高三数学单元练习题:概率与统计
高三数学单元测试《概率与统计》

(2)取得正品元件个数 的数学期望.
(参考数据:4个元件中有两个正品的概率为 ,三个正品的概率为 )
18.(本小题满分12分)已知10件产品中有3件是次品.
(1)任意取出3件产品作检验,求其中至少有1件是次品的概率;
(2)为了保证使3件次品全部检验出的概率超过0.6,最少应抽取几件产品作检验?
A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法
3.设随机变量ξ的概率分布列为P(ξ=k)= ,k=1,2,3,4……6,其中c为常数,则P
(ξ≤2)的值为()
A. B. C. D.
4.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()
高三数学单元测试《概率与统计》
一、选择题(本题每小题5分,共60分)
1.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()
A. B. C. D.
参考答案
一、选择题(每小题5分,共60分):
(1).D (2).B (3).B (4). C(5).D (6) B (7).B (8).C (9).C (10). B (11).C (12).C
二、填空题(每小题4分,共16分)
(13). (文) 5 (14). 24 (15). (p+0.1)a(16).
A. B. C. D.
5.一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是()
高三数学一轮复习 概率与统计(Ⅳ)单元练习题

高三数学一轮复习 概率与统计(Ⅳ)单元练习题第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。
1.(理)设12345k =,,,,,则5(2)x +的展开式中k x 的系数不可能是( )A .10B .40C .50D .80(文)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是 ( ) A .20 B .30 C .40 D .50 2.(理)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 ( ) A .96 B .48 C .24 D .0 (文)从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513B .12516 C .12518 D .12519 3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( )A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C . 甲是乙的充要条件D . 甲既不是乙的充分条件,也不是乙的必要条件 4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段。
如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是( )A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样5.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( ) A .17B .27 C .37D .476.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就( )A .越大B .越小C .无法判断D .以上都不对7.(理)抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,则在10次试验中,成功次数ξ的期望是( )A .310B .955C .980 D .950 (文)为了解某校高三学生的视力情况,随机 地抽查了该校100名高三学生的视力情况,得 到频率分布直方图,如右,由于不慎将部分数 据丢失,但知道前4组的频数成等比数列,后 6组的频数成等差数列,设最大频率为a ,视力 在4.6到5.0之间的学生数为b ,则a , b 的值分别为( )A .0,27,78B .0,27,83C .2.7,78D .2.7,838.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 ( )A .1B .2C .3D .49.一项研究要确定是否能够根据施肥量预测作物的产量。
高三数学练习题:概率与统计专项训练

高三数学练习题:概率与统计专项训练问题1:某班级中有30名男生和20名女生,班级展示某项艺术作品的学生是随机选取的。
如果从班级中随机抽取一个学生,那么他/她是男生的概率是多少?问题2:一个小组中有5名男学生和6名女学生,从中随机选择两名学生参加一个活动。
计算以下概率:a) 两名所选学生都是男学生的概率;b) 两名所选学生都是女学生的概率;c) 两名所选学生中,一名是男学生,一名是女学生的概率。
问题3:一位学生参加一场4道选择题的考试。
每道题目有4个选项,其中只有一个是正确的。
如果这位学生是随机作答问题,计算以下概率:a) 回答所有题目都正确的概率;b) 回答至少一道题目正确的概率;c) 回答所有题目都错误的概率。
问题4:一位装有10个红球和20个蓝球的罐子中随机抽取5个球。
计算以下概率:a) 抽取的5个球中有3个红球和2个蓝球的概率;b) 抽取的5个球中至少有3个红球的概率;c) 抽取的5个球中没有红球的概率。
问题5:一款手机有4种颜色:黑色、白色、金色和红色。
某家电商销售这款手机,其中40%的手机是黑色的,30%是白色的,20%是金色的,余下的是红色的。
如果从中随机选择一部手机,计算以下概率:a) 手机是黑色或白色的概率;b) 手机不是红色的概率。
问题6:一组学生参加了一场数学竞赛,其中50%的学生是男生,50%是女生。
这些学生中有60%是九年级的学生,40%是十年级的学生。
如果从中随机选择一名学生,计算以下概率:a) 学生是男生且是九年级的概率;b) 学生是女生或是十年级的概率。
问题7:一组数据包含10个互不相等的整数。
如果从中随机选择两个整数,计算以下概率:a) 两个整数之和是偶数的概率;b) 两个整数之差是正数的概率;c) 两个整数之积是负数的概率。
这些练习题旨在巩固概率与统计的相关概念,并提供实际问题的应用。
通过解答这些问题,学生可以加深对概率与统计的理解,同时提高解决实际问题的能力。
2023年高三数学概率与统计试题

2023年高三数学概率与统计试题2023年高三数学概率与统计试题已经公布,这份试题旨在考察学生们对于概率与统计知识的掌握情况,让我们一起来看看这份试题的内容。
一、选择题1. 10个人中有3个人喜欢吃苹果,那么在这10个人中随机选出2个人,他们都不喜欢吃苹果的概率是()。
A. 7/45B. 13/45C. 17/90D. 19/452. 一家餐厅在周末晚上的就餐人数服从正态分布,平均数为150人,标准差为15人。
若在周末晚上随机抽取一个就餐者,他的就餐人数大于160人的概率是()。
A. 0.53B. 0.47C. 0.07D. 0.93二、填空题1. 一枚正比例骰子抛掷8次,恰好得到两个点数3的概率是______。
2. 一件产品的质量符合正态分布N(75,16),则该产品质量在85分以上的概率是______。
三、解答题1. 在数列$\lbrace a_n \rbrace$中,$a_1=2$,$a_{n+1}=a_n+2n-1$,求数列$\lbrace a_n \rbrace$的前$n$项的和。
2. 一艘船舶在某一海域被困,船上人员的幸存率为$p$,如果收到了救援,幸存率将达到$q$。
一位救援人员发现,他可能也无法幸存。
他认为,如果他前往救援,他的生命价值为$w$。
如果他没有前往,他为救援人员提供了足够的信息,可能会导致3位救援人员前往但其中有一人无法幸存,并且他自己的生命价值为$a$。
求这位救援人员是否应该前往救援。
试题结束,如果你完成了这份试题,相信你已经对概率与统计有了更深入的认识。
高中数学:概率统计专题

高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。
高三数学《概率统计(文科)》练习

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
高三数学专项训练:概率与统计(理科)

高三数学专项训练:概率与统计(理科)1.在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:规定:当产品中的此种元素含量15≥毫克时为优质品.(1)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);(2)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数ξ的分布列及数学期望()Eξ.2.2013年6月“神舟”发射成功.这次发射过程共有四个值得关注的环节,即发射、实验、授课、返回.据统计,由于时间关系,某班每位同学收看这四个环节的直播的概率分别为34、13、12、23,并且各个环节的直播收看互不影响.(1)现有该班甲、乙、丙三名同学,求这3名同学至少有2名同学收看发射直播的概率;(2)若用X表示该班某一位同学收看的环节数,求X的分布列与期望3.在某次数学考试中,抽查了1000名学生的成绩,得到频率分布直方图如图所示,规定85分及其以上为优秀.(1)下表是这次抽查成绩的频数分布表,试求正整数a 、b 的值;区间 [75,80) [80,85) [85,90) [90,95) [95,100]人数50a350300b(2)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求抽取成绩为优秀的学生人数;(3)在根据(2)抽取的40名学生中,要随机选取2名学生参加座谈会,记其中成绩为优秀的人数为X ,求X 的分布列与数学期望(即均值).4.某校高一年级60名学生参加数学竞赛,成绩全部在40分至100分之间,现将成绩分成以下6段:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],据此绘制了如图所示的频率分布直方图.(1)求成绩在区间[80,90)的频率;(2)从成绩大于等于80分的学生中随机选3名学生,其中成绩在[]90,100内的学生人数为ξ,求ξ的分布列与均值.0.0150.0050.0205.某中学举行了一次“环保知识竞赛”活动,为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n )进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据)(1)求样本容量n 和频率分布直方图中x ,y 的值;(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设ξ表示所抽取的3名同学中得分在[80,90)的学生个数,求ξ的分布列及其数学期望6.本着健康、低碳的生活理念,租自行车骑游的人越来越多。
人教版高中数学概率与统计专项练习题(含答案)

人教版高中数学概率与统计专项练习题(含答案)考试范围:xxx ;考试时间:100分钟;命题人:xxx学校注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(共8题,每题5分,共40分)1.已知直线x +y +k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ |≥√33|AB ⃗⃗⃗⃗⃗ |,则k 的取值范围是 A.(√3,+∞)B.[√2,+∞)C.[√2,2√2)D.[√3,2√2)2.已知函数f (x )=(2a -1)x -12cos 2x -a (sin x +cos x )在[0,π2]上单调递增,则实数a 的取值范围为A.(-∞,13] B.[13,1] C.[0,+∞) D.[1,+∞)3.已知{a n }是等比数列,数列{b n }满足b n =log 2a n ,n ∈N *,且b 2+b 4=4,则a 3的值为A.1B.2C.4D.164.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F ,虚轴的上端点为B ,点P ,Q 在双曲线上,且点M (-2,1)为线段PQ 的中点,PQ ∥BF ,双曲线的离心率为e ,则e 2=A.√2+12B.√3+12C.√2+22D.√5+125.双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的渐近线与圆x 2+y 2-2x +15=0相切,则双曲线C 的离心率为A.√52B.√2C.√5D.√1726.已知函数f (x )=-x 2+a2,g (x )=x 2e x -a 2,若对任意的x 1∈[-12,1],存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2),则实数a 的取值范围是A.[14,e] B.(1+1e ,e]C.(14+1e ,e] D.[1,e]7.已知函数f (x )=(x 2-2x )sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,则M +m =A.4B.2C.1D.08.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.8第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(共6题,每题5分,共30分)9.(2x +x-1)5的展开式中常数项是 .10.已知函数f (x )=3sin(x -π3),若f (x 1)-f (x 2)=6,则f (x 1-x 2)的值为 .11.已知不等式ax 2+bx +c ≥0(a ≠0,a <b )对一切实数x 恒成立,当实数a ,b ,c 变化时,a+b+c b-a的最小值为 .12.已知数列{a n }的首项a 1=1,当n ≥2时,满足a n =a 1+12a 2+13a 3+…+1n-1a n-1,则通项a n = .13.已知等差数列{a n }的前n 项和为S n ,满足S 7=S 11,且a 1>0,则S n 最大时n 的值是 .14.(x 2+3x +2)5的展开式中含x 项的系数是 .三、解答题(共6题,共80分)15.设椭圆C :a 2+b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆的上顶点为点B ,点A 为椭圆C 上一点,且3F 1⃗⃗⃗ +F 1⃗⃗⃗ =0.(1)求椭圆C 的离心率;(2)若b =1,过点F 2的直线交椭圆C 于M ,N 两点,求线段MN 的中点P 的轨迹方程.16.设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (i)求数列{a 2n (c 2n -1)}的通项公式; (ii)求∑i=12na i c i (n ∈N *).17.已知椭圆C :x 2a2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=4√3,A (√3,-√132)是椭圆上一点.(1)求椭圆C 的标准方程和离心率e 的值;(2)若T 为椭圆C 上异于顶点的任一点,M ,N 分别为椭圆的右顶点和上顶点,直线TM 与y 轴交于点P ,直线TN 与x 轴交于点Q ,求证:|PN |·|QM |为定值.18.11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.19.在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2=1(a >1)的左、右焦点分别为F 1,F 2,P 是C上异于长轴端点的动点,∠F 1PF 2的角平分线交x 轴于点M .当P 在x 轴上的射影为F 2时,M 恰为OF 2的中点.(1)求C 的方程;(2)过点F2引PF2的垂线交直线l:x=2于点Q,试判断除点P外,直线PQ与C是否有其他公共点?说明理由.20.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD.(1)证明: BC⊥PB;(2)若PA⊥PD,PB=AB,求二面角A-PB-C的余弦值.参考答案1.C【解析】设AB 的中点为D ,则OD ⊥AB ,因为|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |≥√33|AB ⃗⃗⃗⃗⃗ |,所以|2OD ⃗⃗⃗⃗⃗⃗ |≥√33|AB ⃗⃗⃗⃗⃗ |,所以|AB ⃗⃗⃗⃗⃗ |≤2√3|OD ⃗⃗⃗⃗⃗⃗ |,所以|AB ⃗⃗⃗⃗⃗ |2≤12|OD ⃗⃗⃗⃗⃗⃗ |2.因为|OD ⃗⃗⃗⃗⃗⃗ |2+14|AB ⃗⃗⃗⃗⃗ |2=4,所以|OD ⃗⃗⃗⃗⃗⃗ |2≥1,因为直线x +y +k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,所以|OD⃗⃗⃗⃗⃗⃗ |2<4,所以1≤|OD ⃗⃗⃗⃗⃗⃗ |2<4,所以1≤(√2)2<4,因为k >0,所以√2≤k <2√2,所以k 的取值范围是[√2,2√2).【备注】无2.D【解析】本题主要考查函数的单调性与导数、不等式恒成立问题、三角函数的值域,以函数的单调性为载体,借助导数及三角函数,考查化归与转化能力、运算求解能力.因为函数f (x )在[0,π2]上单调递增,所以f '(x )=2a -1+sin 2x -a cos x +a sin x ≥0在[0,π2]上恒成立,即a ≥1-sin2x 2+sinx-cosx在[0,π2]上恒成立.设g (x )=1-sin2x2+sinx-cosx,x ∈[0,π2],则g (x )=(sinx-cosx)22+sinx-cosx ,设sin x -cos x =t ,则y =t 22+t =(t+2)2-4(t+2)+4t+2=t +2+4t+2-4,因为t =√2sin(x -π4),x ∈[0,π2],所以-1≤t ≤1,1≤t +2≤3,所以0≤y ≤1,所以a ≥1,故选D.【备注】【画龙点睛】分离参数是避免分类讨论的主要方法,换元法是化繁为简的主要方法. 3.C【解析】∵{a n }为等比数列,∴{b n }为等差数列,∴b 3=2,log 2a 3=2,∴a 3=4.故选C. 【备注】无 4.A【解析】解法一 由题意知F (c ,0),B (0,b ),则k PQ =k BF =-bc .设P (x 1,y 1),Q (x 2,y 2),则{x 12a 2-y 12b 2=1,x 22a 2-y 22b 2=1,两式相减,得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2).因为线段PQ 的中点为M (-2,1),所以x 1+x 2=-4,y 1+y 2=2,又k PQ =y 1-y 2x 1-x 2=-b c ,所以-bc =-4b 22a 2,整理得a 2=2bc ,所以a 4=4b 2c 2=4c 2(c 2-a 2) ,即4e 4-4e 2-1=0,得e 2=√2+12,故选A.解法二 由题意知F (c ,0),B (0,b ),则k BF =-bc .设直线PQ 的方程为y -1=k (x +2),即y =kx +2k +1,代入双曲线方程,得(b 2-a 2k 2)x 2-2a 2k (2k +1)x -a 2(2k +1)2-a 2b 2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4,所以2a 2k(2k+1)b 2-a 2k 2=-4.又k =k BF =-b c,所以2a 2·(-b c)[2·(-b c)+1]=-4b 2+4a 2(-b c )2,整理得a 2=2bc ,所以c 2-b 2-2bc =0,即(c b )2-2cb -1=0,得cb=√2+1,则e 2=c 2a 2=c 2c 2-b 2=(c b )2(cb)2-1=√2+1)2(√2+1)2-1=√2+12,故选A.【备注】无 5.C【解析】本题主要考查双曲线的几何性质、直线与圆的位置关系,考查的学科素养是理性思维,数学探索.不妨取双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线方程为y =ba x ,即bx -ay =0,化圆x 2+y 2-2x +15=0的方程为标准方程,得(x -1)2+y 2=45,则圆心坐标为(1,0),半径为2√55.由题意可得√a 2+b2=2√55,(直线与圆相切,则圆心到直线的距离等于圆的半径)即b 2a 2+b2=45,即c 2-a 2c 2=45,所以c 2=5a 2,(关键点拨:求双曲线的离心率的关键是求出关于a ,c 的关系式)所以双曲线C 的离心率e =ca =√5,故选C.【备注】无 6.B【解析】本题考查函数的值域、单调性和图象等,考查数形结合思想、化归与转化思想,考查考生的运算求解能力以及分析问题、解决问题的能力.由对任意的x 1∈[-12,1],存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2),可得函数f (x )在[-12,1]上的值域是g (x )在[-1,1]上的值域的某个子集的子集,g (x )值域的这个子集应具备这样的条件,即集合内的任何一个函数值,都对应函数g (x )在[-1,1]上唯一一个自变量的值,再数形结合,即可求解.当x ∈[-12,1]时,f (x )=-x 2+a2的值域是[a 2-1,a2],g'(x )=2x e x +x 2e x =x (x +2)e x ,则g (x )在(-1,0)上是减函数,在(0,1)上是增函数,g (-1)=1e −a2,g (0)=-a 2,g (1)=e-a 2,若对任意的x 1∈[-12,1],存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2),则{a 2-1>1e -a2,a 2≤e −a 2,所以1+1e <a ≤e,故选B.【备注】【解题关键】由对任意的x 1∈[-12,1],存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2)成立,正确得到函数f (x )和g (x )值域之间的关系是解决本题的关键. 【易错警示】理解存在唯一的x 2∈[-1,1]和存在x 2∈[-1,1]的不同. 7.A【解析】本题主要考查函数的性质.注意到f (x )=[(x -1)2-1]sin(x -1)+x +1,可令t =x -1,g (t )=(t 2-1)sin t +t ,则y =f (x )=g (t )+2,t ∈[-2,2].显然M =g (t )max +2,m =g (t )min +2.又g (t )为奇函数,则g (t )max +g (t )min =0,所以M +m =4,故选A.【备注】无 8.C【解析】本题主要考查韦恩图的应用与概率问题,考查考生的阅读理解能力,考查的核心素养是数学抽象、逻辑推理、数据分析.根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7.【备注】无 9.-161【解析】(2x +1x -1)5表示五个(2x +1x -1)相乘,则展开式中的常数项由三种情况产生,第一种是从五个(2x +1x -1)中分别抽取2x ,2x ,1x ,1x ,-1,则此时的常数项为C 52·C 32·22·(-1)=-120;第二种情况是从五个(2x +1x-1)中都抽取-1,则此时的常数项为(-1)5=-1;第三种情况是从五个(2x +1x -1)中分别抽取2x ,1x ,-1,-1,-1,则此时的常数项为C 51·C 41·21·(-1)3=-40,故展开式的常数项为-120-1-40=-161. 【备注】无 10.3√32【解析】本题主要考查诱导公式、三角函数的性质,考查考生的运算求解能力与分析问题、解决问题的能力.利用已知得到f (x 1)=3,f (x 2)=−3,然后解得x 1,x 2,最后利用诱导公式即可求得f (x 1-x 2)的值.由f (x 1)-f (x 2)=6并结合f (x )的解析式得f (x 1)=3,f (x 2)=-3,所以sin(x 1-π3)=1,sin(x 2-π3)=−1,则x 1-π3=2k 1π+π2,k 1∈Z ,x 2-π3=2k 2π-π2,k 2∈Z ,所以x 1-x 2=2(k 1-k 2)π+π,k 1,k 2∈Z .所以f (x 1-x 2)=3sin[2(k 1-k 2)π+π-π3]=3sin π3=3√32.【备注】【素养落地】求解时需将函数的解析式和f (x 1)-f (x 2)=6联系起来,利用三角函数的图象和性质找到解题的突破口,体现逻辑推理、数学运算等核心素养.【解后反思】解决本题的关键是根据f (x 1)-f (x 2)=6并结合三角函数的解析式及图象和性质得到f (x 1)=3,f (x 2)=−3,然后利用诱导公式进行化简求解即可. 11.3【解析】因为不等式ax 2+bx +c ≥0(a ≠0,a <b )对一切实数x 恒成立,所以0<a <b ,对于方程ax 2+bx +c =0,Δ=b 2-4ac ≤0,所以c ≥b 24a ,所以a+b+c b-a≥a+b+b 24ab-a=1+b a +14×(b a )2b a-1.令y =1+b a +14×(b a )2b a-1,t =ba ,则有14×t 2+(1-y )×t +1+y =0 ①,关于t 的方程①的判别式Δ'=(1-y )2-(1+y )≥0,解得y ≥3或y ≤0,由0<a <b ,可得ba >1,所以y >0,所以y ≥3,所以a+b+c b-a的最小值为3.【备注】无12.a n ={1(n =1),n 2(n ≥2).【解析】由题设a n =a 1+12a 2+13a 3+…+1n-1a n-1 (n ≥2),① 可得a n+1=a 1+12a 2+13a 3+…+1n-1a n-1+1n a n ,② 且a 2=a 1=1.②-①得a n+1-a n =1n a n (n ≥2),即a n+1=n+1na n (n ≥2),即a n+1a n=n+1n(n ≥2),所以当n ≥3时,a n =a 1×a2a 1×a3a 2×…×an a n-1=1×11×32×43×…×nn-1=n2,当n =2时,a 2=1=22,满足上式,当n =1时,a 1=1≠12,不满足上式,故所求a n ={1(n =1),n 2(n ≥2).【备注】上述解析中当n ≥3时,等式a n a n-1=nn-1才成立,使用累乘法求得数列通项公式a n 后,不仅需要检验a 1是否满足通项公式,还得检验a 2是否满足通项公式,这一点极易出错.本题也可利用构造法转化为等差数列求通项,把a n+1=n+1na n (n ≥2)化为a n+1n+1-ann =0(n ≥2),得到数列{a nn }是从第2项起公差为0的等差数列,注意首项不满足.13.9【解析】本题主要考查等差数列的前n 项和公式、性质.通解是根据S 7=S 11得7a 1+7×62d =11a 1+11×102d ,即2a 1+17d =0,再结合二次函数的知识判断出前9项和最大;优解是根据S 7=S 11得a 8+a 9+a 10+a 11=0,即可知前9项和最大. 通解 设等差数列{a n }的公差为d ,由S 7=S 11可得7a 1+7×62d =11a 1+11×102d ,即2a 1+17d =0,得到d =-217a 1,所以S n =na 1+n(n-1)2d =na 1+n(n-1)2×(-217a 1)=-a117(n-9)2+8117a 1,由a 1>0可知-a117<0.故当n =9时,S n 最大.优解 根据S 7=S 11可得a 8+a 9+a 10+a 11=0.由等差数列的性质可得a 9+a 10=0,由a 1>0可知a 9>0,a 10<0.当所有正数项相加时,S n 取得最大值,所以前9项和S 9最大.【备注】无14.240【解析】∵(x 2+3x +2)5=(x +1)5(x +2)5,∴展开式中含x 的项是C 54xC 5525+C 55C 54x 24=240x ,∴展开式中含x 项的系数是240. 【备注】无15.解:(1)设A (x 0,y 0),由题意知B (0,b ),F 1(-c ,0),由3F 1⃗⃗⃗ +F 1⃗⃗⃗ =0得{3x 0+4c =03y 0+b =0⇒{x 0=-4c3y 0=-b 3,即A (-43c ,-b3), 又A (x 0,y 0)在椭圆C :x 2a 2+y 2b 2=1上, ∴(-43c)2a 2+(-13b)2b 2=1,得ca =√22,即椭圆C 的离心率为e =√22.(2)由(1)知,e =√22.又b =1,a 2=b 2+c 2,∴a 2=2, ∴椭圆C 的方程为x 22+y 2=1.当线段MN 在x 轴上时,MN 的中点为坐标原点(0,0).当线段MN 不在x 轴上时,设直线MN 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2), 将直线MN 的方程代入椭圆方程x 22+y 2=1中,得(m 2+2)y 2+2my -1=0. ∵点F 2在椭圆内部,∴Δ>0,y 1+y 2=-2mm 2+2,则x 1+x 2=m (y 1+y 2)+2=4m 2+2,∴点P 的坐标(x ,y )满足x =2m 2+2,y =-mm 2+2, 消去m 得,x 2+2y 2-x =0(x ≠0).综上所述,点P 的轨迹方程为x 2+2y 2-x =0.【解析】本题主要考查椭圆的几何性质及直线与椭圆的位置关系,考查考生的逻辑推理能力、运算求解能力,以及数形结合思想,考查的核心素养是逻辑推理、直观想象、数学运算.(1)设A (x 0,y 0),由3F 1⃗⃗⃗ +F 1⃗⃗⃗ =0得A (-43c ,-b3),代入椭圆方程,即可得出结果;(2)由题设及(1)得出椭圆方程为x 22+y 2=1,分别讨论线段MN 在x 轴上,线段MN 不在x 轴上的情况,计算即可得出结果.【备注】【方法归纳】 求椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率的方法:(1)直接求出a ,c ,求解e ,已知标准方程或a ,c 易求时,可利用离心率公式e =ca 求解;(2)变用公式,整体求e ,如利用e =√c 2a2=√a 2-b 2a 2=√1-b 2a2求解;(3)利用公式的变形e =c a=2c 2a=|F 1F 2||MF 1|+|MF 2|(点M 在椭圆上,F 1,F 2为两焦点)求解;(4)建立a ,b ,c 的齐次关系式,将b 用a ,c 表示,两边同除以a 或a 2化为e 的关系式,进而求解.16.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意得{6q =6+2d,6q 2=12+4d,解得{d =3,q =2,故a n =4+(n-1)×3=3n+1,b n =6×2n-1=3×2n . 所以,{a n }的通项公式为a n =3n+1,{b n }的通项公式为b n =3×2n . (2)(i)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ii)∑i=12na i c i =∑i=12n[a i +a i (c i -1)] =∑i=12na i +∑i=1n a 2i (c 2i -1)=[2n×4+2n (2n -1)2×3]+∑i=1n(9×4i -1)=(3×22n-1+5×2n-1)+9×4(1-4n )1-4-n=27×22n-1+5×2n-1-n-12(n ∈N *).【解析】本题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.【解题思路】(1)先分别设出数列{a n }的公差与数列{b n }的公比,然后利用已知条件建立方程组,求出公差与公比,最后利用公式求解即可.(2)(i)将(1)中所求结论代入,即可求出相应的通项公式;(ii)分组求和,即可得出结果.【备注】【命题分析】数列在高考命题中较为灵活,可以以较为基础的形式呈现,也可以融入较多的创新问题,但最终都离不开数列通项公式的求解、数列的求和等.从最近几年的高考来看,数列问题最终通常可以转化为我们熟悉的等差数列或等比数列问题进行求解.17.(1)解法一 ∵|F 1F 2|=4√3,∴c =2√3,F 1(-2√3,0),F 2(2√3,0). 由椭圆的定义可得2a =√3√3)√132+√3-2√3)√132=√1214+√254=112+52=8,解得a =4,∴e =2√34=√32,b 2=16-12=4, ∴椭圆C 的标准方程为x 216+y 24=1.解法二 ∵|F 1F 2|=4√3,∴c =2√3,椭圆C 的左焦点为F 1(-2√3,0),故a 2-b 2=12, 又点 A (√3,-√132)在椭圆x 2a 2+y 2b 2=1上,则3b 2+12+134b 2=1,化简得4b 4+23b 2-156=0,得b 2=4,故a 2=16,∴e =2√34=√32,椭圆C 的标准方程为x 216+y 24=1.(2)由(1)知M (4,0),N (0,2),设椭圆上任一点T (x 0,y 0)(x 0≠±4且x 0≠0),则x 0216+y 024=1.直线TM :y =y 0x-4(x -4),令x =0,得y P =-4y 0x0-4,∴|PN |=|2+4y 0x0-4|.直线TN :y =y 0-2x 0x +2,令y =0,得x Q =-2xy 0-2,∴|QM |=|4+2x 0y 0-2|.|PN |·|QM |=|2+4y 0x 0-4|·|4+2x 0y 0-2|=|2x 0+4y 0-8x 0-4|·|2x 0+4y 0-8y 0-2|=4|x 02+4y 02+4x 0y 0-8x 0-16y 0+16x 0y 0-2x 0-4y 0+8|,由x 0216+y 024=1可得x 02+4y 02=16,代入上式得|PN |·|QM |=16, 故|PN |·|QM |为定值.【解析】本题考查椭圆的标准方程与几何性质、直线方程等基础知识,考查定值问题,考查推理论证能力、运算求解能力.(1)考虑两种方法解决;(2)分别先得到|PN |与|QM |的表达式,再结合条件证明即可【备注】【规律总结】在直线与椭圆相交背景下求面积的最值,定值、定点问题是高考的热点问题,将直线方程与椭圆方程联立后利用根与系数的关系以及点到直线的距离公式建立目标函数,将面积问题转化为求函数的最值问题是常规解法,应当熟练掌握,同时,需提高整体代换的意识,通过换元等方法优化和提高运算的能力18.(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.【解析】本题主要考查互斥事件的概率、相互独立事件的概率,意在考查考生的逻辑思维能力、数据获取与处理能力、运算求解能力,考查的核心素养是逻辑推理、数学建模、数学运算.(1)由题意知P (X =2)包括甲获胜的概率与乙获胜的概率,则利用互斥事件的概率公式求解即可;(2)利用相互独立事件与互斥事件的概率公式计算即可.【备注】【方法技巧】求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时先将所求事件转化成互斥事件的和,或者求其对立事件的概率,再用互斥事件的概率加法公式或对立事件的概率公式求解.19.(1)解法一 设|F 1F 2|=2c ,则c 2=a 2-1,不妨设P 在x 轴上方(如图).当P 在x 轴上的射影为F 2时,P (c ,1a),F 1(-c ,0),F 2(c ,0),所以直线PF 1的方程为x -2acy +c =0.因为|OF 2|=2|OM |,所以|OM |=|MF 2|=c2,所以点M 的坐标为(c2,0). 则点M 到直线PF 1的距离为d =|c 2+c|√1+4a 2c 2=2√1+4a 2c 2.因为PM 平分∠F 1PF 2,PF 2⊥F 1F 2,所以d =|MF 2|,即2√1+4a 2c2=c2,化简得a 2c 2=2,所以a 2(a 2-1)=2,解得a 2=2.所以C 的方程为x 22+y 2=1. 解法二 设|F 1F 2|=2c ,则c 2=a 2-1.当P 在x 轴上的射影为F 2时,因为|OF 2|=2|OM |,所以|OM |=c 2,所以|MF 1|=32c ,|MF 2|=12c . 在△PMF 1中,|MF 1|sin∠MPF 1=|PF 1|sin∠PMF 1,在△PMF 2中,|MF 2|sin∠MPF 2=|PF 2|sin∠PMF 2,因为∠PMF 1=180°-∠PMF 2,所以sin∠PMF 1=sin∠PMF 2,又∠MPF 1=∠MPF 2,所以|MF 1||MF 2|=|PF 1||PF 2|,故|PF 1|=3|PF 2|. 因为|PF 1|+|PF 2|=2a , 所以|PF 1|=32a ,|PF 2|=12a .由|PF 1|2=|PF 2|2+|F 1F 2|2,得(32a )2=(12a )2+(2c )2,化简得2c 2=a 2,所以2(a 2-1)=a 2,解得a 2=2, 所以C 的方程为x 22+y 2=1.解法三 设|F 1F 2|=2c ,则c 2=a 2-1.当点P 在x 轴上的射影为F 2时,如图,P (c ,±1a ).所以|PF 2|=1a.因为PF 2⊥F 1F 2,所以tan∠F 1PF 2=|F 1F 2||PF 2|=2ac .因为|OF 2|=2|OM |,所以|MF 2|=c 2,tan∠MPF 2=|MF 2||PF 2|=ac 2. 因为PM 平分∠F 1PF 2,所以tan∠F 1PF 2=2tan∠MPF 21-tan 2∠MPF 2,即2ac =2×ac 21-(ac 2)2,化简得a 2c 2=2,所以a 2(a 2-1)=2,解得a 2=2. 所以C 的方程为x 22+y 2=1.解法四 设|F 1F 2|=2c ,则c 2=a 2-1.当P 在x 轴上的射影为F 2时,P (c ,±1a),所以|PF 2|=1a.因为|OF 2|=2|OM |,所以|F 1M |=3|MF 2|,所以S △PF 1M =3S △PMF 2, 即12|PF 1|·|PM |sin∠F 1PM =32|PF 2|·|PM |sin∠F 2PM ,因为∠F 1PM =∠F 2PM ,所以|PF 1|=3|PF 2|. 又因为|PF 1|+|PF 2|=2a ,所以|PF 2|=a2, 所以a 2=1a ,解得a 2=2. 所以C 的方程为x 22+y 2=1.(2)除点P 外,直线PQ 与C 无其他公共点. 理由如下:如图,设P (x 0,y 0)(y 0≠0),则x 022+y 02=1,即y 02=1-x 022.设Q (2,y Q ),则Q ⃗ =(-1,-y Q ),P ⃗ =(1-x 0,-y 0),由QF 2⊥PF 2,得Q ⃗ ·P ⃗ =0, 所以x 0-1+y 0y Q =0,即y Q =1-x 0y 0.所以k PQ =1-x 0y 0-y 02-x 0=y 02+x 0-1(x0-2)y 0=(1-x 022)+(x 0-1)(x 0-2)y 0=-x02y 0,所以直线PQ 的方程为y -y 0=-x 02y 0(x -x 0),即2y 0y -2y 02=-x 0x +x 02,即x 0x +2y 0y -2=0. 由{x 0x +2y 0y-2=0x 2+2y 2=2,得(x 02+2y 02)y 2-4y 0y +(2-x 02)=0, 即y 2-2y 0y +y 02=0.因为Δ=(2y 0)2-4y 02=0,所以除点P 外,直线PQ 与C 无其他公共点.【解析】本题主要考查椭圆的标准方程、直线与圆锥曲线的位置关系等知识,考查运算求解能力、逻辑推理能力,考查数形结合思想、化归与转化思想等. 【备注】无20.(1)如图,取AD 的中点E ,连接PE ,BE ,BD ,∵PA =PD , ∴PE ⊥AD.∵底面ABCD 为菱形,且∠BAD =60°, ∴△ABD 为等边三角形, ∴BE ⊥AD.∵PE ∩BE =E , PE ,BE ⊂平面PBE , ∴AD ⊥平面PEB ,∴AD ⊥PB. ∵AD ∥BC ,∴BC ⊥PB. (2)设AB =2,则AB =PB =AD =2,BE =√3, ∵PA ⊥PD ,E 为AD 的中点, ∴PA =√2,PE =1,∴PE 2+BE 2=PB 2,∴PE ⊥BE.以E 为坐标原点,分别以EA ,EB ,EP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (1,0,0),B (0,√3,0) ,P (0,0,1),C (-2,√3,0),∴AB⃗⃗⃗⃗⃗ =(-1,√3,0),AP ⃗⃗⃗⃗⃗ =(-1,0,1),BP ⃗⃗⃗⃗⃗ =(0,-√3,1),BC ⃗⃗⃗⃗⃗ =(-2,0,0). 设平面PAB 的法向量为n 1=(x 1,y 1,z 1),∵{n 1·AB⃗⃗⃗⃗⃗ =0,n 1·AP⃗⃗⃗⃗⃗ =0,∴{-x 1+√3y 1=0,-x 1+z 1=0,令x 1=1得z 1=1,y 1=√33,∴n 1=(1,√33,1).设平面BPC 的法向量为n 2=(x 2,y 2,z 2),则{n 2·BP ⃗⃗⃗⃗⃗ =0,n 2·BC ⃗⃗⃗⃗⃗ =0,∴{-√3y 2+z 2=0,-2x 2=0, 令y 2=-1,得x 2=0,z 2=-√3,即n 2=(0,-1,-√3).∴n 1·n2|n 1|·|n 2|=-2√77. 设二面角A -PB -C 的平面角为θ,由图可知,θ为钝角, 则cos θ=-2√77.【解析】无【备注】【易错警示】 求二面角的值的易错点是:(1)求平面的法向量出错;(2)公式用错,把线面角的向量公式与二面角的向量公式搞混,导致结果出错.注意,二面角的取值范围为[0,π].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• a
• 8.某人5次上班途中所花的时间
(单位:分钟)分别为x,y,10, 11,9.已知这组数据的平均数为 10,方差为2,则|x-y|的值 为 ( )
• A.1 • C.研究要确定是否能够根据
• (Ⅱ)游泳组中,青年人、中年人、老年 人分别应抽取的人数。
• 19.(12分)(理)在某校举行的数
学竞赛中,全体参赛学生的竞 赛成绩近似服从正态分布。已 知成绩在90分以上(含90分) 的学生有12名。 • (Ⅰ)试问此次参赛学生总 数约为多少人?
• (Ⅱ)若该校计划奖励竞赛成绩排在前50 名的学生,试问设奖的分数线约为多少分? 可共查阅的(部分)标准正态分布表
• 4/9 •
• (文)甲、乙、丙、丁四位同学去书店购
买编号为1,2,3,4,…,10的 10本不同的书,为节约起见,他们约 定每人只购买其中5本,再互相传阅, 如果任两人均不能买全这10本书,任 3人均能买全这10本书,其中甲购买 数的号码是1,2,3,4,5,乙购 买书的号码事5,6,7,8,9,丙 购买书的号码是1,2,3,9,10 时,尉缭满足上述要求,丁应买的书的 号码是 .
• d
• 5.
在正方体上任选3个顶点 连成三角形,则所得的三角 形是直角非等腰三角形的概 率为( )
B.2/7 D.4/7
• A. 1/7 • C. 3/7 • c
•
6.在三维柱形图中,主对角
线上两个柱形高度的乘积与副 对角线上的两个柱形的高度的 乘积相差越大两个变量有关系 的可能性就 ( )
• A.96 • C.24 • b B.48 D.0
(文)从数字1,2,3,4,5,
中,随机抽取3个数字(允许重 复)组成一个三位数,其各位 数字之和等于9的概率为
( )
• d
• 3.甲:A1、A2是互斥事件;乙:
• • • • •
A1、A2是对立事件,那么 ( ) A.甲是乙的充分但不必要条件 B.甲是乙的必要但不充分条件 C. 甲是乙的充要条件 D. 甲既不是乙的充分条件,也不 是乙的必要条件 b
•
(1)0.20;0.60;1.0;0.9;0.50
• • • •
(2)第1列:正;┯;一 第2列;5;2;1;10 第3列:0.5;0.2;0.1;1 第4列:0.7;0.9;1
• (3)若该本地网营业区原来执行的电话收 费标准是:每3分钟为0.20元(不足3分钟 按3分钟计算)。问这五人这天的实际平均 通话费与原通话标准下算出的平均通话费 相比,是增多了还是减少了?增或减了多 少?
• 1/35
• 三、解答题:解答应写出文字说明、证明过 程或演算步骤(本大题共6个大题,共74分)。 • 17.(12分)
以下资料是一位销 售经理收集来的每年销售 额和销售经验年数的关系:
• 18.(12分)某单位最近组织了一次健身活 动,活动分为登山组和游泳组,且每个职工 至多参加了其中一组。在参加活动的职工中, 青年人占42.5%,中年人占47.5%,老年人 占10%。登山组的职工占参加活动总人数的 1/4,且该组中,青年人占50%,中年人占40 %,老年人占10%。为了了解各组不同的年 龄层次的职工对本次活动的满意程度,现用 分层抽样的方法从参加活动的全体职工中抽 取一个容量为200的样本。试确定 • (Ⅰ)游泳组中,青年人、中年人、老年 人分别所占的比例; •
• 12.
在半径为R的圆周上 任取A、B、C三点,试 问三角形ABC为锐角三 角形的概率( )
B. 1/4 D.4/5
• A.3/10 • C. 2/5 • b
•
第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)
。
• 13.(理)某校从8名教师中选
派4名教师同时去4个边远 地区支教(每地1人),其中甲 和乙不同去,甲和丙只能同 去或同不去,则不同的选派 方案共有 种。
高三数学单元练习题:概率与 统计
• 1.
(理) A.10 B.40 C.50 D.80
• c
(文)为了了解某地区高三学生的身体发
育情况,抽查了该地区100名年龄为 17.5岁-18岁的男生体重(kg) ,得到频 率分布直方图如下: • 根据上图可得这100名学生中体重在 〔56.5,64.5〕的学生人数是 ( )
• 600
• (文)某高校有甲、乙两个数学
建模兴趣班. 其中甲班有40人, 乙班50人. 现分析两个班的一次 考试成绩,算得甲班的平均成绩 是90分,乙班的平均成绩是81 分,则该校数学建模兴趣班的平 均成绩是 分.
• 85
• 14(理)
一个均匀小正方体的 六个面中,三个面上标以 数0,两个面上标以数1,一 个面上标以数2,将这个小 正方体抛掷2次,则向上的 数之积的数学期望 是 。
做出决策,如出海后遇到好天气, 可得收益6000元,如出海后天气变 坏将损失8000元,若不出海,无论 天气如何都将承担1000元损失费, 据气象部门的预测下月好天的概率 为0.6,天气变坏的概率为0.4,则该 渔船应选择_____________(填 “出海”或“不出海”).
• 出海
• (文)
两部不同的长篇小说 各由第一、二、三、四卷 组成,每卷1本,共8 本.将它们任意地排成一 排,左边4本恰好都属于同 一部小说的概率是 (结果用分数表示).
• (3)孩子为混合性的概率.
•
21.(12分)(理)袋中装有黑
球和白球共7个,从中任取2个球都是 白球的概率为现有甲、乙两人从袋 中轮流摸取1球,甲先取,乙后取, 然后甲再取……取后不放回,直到 两人中有一人取到白球时既终止, 每个球在每一次被取出的机会是等 可能的,用表示取球终止所需要的 取球次数. • (I)求袋中所有的白球的个数;
• • A.20 C.40 B.30 D.50
• c
•
2.(理)四棱锥的8条棱代表8种不同
的化工产品,有公共点的两条棱代表的 化工产品放在同一仓库是危险的,没有 公共顶点的两条棱所代表的化工产品放 在同一仓库是安全的,现打算用编号为 ①、②、③、④的4个仓库存放这8种化 工产品,那么安全存放的不同方法种数 为 ( )
•
22.(14分)在线段AD上任取两点B、 C,在B、C处折断此线段而得一折线,求 此折线能构成三角形的概率.
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
施肥量预测作物的产量。这里的 预报释变量是 ( ) • A.作物的产量 B.施肥量 • C.试验者 D.降雨量或其 他解释产量的变量 •a
• 10.在一个口袋中装有5个白球
和3个黑球,这些球除颜色外 完全相同,从中摸出3个球, 至少摸到2个黑球的概率等于
( • A. 2/7 • C. 3/7 • a ) B.3/8 D.9/28
•
15.一个社会调查机构就某地居民
的月收入调查了10000人,并根据所 得数据画了样本的频率分布直方图 (如下图)。为了分析居民的收入与 年龄、学历、职业等方面的关系,要 从这10000人中再用分层抽样方法抽 出100人作进一步调查,则在(元) 月收入段应抽出 人。
• 25
• 16.(理)某渔船要对下月是否出海
•
• (II)求随机变量的概率分布; •
• (III)求甲取到白球的概率.
•
每次抛掷一枚骰子 (六个面上分别标以数 字 • (I)连续抛掷2次, 求向上的数不同的概率;
(文) •
• (II)连续抛掷2次,求向上的数之和为6的 概率; •
• (III)连续抛掷5次,求向上的数为奇数恰 好出现3次的概率。
• 11 为了考察两个变量x和y之间的线性相关
性,甲、乙两位同学各自独立地做10次和 15次试验,并且利用线性回归方法,求得 回归直线分别为l1和l2,已知两个人在试 验中发现对变量x的观测数据的平均值都是 s,对变量y的观测数据的平均值都是t,那 么下列说法正确的是
• • • • • A.l1和l2有交点(s,t) B.l1与l2相交,但交点不一定是(s,t) C.l1与l2必定平行 D.l1与l2必定重合 a
• (文)某电信部门执行的新的电话收费标 准中,其中本地网营业区内的通话费标准: 前3分钟为0.20元(不足3分钟按3分钟计 算),以后的每分钟收0.10元(不足1分钟 按1分钟计算。)在一次实习作业中,某同 学调查了A、B、C、D、E五人某天拨打的 本地网营业区内的电话通话时间情况,其 原始数据如下表所示:
• • • • • • • • • ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( ) A.②、③都不能为系统抽样 B.②、④都不能为分层抽样 C.①、④都可能为系统抽样 D.①、③都可能为分层抽样
•
20.(12分)设人的某一特征(如眼睛 大小)是由他的一对基因决定的,以d表示显 性基因,r表示隐性基因,则具有dd基因的 人为纯显性,具有rr基因的人为纯隐性,具 有rd基因的人为混合性,孩子从父母身上各 得一个基因,假定父母都是混合性,求:(1) 孩子为纯显性的概率;
•(2)孩子为纯隐性的概率; • (2)孩子具有纯隐性 即具有rr基因的可能性 数为CC=1×1=1,故所 求概率为P2=.1/4
• • a A.越大 C.无法判断 B.越小 D.以上都不对
• 7.(理)抛掷两个骰子,至少有