探索规律练习题 (1)

合集下载

五年级数学探索规律试题答案及解析

五年级数学探索规律试题答案及解析

五年级数学探索规律试题答案及解析1.边长6米的正方形花坛,在它周围每隔2米摆一盆花(四角都摆),一共要摆()A.3盆 B.12盆 C.18盆【答案】B【解析】解:6÷2+1=3+1=4(盆)4×4﹣4=16﹣4=12(盆)答:一共要摆12盆.故选:B.【点评】此题主要考查植树问题中封闭图形中:棵数=每边棵数×4﹣4的计算应用.2.找规律填数字6.25,2.5,1,,0.16.【答案】0.4.【解析】根据数列中所给数据得出:数列中的数从左向右依次除以2.5;据此解答即可.解:6.25÷2.5=2.5;2.5÷2.5=1;1÷2.5=0.4;0.4÷2.5=0.16;所以数列为:6.25,2.5,1,0.4,0.16.故答案为:0.4.【点评】解决本题的关键是根据已知数据找出变化规律,再利用规律解答.3.如图,用小棒搭成六边形,搭一个六边形要6根小棒,搭二个六边形要11根小棒,搭三个六边形要16根小棒.(1)搭四个六边形要根小棒;(2)根据上面的规律,搭n个六边形要根小棒.【答案】21,5n+1.【解析】据题意可知,摆1个用6根;摆2个,有一条边是重复的,所以用2×6﹣1=11根,摆3个,有两条边是重复的,所以用3×6﹣2=16根,…那么摆n个,就有n﹣1条边是重复的,所以要用n×6﹣(n﹣1)=6n﹣n+1=5n+1根;摆4个六边形要5×4+1=21根小棒;然后再根据题意进一步解答即可.解:根据题意可得:摆1个用6根;摆2个,有一条边是重复的,所以用2×6﹣1=11根,摆3个,有两条边是重复的,所以用3×6﹣2=16根,拼4个,有3条边是重复的,要6×4﹣3=21根,…摆n个要用:n×6﹣(n﹣1)=6n﹣n+1=5n+1(根);答:拼4个六边形要21根小棒,拼n个六边形要用5n+1根小棒.故答案为:21,5n+1.【点评】根据题意与图形,找出摆n个图形的规律,然后再进一步解答即可.4.下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数是________。

四年级数学探索规律试题

四年级数学探索规律试题

四年级数学探索规律试题1.一串彩灯按照红、黄、蓝、红、黄、蓝、…的顺序排列,第23盏灯是色的.【答案】黄【解析】把每相邻的“红、黄、蓝”3盏灯看成一组,求出23盏里面有几个这样的一组,还余几盏,再根据余数判断.解:23÷3=7(组)…2(盏);余数是2,那么第23盏灯和每组的第2盏灯颜色相同,是黄色.故答案为:黄.【点评】解决这类问题往往是把重复出现的部分看成一组,先找出排列的周期性规律,再根据规律求解.2.找规律填数:0.6 1.3 2.724.5 18.5 6.5 .【答案】2.0,3.4,12.5,0.5.【解析】通过观察,发现第一行数从左到右依次递加,每相邻两数之间差为0.7,第二行数从左到右依次递减,每相邻两数之间差为6,据此解答即可.解:(1)1.3+0.7=2.0,2.7+0.7=3.4,即0.6 1.3 2.0 2.7 3.4.(2)18.5﹣6=12.5,6.5﹣6=0.5,即24.5 18.5 12.5 6.5 0.5.故答案为:2.0,3.4,12.5,0.5.【点评】此题属于找规律填数的问题,主要是找出规律,方可解答.3. 9×9+19=10099×99+199=10000999×999+1999=10000009999×9999+19999=?()A、10000000B、1000000000C、100000000【答案】C【解析】解:9×9+19=10099×99+199=10000999×999+1999=10000009999×9999+19999=100000000.故选:C.【分析】由所给算式得出:后面得数中的0的个数是前面算式中每个因数或加数里9的个数的2倍.所以9999×9999+19999每个因数或加数里有4个9,则0的个数是4×2=8个;则9999×9999+19999=100000000.解决本题的关键是找出规律,再根据规律解答.4.已知:3×4=12;3.3×3.4=11.22;3.33×3.34=11.1222;那么:3.3333×3.3334=________.【答案】11.11122222【解析】解:由分析可知,积由数字1和2组成,两个数字个数相同,当积为小数时,积的整数位数是两位,两位上都是1,小数位数是各因数的小数位数的2倍,综合来看,积中数字1和数字2个数相同;据此可知,所求算式的积小数点后面应该有4×2=8位,算上整数位上的两个1,共有10个数字组成,因此由5个1和5个2组成,因小数点前面有2个1,因此小数点后面还有3个1,还有5个2,所以:3.3333×3.3334=11.11122222.故答案为:11.11122222.【分析】观察已知的三个算式及结果,可以获得规律:算式是两个因数的积的形式,前一个因数都是由数字3组成,3的个数逐渐增多,整数位数只有一位;后一个因数除了最后一位上是4,其余和前一个因数相同;积由数字1和2组成,两个数字个数相同,当积为小数时,积的整数位数是两位,两位上都是1,小数位数是各因数的小数位数的2倍,综合来看,积中数字1和数字2个数相同;据此可知,所求算式的积小数点后面应该有4×2=8位,算上整数位上的两个1,共有10个数字组成,因此由5个1和5个2组成,因小数点前面有2个1,因此小数点后面还有3个1,还有5个2,据此可得结果为:11.11122222.5.用计算器计算,并找一找规律,再根据上面计算发现的规律直接写出下面两题的得数.(1)1+2+3+ (10)11+12+13+ (20)21+22+23+ (30)31+32+33+ (40)41+42+43+ (50)51+52+53+ (60)(2)33×34=333×334=3333×3334=33333×33334=333333×333334=3333333×3333334=【答案】(1)解:1+2+3+…+10=(1+10)×10÷2=55,11+12+13+…+20=(11+20)×10÷2=155,21+22+23+…+30=(21+30)×10÷2=255,31+32+33+…+40=(31+40)×10÷2=355,41+42+43+…+50=455,51+52+53+…+60=555(2)解:33×34=1122,333×334=111222,3333×3334=11112222,33333×33334=1111122222,333333×333334=111111222222,3333333×3333334=11111112222222【解析】解:(1)1+2+3+…+10=(1+10)×10÷2=55,11+12+13+…+20=(11+20)×10÷2=155,21+22+23+…+30=(21+30)×10÷2=255,31+32+33+…+40=(31+40)×10÷2=355,41+42+43+…+50=455,51+52+53+…+60=555;(2)33×34=1122,333×334=111222,3333×3334=11112222,33333×33334=1111122222,333333×333334=111111222222,3333333×3333334=11111112222222.【分析】(1)都是连续的10个自然数相加,用两端的数相加,乘数的个数除以2,通过计算发现规律:1+2+3+…+10=(1+10)×10÷2=55,11+12+13+…+20=(11+20)×10÷2=155,21+22+23+…+30=(21+30)×10÷2=255,31+32+33+…+40=(31+40)×10÷2=355,41+42+43+…+50=455,51+52+53+…+60=555;规律:连续的10个自然数相加,开头的数字个位为1,去掉1剩下的数字是几,计算结果就是几55.(2)连续的两个自然数相乘,一个因数只含有数字3,另一个因数多1,计算如下:33×34=1122,333×334=111222,3333×3334=11112222,33333×33334=1111122222,333333×333334=111111222222,3333333×3333334=11111112222222.规律:连续的两个自然数相乘,一个因数只含有数字3,另一个因数多1,结果是由数字1和2组成,开头是1,后面是2,1和2的个数和一个因数的数字的个数相同.抓住数字特点,找出规律,容易解决问题.6.下面给出几个十位数相同、个位数相加等于10的两位数乘法算式:11×19="209" 22×28=616 33×37="1221" 45×45=2025你能发现乘积与因数的关系吗?请根据这个规律试着直接写出下面几个算式乘积,再用笔算验算一下.51×59= 63×67= 72×78=84×86= 95×95= 91×99=【答案】解:51×59=3009 63×67=4221 72×78=561684×86=7224 95×95=9025 91×99=9009【解析】通过观察:11×19="209" 22×28=616 33×37="1221" 45×45=2025可知:十位上的数字相同,个位上的数字之和为“10”,即“头同尾合十”的乘法.做题时,可以把尾数相乘的积作为后两位数,把十位数乘本身加1的和的积作为前两位数.计算时利用规律把尾数相乘的积作为后两位数,把十位数乘本身加1的和的积作为前两位数是解答本题的关键.7.根据101×43=4343,202×43=8686,直接写出下面各题的积.58×101=27×101=69×101=34×202=23×202=23×303=【答案】解:①58×101=5858②27×101=2727③69×101=6969④34×202=6868⑤23×202=4646⑥23×303=6969【解析】101×43=4343的规律是43×1=43,然后答案写上4343,而202×43=8686的规律是43×2=86,然后答案写上8686,同样的道理23×303的变化规律是23×3=69,然后答案写上6969,只要看出规律,即可解决问题.认真观察规律,寻找出变化的特点,能使计算简便.8.计算.【答案】解:,=2×(),=2×(﹣),=【解析】分母是1.2.3…n的和,公式为n(n+1)÷2,则(),由此求解.先找到规律,再根据规律计算.9.利用规律计算(1)53﹣35=________(2)95﹣59=________(3)46×11=________(4)92×11=________(5)1+0×9=________ 2+1×9=________3+12×9=________9+12345678×9=________.【答案】(1)18(2)36(3)506(4)1012(5)1;11;111;111111111【解析】解;(1)53﹣35 =(5﹣3)×9=2×9=18(2)95﹣59=(9﹣5)×9=4×9=36(3)46×11==506(4)92×11==1012(5)根据规律:n+12345…(n﹣1)×9=1111…1总共n个1可得:1+0×9=12+1×9=113+12×9=1119+12345678×9=111111111.故答案为:18,36;506,1012,;1,111,111111111.【分析】(1)(2)53﹣35=(5﹣3)×9=2×9=18;95﹣59=(9﹣5)×9=4×9=36,规律就是:十位数字与个位数字之差乘9即可;(3)(4)两位数和11相乘的乘积特点是:百位数是该两位数的十位数字,十位上的数字是该两位数的十位数字与个位数字的和,个位数字就是该两位数的个位数字;(5)1+0×9=1,2+1×9=11,3+12×9=111,9+12345678×9=111111111,规律;n+12345…(n﹣1)×9=1111…1总共n个1,据此解答即可.10.按规律填数.先上下看看、左右看看、再想一想.(从上到下,从左到右填写)【答案】解:【解析】略。

人教版五年级数学上册 循环小数 用计算器探索规律(1) 课时练习题

人教版五年级数学上册 循环小数  用计算器探索规律(1) 课时练习题
第1课时 循环小数
1.我会填。
(1)一个数的( 小数 )部分,从某一位起,一个数字或者几
个数字依次不断( 重复)出现,这样的小数叫( 循环小数 )。
ቤተ መጻሕፍቲ ባይዱ
(2)一个循环小数的小数部分,依次不断重复出现的数字,
就是这个循环小数的( 循环节 )。写循环小数时,可以只写
第一个( 循环节 ),并在这个( 循环节 )的( 首 )位和
3÷11=0.27 100÷2=50 (2+7)×50=450 答:第100位上的数字是7,这100位数字的和是450。




4.列竖式计算,商是循环小数的用简便形式表示。
46.6÷11
.. =4.236
13.3÷9
. =1.47
5.在百米赛跑中,明明用时23秒,他每秒跑多少 米?(得数保留三位小数)
100÷23≈4.348(米) 答:他每秒跑4.348米。
6.【拓展题】3÷11的商的小数部分第100位上的数字是几? 这100位数字的和是多少?
末(
)位数字上面各记一个圆点。
(3)3.84保留整数约是( 4 ),保留三位小数约是( 3.848 )。
2.我会判断。(对的打“√”,错的打“×”) (1)3.784784784是循环小数。( × ) (2)0.34747……的循环节是47。( √ ) (3)循环小数是无限小数。(√ ) (4)2.98保留一位小数约是3.0。( √ )

探索规律练习题一

探索规律练习题一

1探索规律练习题一1.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。

A 、12+n B 、12-n C 、n 2D 、2+n2.观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n3.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.4.观察下列等式:221.4135-=⨯;222.5237-=⨯;223.6339-=⨯224.74311-=⨯;…………则第n (n 是正整数)个等式为________.5.有一列数1234251017--,,,,…,那么第7个数是 . 6.王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n 个“中”字形图案需 根火柴棒.7.观察数表根据表中数的排列规律,则字母A 所表示的数是____________. 8.图6是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.-9.如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________10.观察下列各式:11111323⎛⎫=- ⎪⨯⎝⎭,111135235⎛⎫=- ⎪⨯⎝⎭,111157257⎛⎫=- ⎪⨯⎝⎭,…,根据观察计算:1111133557(21)(21)n n ++++⨯⨯⨯-+= .(n 为正整数) 第1个图形第2个图形 第3个图形 第4个图形………第1个第2个第3个图6…… 1 1第1 1 1 1 1 1 1 1-1 1-1 1-1 6-16-1 2-1 3-1 5-1 4-1 4-1 3 6 10 15 15 5 A 20-1 1211.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 .12.下图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )13.如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2009次输出的结果为___________.14.将四张花纹面相同的扑克牌的花纹面都朝上,两张一叠放成两堆不变.若每次可任选一堆的最上面的一张翻看(看后不放回),并全部看完,则共有 种不同的翻牌方式. 15.(2009年山西省)下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为.16.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).17.观察下表,回答问题:第个图形中“△”的个数是“○”的个数的5倍.18.将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第 行第 列.探索规律练习题二 1.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从序号 1 2 3 … 图形 …(1) (2) (3)(1)(2)(3)………… (第13题)……n =1n =2n =3第1个第2个第3个3图1中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+312.一组按一定规律排列的式子:-2a ,52a ,-83a ,114a ,…,(a ≠0)则第n 个式子是_ _(n 为正整数).3.已知21(123...)(1)na n n ==+,,,,记112(1)b a =-,2122(1)(1)b a a =--,…,122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的表达式n b =_______.(用含n 的代数式表示)4.正整数按图2的规律排列.请写出第20行,第21列的数字 .5.)如图,菱形ABCD 的对角线长分别为b a 、,以菱形ABCD 各边的中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1的中点为顶点作菱形A 2B 2C 2D 2,……,如此下去,得到四边形A 2009B 2009C 2009D 2009的面积用含 b a 、的代数式表示为 .6.观察下面的一列单项式:x ,22x -,34x ,48x -,…根据你发现的规律,第7个单项式为 ;第n 个单项式为 .7.将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则 ①n = ;②第i 行第j 列的数为 (用i ,j 表示).第1列 第2列第3列 … 第n 列 第1行 12 3 … n第2行 1+n 2+n 3+n … n 2 第3行 12+n22+n32+n… n 3… … … … … …8.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= .9.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。

2020年小升初数学专题复习训练—数与代数:探索规律(1)(知识点总结)

2020年小升初数学专题复习训练—数与代数:探索规律(1)(知识点总结)

2020年小升初数学专题复习训练——数与代数探索规律(1)知识点复习一.算术中的规律【知识点归纳】在数学算式中探索规律,应认真观察算式的特点,再观察结果的特点,进而,根据规律填出这一类算式的结果.例如:1×1=1;11×11=121;111×111=12321;1111×1111=1234321;通过观察发现:每个算式中,两个因数各个数位上的数字都是1,且个数相同.积里的数字呈对称形式,且前半部分是从1开始,写至某个数字(此数即因数的位数),积的后半部分再顺次写出.①一个数乘11,101的规律一个数乘11的规律:可采用“两头一拉,中间相加”的方法计算.如:123×11=1353一个数乘101的规律:可采用“两两一位,隔位一加”的方法计算.如:58734×101=5932134②一个数乘5,15,25,125的规律一个数乘5,转化为一个数乘10,然后,再除以2.如:28×5=28×10÷2=280÷2=140这种情况可以概括为“添0求半”.根据同级运算可交换位置的性质,也可以先除以2,再乘10.如:28×5=28÷2×10=14×10=140.即“求半添0”的方法.一个数乘15,可分解为先用这个数乘10,再加上这个数乘5,乘5的方法同上.如:264×15=264×10+264×5=2640+264×10÷2=2640+2640÷2=2640+1320=3960.这种情况可以概括为“添0补半”一个数乘125,因为125×8=1000,所以,可将一个数乘125转化为先乘1000,再除以8,或先除以8,再乘1000.如:864×125=864×1000÷8=864000÷8=108000.【命题方向】二.数列中的规律【知识点归纳】按一定的次序排列的一列数,叫做数列.(1)规律蕴涵在相邻两数的差或倍数中.例如:1,2,3,4,5,6…相邻的差都为1;1,2,4,8,16,32…相邻的两数为2倍关系.(2)前后几项为一组,以组为单位找关系,便于找到规律.例如:1,0,0,1,1,0,0,1…从左到右,每四项为一组;1,2,3,5,8,13,21…规律为,从第三个数开始,每个数都是它前面两个数的和.(3)需将数列本身分解,通过对比,发现规律.例如,12,15,17,30,22,45,27,60…在这里,第1,3,5…项依次相差5,第2,4,6…项依次相差15.(4)相邻两数的关系中隐含着规律.例如,18,20,24,30,38,48,60…相邻两数依次差2,4,6,8,10,12…【命题方向】1,1,2,3,5,8,13,21,34,55,89,144,所以,从一对新生兔开始,一年后就变成了144对兔子.故答案为:144.点评:本题属于斐波那契数列,先找到兔子增加的规律,再根据规律求解.三.“式”的规律【知识点归纳】把一些算式排列在一起,从中发现规律,也是探索规律的重要内容.在探索“式”的规律时,要从组成“式”的要素中去探索.【命题方向】四.数与形结合的规律【知识点归纳】在探索数与形结合的规律时,一方面要考虑图形的对称(上下对称和左右对称),另一方面要考虑数的排列规律,通过数形结合、对应等方法,来解决问题.【命题方向】五.数表中的规律【知识点归纳】【命题方向】的长方形去框故答案为:84,20.点评:考查了数表中的规律,月历卡中不同的和的情况要一行一行的找,再相加进行解答.。

数学五年级上册《用计算器探索规律》练习题(含答案)

数学五年级上册《用计算器探索规律》练习题(含答案)

第三单元《小数除法》第5课时《用计算器探索规律》一、单选题1.(2020四下·英山期末)在乘法里,一个因数扩大4倍,另一个因数缩小4倍,积()。

A . 缩小2倍B . 扩大2倍C . 不变2.(2020四下·龙华期末)下列算式中与2.02×73的结果相等的是()A . 202×7.3B . 2020×0.73C . 20.2×0.73D . 20.2×7.33.(2020·遵义)数A (A ≠0)乘一个小数,积与数A 比较()。

A . 不一定B . 积大于数AC . 积小于数AD . 积等于数A4.甲×0.99=乙×1.01(甲、乙都不等于0),那么甲、乙的大小关系是()。

A . 甲>乙B . 甲<乙C . 甲=乙5.要使2.08÷( )>1.05,那么括号里的数应该是( )。

A . 大于1的数B . 等于1的数C . 小于1的数6.两个数相除的商是4.8,被除数和除数同时扩大100倍,商是()A . 4.8B . 48C . 480D . 4800二、判断题7.(2020·英山)A ÷B =6……5,将A ,B 同时扩大100倍,则商不变,余数也不变。

()8.(2020·郓城模拟)5620÷70=562÷7,因为562除以7的商是80,余数是2,所以5620除以70的商也是80,余数是2。

()9.(2020三下·郸城期中)两个数相乘,一个因数扩大4倍,另一个因数不变,积也会扩大4倍。

()10.判断对错9.27÷0.15>9.27×0.1511.400÷90=40÷9=4……4()三、填空题12.(2020·蚌埠)一个圆锥的底面半径扩大到原来的2倍,高缩小到原来的,它的体积扩大到原来的________倍.13.(2020三下·邳州期末)根据13×7=91,在下面横线上填上合适的数。

西师版四年级上册数学教学课件第七单元 三位数除以两位数的除法-第6课时 探索规律(1)

西师版四年级上册数学教学课件第七单元 三位数除以两位数的除法-第6课时 探索规律(1)

第二关:我会判断
12345679×9=111111111 12345679×18=222222222 12345679×45=555555555 根据这三个算式直接写出下列算式的积。
1234353637393×32373=3 1234656667696×65646=6 1234858687898×87828=8 1234959697999×98919=9
第三关:我会算
先计算左面的算式,你发现了什么规律?根据规律 直接写出右面算式的积。
11×11= 121
11×15= 165
11×12= 132
11×16= 176
11×13= 143
11×17= 187
11×14= 154
11×18= 198
用计算器计算,你发现了什么规律?
2424÷101=24 2424÷202=12 2424÷404=6 4848÷101=48 4848÷202=24 4848÷404=12 9696÷101= 96 9696÷202= 48 9696÷404= 24
竖着看:除数不变,被除01=24
×2
×2
4848÷101=48
2424÷202=12 2424÷404=6 4848÷202=24 4848÷404=12
9696÷101= 96 9696÷202= 48 9696÷404= 24
自选两个算式说一说! 返回
用计算器计算,你发现了什么规律?
用计算器计算,你发现了什么规律?
确定一个观察方向,思考:算式之间被除数、除数、 商有什么变化?
2424÷101=24 2424÷202=12 2424÷404=6
4848÷101=48 4848÷202=24 4848÷404=12

《用计算器探索规律》达标检测(1)

《用计算器探索规律》达标检测(1)

《用计算器探索规律》达标检测(1)一、用计算器,计算前四题,直接写出后三题的得数。

1×1=111×11=121111×111=123211111×1111=11111×11111=……111111111×111111111=二、用计算器,计算前四题,直接写出后三题的得数。

81÷9=88.2÷9=88.83÷9=88.884÷9=88.8885÷9=88.88886÷9=88.888887÷9=21世纪教育网版权所有三、用计算器计算,写出规律,找出结果。

111111111÷9=222222222÷18=333333333÷27=444444444÷36=555555555÷45=888888888÷72=四、用计算器计算前四题,写出规律,找出结果。

11×11 =12×11= 23×11=35×11=124×11 =2633×11 =3054×11=五、把所有的奇数依次一项,二项,三项,四项循环为:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),……,则第100个括号内的各数之和为多少?参考答案:一、用计算器,计算前四题,直接写出后三题的得数。

1111×1111=123432111111×11111=123454321……111111111×111111111=12345678987654321解析:通过观察,本题积的规律是:乘数和被乘数有n个1,乘积就以1为增量由1开始依次递增到n,再依次递减到1,所以1111×1111=1234321,11111×11111=123454321……111111111×111111111=12345678987654321。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探索规律练习题一
1.(2009年贵州黔东南州)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。

A 、12+n B 、12-n C 、n 2 D 、2+n 2.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( )
A .22n +
B .44n +
C .44n -
D .4n
3.(2009武汉)将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.
4.(2009重庆綦江)观察下列等式: 221.4135-=⨯; 222.5237-=⨯; 223.6339-=⨯
224.74311-=⨯;…………则第n (n 是正整数)个等式为________.
5.(2009年牡丹江市)有一列数1234
251017
--,,,,…,那么第7个数是 . 6.(2009年娄底)王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n 个“中”字形图案需 根火柴棒.
第1个图形
第2个图形
第3个图形
第4个图形

……
第1个
第2个
第3个
7.(2009恩施市)观察数表
根据表中数的排列规律,则字母A 所表示的数是____________. 8.(2009年益阳市)图6是一组有规律的图案,第1个 图案由4个基础图形
组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.
-
9.(2009年广州市)如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是
________
10.(2009肇庆)观察下列各式:
11111323⎛⎫
=- ⎪⨯⎝⎭
,111135235⎛⎫=- ⎪⨯⎝⎭,
111157257⎛⎫=- ⎪⨯⎝⎭
,…,根据观察计算:111
1
133557(21)(21)
n n +++
+
⨯⨯⨯-+= .(n
为正整数)
图6
(1)
(2) (3) …… 1 第
1 1 1 1 1 1 1
1-1-1
-6-6-2-3-5-4-4-3 6 10 15 15 5 A 20- 1
11.(2009年济宁市)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 . 12.(2009年广西梧州)下图是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为
s ,则s = . (用n 的代数式表示s )
13.(2009年咸宁市)如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2009次输出的结果为___________.
14.(2009年湖北荆州)将四张花纹面相同的扑克牌的花纹面都朝上,两张一叠放成两堆不变.若每次可任选一堆的最上面的一张翻看(看后不放回),并全部看完,则共有 种不同的翻牌方式.
……
n =1 n =2
n =3
(第13题)
第1个第2个第3个
15.(2009年山西省)下列图案是晋商大院窗格的一部分,其中“○”代表窗
纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .
16.(2009年广东省)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).
17.观察下表,回答问题:
第 个图形中“△”的个数是“○”的个数的5倍.
18.(2009年绵阳市)将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第 行第 列.
序号 1 2 3 …
图形

(1) (2) (3)
(1)
(2)
(3)
……
……
探索规律练习题二
1.(2009年河北)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图1中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A .13 = 3+10
B .25 = 9+16
C .36 = 15+21
D .49 = 18+31
2.(2009年广西钦州)一组按一定规律排列的式子:-2
a ,52a ,-83a ,11
4
a ,…,
(a ≠0)则第n 个式子是_ _(n 为正整数). 3.(2009
成都)已知2
1
(123...)(1)
n a n n =
=+,,,,记112(1)b a =-,2122(1)(1)b a a =--,…,122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的表达式n b =_______.(用含n 的代数式表示)
4.(2009年广西南宁)正整数按图2的规律排列.请写出第20行,第21列的数字 .
第一行 第二行 第三行 第四行 第五行 第一列 第二列
第三列 第四列 第五列 1 2 5 10 17 ... 4 3 6 11 18 ... 9 8 7 12 19 ... 16 15 14 13 20 (25)
24
23 22
21

……

2
4=1+3 9=3+6 16=6+10
图1

5.(2009年宜宾)如图,菱形ABCD 的对角线长分别为b a 、,以菱形ABCD 各边的中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1的中点为顶点作菱形A 2B 2C 2D 2,……,如此下去,得到四边形A 2009B 2009C 2009D 2009的面积用含 b a 、的代数式表示为 .
第20题图3
6.(2009年青海)观察下面的一列单项式:x ,22x -,34x ,48x -,…根据你发现的规律,第7个单项式为 ;第n 个单项式为 . 7.(2009年台州市)将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则
①n = ;②第i 行第j 列的数为 (用i ,j 表示).
第1列 第2列 第3列 … 第n 列
第1行 1 2
3 … n 第2行 1+n 2+n 3+n … n 2 第3行 12+n 22+n 32+n …
n 3 … … … … … …
8.(2009丽水市)如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12
的正三角形纸板后得到图②,然后沿同一底边
依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的2
1)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= .
9.(2009年四川省内江市)把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。

那么2007,2008,2009,2010这四个数中______________可能是剪出的纸片数。


① ② ③ ④。

相关文档
最新文档