形,从上往下看得到的平面图形是()A. B. C. D.8. 如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A. B. C. D.9.由五个大小相同的正方体组成的几何体如图所示,那么它的主视图是()A. B. C. D.10.下列几何体各自的三视图中,只有两个视图相同的是( )A. ①③B. ②④C. ③④D. ②③11. 由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A. B. C. D.12.某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为()A. 150πcm2B. 200πcm2C. 300πcm2D. 400πcm213.如图所示几何体的俯视图是()A. B. C. D.14. 如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A. 5或6B. 5或7C. 4或5或6D. 5或6或715.如图中几何体的俯视图是()A. B. C. D.16.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A. 108cm3B. 100 cm3C. 92cm3D. 84cm317.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A. 3个B. 4个C. 5个D. 6个二、填空题18.一个几何体的三视图如图所示,那么这个几何体的侧面积是________ (结果保留π)19.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为________ cm.20. 一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是________.21.如图所示的几何体的三视图,这三种视图中画图不符合规定的是________ .22.如图所示,一张桌子上摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上有碟子________个.三、解答题23.已知如图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面面积.24.如图是一个实心几何体的三视图,求该几何体的体积.(结果保留π,单位:cm)25.已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)若从正面看的长为10 ,从上面看的圆的直径为4 ,求这个几何体的侧面积(结果保留π)。

2019届中考数学专题复习投影与视图_三视图专题训练(含答案)

2019届中考数学专题复习投影与视图_三视图专题训练(含答案)

投影与视图---三视图1. 下列几何体中,主视图、左视图、俯视图完全相同的是( )A.圆锥B.六棱柱C.球D.四棱锥2. 一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为( )A.2πB.12π C.4π D.8π 3. 一个几何体的三视图如图所示,则这个几何体是( )A.四棱锥B.四棱柱C.三棱锥D.三棱柱4. 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )5. 已知某几何体的三视图(单位:cm),则该几何体的侧面积等于( )A.12πcm2B.15πcm2C.24πcm2D.30πcm26. 用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图所示,则该立方体的俯视图不可能是( )7. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )8. 由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的、和的形状,然后综合起来考虑整体形状.9. 一个长、宽、高都互不相等的长方体的主视图、俯视图、左视图都是 .10. 一座楼房的三种视图中,图可以反映出楼房的高度,图可以反映出楼房的建筑面积.11. 三视图都是正方形的几何体是.12. 如图所给的三视图表示的几何体是.13. 如图,由四个小立方体组成的几何体中,若每个小立方体的棱长都是1,则该几何体俯视图的面积是.14. 如图,这是一个长方体的主视图和俯视图,由图示数据(单位:cm)可以得出该长方体的体积是cm3,表面积为.15. 下图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为(结果保留π).16. 图甲是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是(把图乙中正确的立体图形的序号都填在横线上).17. 三棱柱及其三视图如图所示,△EFG中,EG=12cm,∠EGF=30°,则AB的长为cm.18. 如图是一个几何体的三视图(单位:厘米).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D.请你求出这个线路的最短路程.19. 如图所示,是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图.(1)请你画出这个几何体的一种左视图;(2)若组成几何体的小正方体的块数为n,请你写出n的所有可能值.参考答案:1—7 CCDAB DC8. 前面上面左侧面9. 长方形10. 主视或左视俯视11. 正方体12. 圆锥13. 314. 18 42cm215. 24π16. ①②④17. 618. 解:(1)圆锥;(2)表面积S=S扇形+S圆=πrl+πr2=12π+4π=16π(平方厘米);(3)如图将圆锥侧面展开,线段BD为所求的最短路程.由条件得,∠BAB′=120°,C为弧BB′的中点,所以BD=33(厘米).19. 解:(1)左视图有答图所示的5种情形.(2)n=8,9,10,11.。

2019年九年级数学中考专题复习_投影与视图_专题练习题

2019年九年级数学中考专题复习_投影与视图_专题练习题

2019年九年级数学中考专题复习投影与视图同步练习题一、选择题1. 下列四个几何体中,三视图(主视图、左视图、俯视图)相同的几何体是()A. B.C. D.2. 如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A. B. C. D.3. 长方体的主视图、俯视图如图所示(单位:m),则其左视图的面积是()A.1m2B.3m2C.4m2D.12m24. 如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9B.10C.11D.125. 如图的几何体是由六个同样大小的正方体搭成的,其左视图是()A. B.C. D.6. 如图,甲、乙、丙三个图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()A.仅有甲和乙相同B.仅有甲和丙相同C.仅有乙和丙相同D.甲、乙、丙都相同7. 如图是某几何体的三视图及相关数据,则判断正确的是()A.a2+b2=c2B.a2+b2=4c2C.a2+c2=b2D.a2+4c2=b28. 一个几何体是由一些相同的立方体组成的,从正面和从左面看到的形状图如图所示,则组成这个几何体的立方体最多有()A.12个B.13个C.14个D.18个9. 如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.AB.BC.CD.D10. 一些完全相同的小正方形搭成一个几何体,这个几何体的主视图和左视图均如图所示,则这个几何体最少由()个小正方体构成.A.6B.7C.8D.9二、填空题11. 一个正方体的对角线垂直于投影面,正方体的正投影是一个面积为25√2的矩形,则该正方体的体积是________,表面积是________.12. 人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是________,影子的长短随人的位置的变化而变化的是________.13. 小丽在路灯下拿着一个圆柱体和一个圆锥体,她看到的投影________相同(填“可能”或“不可能”)14. 如图,身高1.5米的小强站在离一个高大的建筑物20米处,他的前方5米有一堵墙,若墙高2米,则站立的小强观察这个建筑物时,盲区的范围________米(建筑物上的高度).15. 如图为圆锥,从正面看得到的平面图形是________.16. 观察图中的几何体,指出右面的三幅,分别是从哪个方向看得到.(1)是________,(2)是________,(3)是________.17. 写出一个从上面看与从正面看完全相同的几何体________.18. 下列几何体中,从上面看到的形状图相同的是________.19. 用小方块搭成一个几何体,使它的主视图、左视图和俯视图如下图所示,它由________个小立方块组成.20. 如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:________(多填或错填得0分,少填酌情给分).三、解答题21. 已知一个几何体的三视图如图所示,描述该几何体的形状,并根据图上标记的数据求出它的侧面积.22. 根据下列实物图画出该物体的三视图.23. 如图,一建筑物AB(看做线段)在阳光下的投影为BC,小红站在BC上,现她不想看到自己的影子,请你在图上画出她的活动范围.24. 下列三幅图是从哪个方向看图1这个棱柱得到的?25. 在某一时刻,操场上有三根测杆,如图所示,其中测杆AB的影子为BC,你能画出测杆MN的影子NP吗?若测杆XY的影子的顶端恰好落在点B处,且XY=MN,你能找出XY所在的位置吗?请将上述问题画在下面的示意图中,并简述画法.26. 已知一个直棱柱的三视图如图所示:(单位:cm).请在俯视图的虚线框内注上符合的数据.27. 用小立方体搭成一个几何体,使得它的正视图和左视图如图所示,这样的几何体只有一种吗?最少需要多少个小立方块?最多需要多少个小立方块?。

2019届中考数学专题复习 投影与视图(讲义及答案)

2019届中考数学专题复习   投影与视图(讲义及答案)

2019届中考数学专题复习投影与视图(讲义及答案)投影与视图(讲义)知识点睛1.投影(1)投影用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的,照射光线叫做,投影所在的平面叫做.(2)平行投影与中心投影①由平行光线形成的投影叫做投影,比如物体在太阳光照射下形成的影子叫做平行投影;②由同一点(点光源)发出的光线形成的投影叫做投影,比如物体在灯泡发出的光照射下形成的影子就是中心投影.注:太阳光线可以看成平行光线,探照灯、手电筒、路灯和台灯的光线可以看成是由同一点发出的光线.(3)正投影平行投影中,投影线垂直于投影面产生的投影叫做.在实际制图中,经常应用正投影.等高物体垂直于地面放置时,同一时刻,太阳光下,它们的影子一样长.等长物体平行于地面放置时,同一时刻,太阳光下,它们的影子一样长.太阳光下,不同时刻,同一物体的影子长度不同,而且影子的方向也在改变.2.三视图(1)当我们从某一方向观察一个物体时,所看到的平面图形叫做物体的一个.(2)对一个物体在三个投影面内进行正投影,在正面内得到的由前向后观察物体的视图,叫做;在水平面内得到的由上向下观察物体的视图,叫做;在侧面内得到的由左向右观察物体的视图,叫做.(3)画三视图时,三个视图都要放在正确的位置,并且注意主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.(4)画图时规定:看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.精讲精练1.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.2.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影可能是(填写序号).①②③④3.圆桌面(桌面中间有一个直径为0.4 m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m,桌面离地面 1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是()m2.A.0.324πB.0.288πC.1.08πD.0.72π4. 下列立体图形中,俯视图是正方形的是()A B CD 5. 下列几何体中,主视图和俯视图都为矩形的是()A B C D6. 一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图所示,则此圆柱体钢块的左视图是( )俯视图A BCD7. 如图,图 1 是一个底面为正方形的直棱柱,现将图 1 切割成图 2 的几何体,则图 2 的俯视图是( )图 1 图 2A .B .C .D .8. 从一个边长为 3 cm 的大立方体挖去一个边长为1 cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )A B C D9. 一个正棱柱的俯视图和左视图如图所示,则其主视图为( )俯视图左视图ABD10. 如图所示,该几何体的俯视图是(A .B .C .D .11.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是( )AB CD12. 下列几何体是由 4 个相同的小正方体搭成的,其中主视图和左视图相同的是( )A B C D13. 如图是由 5 个相同的小正方体构成的几何体,其左视图是( )正面A BCD14. 体,其主视图是( )A .B .C .D .15.【参考答案】知识点睛1. (1)投影;投影线;投影面.(2)①平行;②中心.(3)正投影.2. (1)视图;(2)主视图;俯视图;左视图.精讲精练1. A2. ②③④3.D4. B5. B6. C7. C8. C9.D10.C11.C12.C13.C14.B15.16.。

2019年春人教版初三数学中考专题复习_投影与视图_单元测试题(含精品解析)

2019年春人教版初三数学中考专题复习_投影与视图_单元测试题(含精品解析)
【解析】 由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目 分别为3,2.据此可画出图形. 24. 【答案】 解:作图如下:
【解析】 主视图从左往右3列正方形的个数依次为4,3,1;视图从左往右3列正方形的个数依次为3,4,1.
25. 【答案】 解:(1)5个; (2)������表 = 5 × 6������2 ‒ 10������2 = 20������2. 【解析】 (1)根据三视图可得,俯视图中有一个正方体与下面四个正方体重叠了,故该几何体共有5个正方体; (2)该正方体的边长为������,根据正方体表面积公式计算.注意应去掉1������个正方形的面积. 26. 【答案】 解:
D.容纳量大
A.
B.
C.
D.
7. 如图是某几何体的三视图及相关数据,则判断正确的是( )
A.������2 + ������2 = ������2 C.������2 + ������2 = ������2
B.������2 + ������2 = 4������2 D.������2 + 4������2 = ������2
19. 数学课上,小林同学用������个小立方块搭成一个几何体,从三个方向看到的图形如图所示,则������的值是 ________.
20. 如图,小明从路灯下������处,向前走了5米到达������处,行走过程中,他的影子将会(只填序号) ________.①越来越长,②越来越短,③长度不变. 在������处发现自己在地面上的影子长������������是2米,如果小明的身高为1.7米,那么路灯离地面的高度������������是 ________米.

2019年人教版中考投影与视图专项练习(PDF版 含解析)

2019年人教版中考投影与视图专项练习(PDF版 含解析)

投影与视图一.选择题(共6小题)1.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.2.下列哪种影子不是中心投影()A.皮影戏中的影子B.晚上在房间内墙上的手影C.舞厅中霓红灯形成的影子D.太阳光下林荫道上的树影3.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最多有()A.12个B.10个C.8个D.6个4.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长5.如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A、B两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A处监控探头观测到的区域.要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是()A.E处B.F处C.G处D.H处6.如图是由4个大小相同的立方体组成的几何体,它的主视图是()A.B.C.D.二.填空题(共7小题)7.已知一个几何体的三视图如图所示,这个几何体是.8.已知一个几何体的三视图如图所示,则该几何体是.9.如图是几个正方体所组成的几何体从上面看到的形状图,小正方形中的数字表示该位置小正方体的个数.请画出这个几何体从正面看和从左面看到的形状图.10.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.11.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于.(填写“平行投影”或“中心投影”)12.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是.13.一个由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有种.三.解答题(共11小题)14.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)15.一个几何体的三视图如图所示.(1)写出这个几何体的名称;(2)求这个几何体侧面展开图的周长和面积;16.如图是用完全相同的小正方体搭成的几何体主视图和左视图.(1)请在方格中画出它的俯视图(至少画三个);(2)若要搭成这样的几何体,最少需要块小正方体,最多需要块小正方体.17.一个几何体由大小相同的小立方块所搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请画出从正面和从左面看到的这个几何体的形状图.18.把边长为2厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加个小正方体.19.如图是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数.请画出这个几何体的主视图和左视图.20.作图题图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.21.画出下列几何体的三种视图.22.如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称,并补画出第三种视图(要求写出视图名称,标注相关尺寸).23.如图,由六个棱长为1cm的小正方体组成一个几何体.(1)分别画出这个几何体的主视图、左视图、俯视图.(2)该几何体的表面积是cm2.24.作图与推理:如图1,是由一些大小相同的小正方体组合成的简单几何体(1)图1中有块小正方体;(2)该几何体的主视图如图2所示,请在方格纸中分别画出它的左视图和俯视图.投影与视图参考答案与试题解析一.选择题(共6小题)1.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是两个矩形可判断出该几何体为.故选:D.2.【分析】根据中心投影的性质,可知中心投影的光源是灯光,从而可以解答本题.【解答】解:∵皮影戏中的影子,晚上在房间内墙上的手影,舞厅中霓红灯形成的影子,它们的光源都是灯光,故它们都是中心投影,故选项A、B、C不符合题意,太阳光下林荫道上的树影的光源是太阳光,这是平行投影,故选项D符合题意,故选:D.3.【分析】由主视图和左视图确定俯视图的形状,再判断最多的正方体的个数.【解答】解:由主视图和左视图可确定所需正方体个数最多时俯视图为:则组成这个几何体的小正方体最多有10个.故选:B.4.【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【解答】解:当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐边长,故选:A.5.【分析】根据各选项安装位置判断能否覆盖所有空白部分即可.【解答】解:如图,A、若安装在E处,仍有区域:四边形MGNS和△PFI监控不到,此选项错误;B、若安装在F处,仍有区域:△ERW监控不到,此选项错误;C、若安装在G处,仍有区域:四边形QEWK监控不到,此选项错误;D、若安装在H处,所有空白区域均能监控,此选项正确;故选:D.6.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:A.二.填空题(共7小题)7.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由该几何体的三视图知,这个几何体是正三棱柱,故答案为:正三棱柱.8.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.【解答】解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故答案为:圆柱.9.【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,3,2;从左面看有3列,每列小正方形数目分别为3,2,3,据此可画出图形.【解答】解:从正面看,如图所示:从左面看,如图所示:10.【分析】根据俯视图和左视图可知,该几何体共两层,底层有9个正方体,上层中间一行有正方体,若使主视图为轴对称图形可使中间一行、中间一列有一个小正方体即可.【解答】解:如图所示,注:答案不唯一.11.【分析】根据中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影,进而判断即可.【解答】解:广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于中心投影.故答案为:中心投影.12.【分析】由2个视图是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么可得该几何体是三棱柱,由三视图知,三棱柱的正面的高是3,根据三棱柱的体积公式得到三角形的底,根据三角形公式列式计算即可.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的正面是高为3的三角形,∵这个几何体的体积是24,∴三角形的底为=8,∴它的主视图的面积=×8×3=12,故答案为:12.13.【分析】由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.根据俯视图即可解决问题.【解答】解:由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.∵由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,∴A为1,B为2,C为2或A为2,B为2,C为1或A为2,B为1,C为2,共三种情形,故答案为3.三.解答题(共11小题)14.【分析】读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,2;从上面看有3列,每列小正方形数目分别为1,3,2,依此画出图形即可.【解答】解:三视图如下:15.【分析】(1)由常见几何体的三视图可得该几何体为圆锥;(2)根据三视图知圆锥的底面圆的直径为12、半径为6,高为8,得出母线长为10,再根据扇形的弧长和面积公式可得答案.【解答】解:(1)由三视图可知,该几何体为圆锥;(2)由三视图数据知圆锥的底面圆的直径为12、半径为6,高为8,则母线长为=10,所以侧面展开图的周长为2π•6+20=20+12π,面积为•(2π•6)•10=60π.16.【分析】(1)依据主视图以及左视图,可得俯视图中有两行,上面一行的最左边和最右边各有3块,中间一列至少有1块,下面一行的最左边或最右边至少有2块;(2)依据俯视图的情况,即可得到小正方体的数量最小值和最大值.【解答】解:(1)俯视图如下:(答案不唯一)(2)如图1或2,搭成这样的几何体最少需要9块,如图3,搭成这样的几何体最少需要12块,故答案为:9;12.17.【分析】根据三视图的定义结合图形可得.【解答】解:如图所示,从正面看从左面看18.【分析】(1)直接利用三视图的画法进而得出答案;(2)利用几何体的形状进而得出其表面积;(3)利用左视图和俯视图不变,得出可以添加的位置.【解答】解:(1)如图所示:(2)几何体表面积:2×2×5+2×2×4+2×2×5+2×2×12=104(平方厘米);(3)最多可以再添加2个小正方体.故答案为:2.19.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.据此可画出图形.【解答】解:如图,主视图及左视图如下:20.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,4,左视图有2列,每列小正方形数目分别为4,3.据此可画出图形.【解答】解:如图所示:21.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为1.3,2,左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方数形数目分别为1,2,1,据此可画出图形.【解答】解:如图所示:22.【分析】找到从正面和上面、左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:如图所示:23.【分析】(1)主视图有3列,每列小正方形数目分别为2,2,1,左视图有2列,每列小正方形数目分别为2,1,俯视图有3列,每列小正方数形数目分别为1,2,1.据此可画出图形.(2)根据三视图可求出几何体的表面积.【解答】解:(1)如图所示:(2)该几何体的表面积是:4×2+5×2+3×2=24(cm2),故答案为:24.24.【分析】(1)找到所有正方体的个数,让它们相加即可;(2)主视图有4列,每列小正方形数目分别为2,2,2,1;左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每列小正方形数目分别为2,2,1,1.【解答】解:(1)2×5+1=11(块).故图1中有11块小正方体;(2)如图所示:故答案为:11.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

投影与视图---三视图
1. 下列几何体中,主视图、左视图、俯视图完全相同的是( )
A.圆锥
B.六棱柱
C.球
D.四棱锥
2. 一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为( )
A.2π
B.12
π C.4π D.8π 3. 一个几何体的三视图如图所示,则这个几何体是( )
A.四棱锥
B.四棱柱
C.三棱锥
D.三棱柱
4. 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )
5. 已知某几何体的三视图(单位:cm),则该几何体的侧面积等于( )
A.12πcm2
B.15πcm2
C.24πcm2
D.30πcm2
6. 用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图所示,则该立方体的俯视图不可能是( )
7. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )
8. 由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的、和的形状,然后综合起来考虑整体形状.
9. 一个长、宽、高都互不相等的长方体的主视图、俯视图、左视图都是 .
10. 一座楼房的三种视图中,图可以反映出楼房的高度,
图可以反映出楼房的建筑面积.
11. 三视图都是正方形的几何体是.
12. 如图所给的三视图表示的几何体是.
13. 如图,由四个小立方体组成的几何体中,若每个小立方体的棱长都是1,则该几何体俯视图的面积是.
14. 如图,这是一个长方体的主视图和俯视图,由图示数据(单位:cm)可以得出该长方体的体积是cm3,表面积为.
15. 下图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为
(结果保留π).
16. 图甲是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是(把图乙中正确的立体图形的序号都填在横线上).
17. 三棱柱及其三视图如图所示,△EFG中,EG=12cm,∠EGF=30°,则AB的长为cm.
18. 如图是一个几何体的三视图(单位:厘米).
(1)写出这个几何体的名称;
(2)根据所示数据计算这个几何体的表面积;
(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D.请你求出这个线路的最短路程.
19. 如图所示,是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图.
(1)请你画出这个几何体的一种左视图;
(2)若组成几何体的小正方体的块数为n,请你写出n的所有可能值.
参考答案:
1—7 CCDAB DC
8. 前面上面左侧面
9. 长方形
10. 主视或左视俯视
11. 正方体
12. 圆锥
13. 3
14. 18 42cm2
15. 24π
16. ①②④
17. 6
18. 解:(1)圆锥;
(2)表面积S=S扇形+S圆=πrl+πr2=12π+4π=16π(平方厘米);(3)如图将圆锥侧面展开,线
段BD为所求的最短路程.由条件得,∠BAB′=120°,C为弧BB′的中点,所以BD=33(厘米).
19. 解:(1)左视图有答图所示的5种情形.
(2)n=8,9,10,11.。

相关文档
最新文档