11.3函数的幂级数展开
函数的幂级数展开

函数的幂级数展开幂级数具有良好性质。
如果一个函数在某一区间上能够表示成一个幂级数,将给理论研究和实际应用带来极大方便。
Taylor 级数由Taylor 公式,若函数f 在0x 的某个邻域上具有1+n 阶导数,那么在该邻域上成立)()(!)()(!2)())(()()(00)(200000x r x x n x f x x x f x x x f x f x f n n n +-++-''+-'+= , 其中1000)1()()!1())(()(++-+-+=n n n x x n x x x f x r θ(10<<θ)为Lagrange 余项。
因此可以用多项式n n x x n x f x x x f x x x f x f )(!)()(!2)())(()(00)(200000-++-''+-'+ 来近似)(x f 。
自然会想到,增加这种多项式的次数,就可能会增加近似的精确度。
基于这种思想,若函数f 在0x 的某个邻域),(0r x O 上任意阶可导,就可以构造幂级数∑∞=-000)()(!)(n n n x x n x f , 这一幂级数称为f 在0x 点的Taylor 级数,记为~)(x f ∑∞=-000)()(!)(n n n x x n x f 。
称!)(0)(k x f a k k = ( ,2,1,0=k ) 为f 在0x 点的Taylor 系数。
特别地,当00=x 时,常称∑∞=0)(!)0(n n n x n f 为f 的Maclaurin 级数。
假设函数f 在0x 的某个邻域),(0r x O 上可表示成幂级数∑∞=-=00)()(n n n x x a x f , ),(0r x O x ∈,即∑∞=-00)(n n n x x a 在该邻域上的和函数为f (x )。
根据幂级数的逐项可导性,f 必定在),(0r x O 上任意阶可导,且对一切∈k N +,成立∑∞=--+--=k n k n n k x x a k n n n x f )()1()1()(0)( 。
函数的幂级数展开式

函数的幂级数展开式幂级数展开式在数学和物理学等领域中非常重要,可以用来近似计算函数的值、求解微分方程、分析函数的性质等。
幂级数是指形如∑(an)(x-a)^n的级数,其中an是常数系数,x是变量,a是展开点。
幂级数展开式可以认为是多项式的无穷级数,通过将无穷多项式项相加得到。
一个函数的幂级数展开式的一般形式为:f(x) = ∑(an)(x-a)^n其中,an是函数f(x)在展开点a处的n阶导数值除以n的阶乘,即:an = f^(n)(a) / n!这里,f^(n)(a)表示函数f(x)在点a处的n阶导数。
幂级数展开式的收敛性需要通过收敛半径来判断。
幂级数展开式在展开点a的收敛半径r为:r = 1 / lim sup( ,an,^(1/n) )其中,lim sup是上极限。
当,x-a,<r时,幂级数展开式收敛;当,x-a,>r时,幂级数展开式发散;当,x-a,=r时,幂级数展开式的收敛情况需要进一步判断。
幂级数展开式的收敛半径决定了展开式的适用范围。
当,x-a,<r时,可以通过前n项的有限求和来近似计算函数的值,对于其他点则需要通过对幂级数进行求和计算。
幂级数展开式的求解可以利用泰勒级数或母函数法等方法。
泰勒级数是一种特殊的幂级数展开形式,其中展开点a为0,并且每一项的系数an 与函数在展开点处的导数值相关。
幂级数展开式在许多函数中都有应用,例如指数函数、三角函数、对数函数等。
通过幂级数展开式,可以将这些函数在其中一点的展开为无穷项的级数,在一定范围内进行近似计算。
总之,函数的幂级数展开式是一种重要的数学工具,可以用来近似计算函数的值、求解微分方程、分析函数的性质等。
幂级数展开式步骤

幂级数展开式步骤幂级数是一种将一个函数表示为幂的无穷和的方法。
它在数学和物理中有广泛的应用,可以用来计算各种函数的近似值。
幂级数展开式的步骤可以分为以下几个方面:1.确定展开点:2.确定展开系数:展开系数是幂级数中每一项的系数。
它们的值取决于函数在展开点处的导数。
一般来说,展开的次数越高,需要计算的导数就越多。
3.写出幂级数展开式:根据泰勒公式或麦克劳林公式,将函数表示为一系列幂次项的和。
幂级数的一般形式为:f(x)=c0+c1(x-a)+c2(x-a)^2+c3(x-a)^3+...。
4.确定展开范围:选取适当的展开范围使得幂级数能够在整个定义域上逼近原函数。
一般来说,展开范围是一个开区间,额外加上两个端点成为闭区间。
5.计算展开系数:计算展开系数需要用到函数在展开点处的导数。
对于泰勒公式,展开系数的计算公式为:cn = f^(n)(a)/n! ,其中f^(n)(a)表示函数在展开点处的n阶导数。
6.确定展开级数的收敛性:幂级数并不一定在整个定义域上都收敛,因此需要确定展开级数的收敛性范围。
一般来说,可以使用收敛判别法来确定幂级数的收敛性范围。
7.代入特定的x值计算近似值:将所得的幂级数展开式代入特定的x值,即可计算该x值下函数的近似值。
一般来说,展开级数的项数越多,近似值越接近真实值。
需要注意的是,幂级数展开是一种近似方法,其结果只在展开点附近有效。
在离展开点较远的位置,近似值的误差可能会较大。
此外,不是所有的函数都可以用幂级数展开,一些函数可能需要使用其他的级数展开方法。
在实际应用中,还需要关注展开级数的收敛情况和误差估计等问题。
函数的幂级数的展开与技巧

1引言函数的幂级数展开在高等数学中有着重要的地位,在研究幂级数的展开之前我们务必先研究一下泰勒级数,因为泰勒级数在幂级数的展开中有着重要的地位。
一般情况,我们用拉格朗日余项和柯西余项来讨论幂级数的展开,几乎不用积分型余项来讨论,今天我们的研究中就有着充分的体现。
2 泰勒级数泰勒定理指出:若函数f 在点0x 的某个邻域内存在直至n 阶的连续导数,则()()()()()()20''00002!x x f x f x f x x x f x -=+-+()()())00(!n nn x x f x R x n -+++ , (1)这里()x R n =()()nx x o 0-称为皮亚诺型余项。
如果增加条件“()x f 有1+n 阶连续导数”,那么()x R n 还可以写成三种形式 ()()()()1101()1!n n n R x fx x n ξ++=-+ (拉格朗日余项)()()1(1)001[()]1!n n n f x x x x x n θθ++=+--- (柯西余项)()()0(1)1!x n nx f t x t dt n +=-⎰, (积分型余项) 如果在(1)中抹去余项()x R n ,那么在0x 附近f 可用(1)式中右边的多项式来近似代替。
如果函数f 在0x x =处有任意阶的导数,这时称形式为:()()()()()()()()20000000"'2!!n n f x f x f x f x x x x x x x n +-+-++-+(2)的级数为函数f 在0x 的泰勒级数,对于级数(2)是否能够在0x 附近确切地表达f ,或说f 在0x 泰勒级数在0x 附近的和函数是否就是f ,这是我们现在要讨论的问题。
下面我们先看一个例子:例1[]1 由于函数()=x f 21,0,0,0,x e x x ⋅-⎧⎪≠⎨⎪=⎩在0x x =处的任何阶导数都为0,即()(),,2,1,00 ==n f n 所以f 在0x =处的泰勒级数为:++++⋅+n x n x x !!20002, 显然,它在()+∞∞-,上收敛,且其和函数()0=x S , 由此看到对一切0x =都有()()x S x f ≠,这说明具有任意阶导数的函数,其泰勒级数并不是都收敛于函数本身,只有()0lim =∞→x R n n时才能够。
函数展成幂级数的公式

函数展成幂级数的公式幂级数是一种特殊的无限级数形式,能够以函数的形式展开。
它在数学、物理和工程领域中具有重要的应用。
将一个函数表示为幂级数的形式,可以帮助我们在分析和计算中简化问题。
一个一般的幂级数的表示形式如下:\[f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots\]其中,\(f(x)\)是我们要展开的函数,\(a_0, a_1, a_2, a_3,\ldots\)是常数系数。
\(x\)是独立变量。
这里的\(x\)可以是实数或复数。
当幂级数展开时,我们通常选择一个特定的点作为展开点。
这个点通常是函数的一些特殊值,比如0或无穷大。
以0为展开点的幂级数称为麦克劳林级数,以无穷大为展开点的幂级数称为朗伯级数。
麦克劳林级数的形式如下:\[f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots\]其中,\(a_0, a_1, a_2, a_3, \ldots\)是常数系数,可以通过导数求值来确定。
朗伯级数的形式如下:\[f(x) = \ldots + \frac{a_{-3}}{x^3} + \frac{a_{-2}}{x^2} +\frac{a_{-1}}{x} + a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots\]其中,\(a_{-3}, a_{-2}, a_{-1}, a_0, a_1, a_2, a_3, \ldots\)是常数系数。
通过使用导数和积分的性质,我们可以确定函数\(f(x)\)的常数系数。
具体来说,如果我们知道函数在展开点的所有导数的值,我们可以使用泰勒公式来确定这些常数系数。
\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \ldots\]其中,\(f(a)\)表示函数在展开点\(a\)处的值,\(f'(a)\)表示函数在展开点\(a\)处的一阶导数,\(f''(a)\)表示函数在展开点\(a\)处的二阶导数,依此类推。
函数的幂级数的展开与技巧

1引言函数的幂级数展开在高等数学中有着重要的地位,在研究幂级数的展开之前我们务必先研究一下泰勒级数,因为泰勒级数在幂级数的展开中有着重要的地位。
一般情况,我们用拉格朗日余项和柯西余项来讨论幂级数的展开,几乎不用积分型余项来讨论,今天我们的研究中就有着充分的体现。
2 泰勒级数泰勒定理指出:若函数f 在点0x 的某个邻域内存在直至n 阶的连续导数,则()()()()()()20''00002!x x f x f x f x x x f x -=+-+()()())00(!n nn x x f x R x n -+++ , (1)这里()x R n =()()nx x o 0-称为皮亚诺型余项。
如果增加条件“()x f 有1+n 阶连续导数”,那么()x R n 还可以写成三种形式 ()()()()1101()1!n n n R x fx x n ξ++=-+ (拉格朗日余项)()()1(1)001[()]1!n n n f x x x x x n θθ++=+--- (柯西余项)()()0(1)1!x n nx f t x t dt n +=-⎰, (积分型余项) 如果在(1)中抹去余项()x R n ,那么在0x 附近f 可用(1)式中右边的多项式来近似代替。
如果函数f 在0x x =处有任意阶的导数,这时称形式为:()()()()()()()()20000000"'2!!n n f x f x f x f x x x x x x x n +-+-++-+(2)的级数为函数f 在0x 的泰勒级数,对于级数(2)是否能够在0x 附近确切地表达f ,或说f 在0x 泰勒级数在0x 附近的和函数是否就是f ,这是我们现在要讨论的问题。
下面我们先看一个例子:例1[]1 由于函数()=x f 21,0,0,0,x e x x ⋅-⎧⎪≠⎨⎪=⎩在0x x =处的任何阶导数都为0,即()(),,2,1,00 ==n f n 所以f 在0x =处的泰勒级数为:++++⋅+n x n x x !!20002, 显然,它在()+∞∞-,上收敛,且其和函数()0=x S , 由此看到对一切0x =都有()()x S x f ≠,这说明具有任意阶导数的函数,其泰勒级数并不是都收敛于函数本身,只有()0lim =∞→x R n n时才能够。
幂级数展开的多种方法

幂级数展开的多种方法摘要:本文通过举例论证的说明方法,系统地对幂级数展开的多种解法进行了详细地概括、分类及总结关键词:幂级数;泰勒展式;洛朗展式;展开在复变函数的学习过程中,我们涉及了对解析函数幂级数展开的学习.由课本的知识知道,任意一个具有非零收敛半径的幂级数在其收敛圆内收敛于一个解析函数.这个性质是很重要的,但在解析函数的研究上,幂级数之所以重要,还在于这个性质的逆命题也是成立的.即有下面的泰勒定理和洛朗定理:定理 1(泰勒定理)设()z f 在区域D 内解析,D a ∈,只要圆R a z K <-:含于D ,则()z f 在K 内能展成幂级数()()∑∞=-=0n nn a z c z f ,其中系数()()()()!211n a f d a f i c n n n =-=⎰Γ+ζζζπ.(ρ=-Γa z : R <<ρ0 n=0,1,2 )且展式唯一.定理2(洛朗定理)在圆环R a z r H <-<: (0≥r +∞≤R )内解析的函数()z f 必可展成双边幂级数()()∑∞-∞=-=n nna z c z f ,其中系数()()ζζζπd a f i c n n ⎰Γ+-=121 ( 2,1,0±±=n ρ=-Γa z : R r <<ρ) 且展式唯一.这两个定理的存在,使得在函数解析的范围内,我们可以通过幂级数展开的方法来更好的研究解析函数的性质.而这两个定理,也是我们后面研究幂级数展开的基础和前提.接下来,我们将着重开始讨论幂级数展开问题的多种解法: 1、直接法.即按照泰勒定理和洛朗定理中所给的幂级数展开的公式,直接将函数展开. 例1 求()z z f tan =在40π=z 点处的泰勒展开式.解:用公式 ()()!0n z f c n n = 求n c :;14tan 0==πc()2,24sec |tan 124==='=c z z ππ;();2!24,44tan 4sec 2|tan 224===="=c z z πππ ();38!316,164sec 4tan 4sec 22|'''tan 3424===⎪⎭⎫⎝⎛+==c z z ππππ 得 +⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=3243842421tan πππz z z z .例2 将()z z f sin =按z-1的幂展开.解:由题意可解得()()⎪⎭⎫⎝⎛+=12sin 1πk f n ⎪⎭⎫⎝⎛+=∴12sin !1πk n c n ()n n z n k z 1!12sin sin 0-⎪⎭⎫⎝⎛+=∴∑∞=π. 2、间接法.即利用已知公式,通过各种运算、变换来简化求导的方法.下面给出一些主要函数的泰勒展开式:(1)∑∞==+++++=-02111n n nz z z z z ()1<z . (2)()n n z z z z 11112-+++-=+ =()∑∞=-01n n n z ()1<z .(3)∑∞==+++++=02!!!21n nn zn z n z z z e ()+∞<z .(4)()()∑∞=-=02!21cos n nn n z z ()+∞<z .(5)()()∑∞=++-=012!121sin n n n n z z ()+∞<z .(6)()()+-+-+-+=+-nzz z z i k z nn k 13213221ln π (1<z ;2,1,0±±=k ;k=0时为主值支).(7)()()()()++--++-++=+n z n n z z z !11!21112ααααααα()1<z .2.1利用已知的展式.例3 求⎪⎭⎫ ⎝⎛+=+21i i i z 的展开式.解:因为i z +以i -和∞为支点,故其指定分支在1<z 内单值解析.i z +=211⎪⎭⎫ ⎝⎛+i z i =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛-+⋅+ 2!2121212211i z z i =⎪⎭⎫⎝⎛++-+ 2812121z z i i ()1<z .例4 求()z e z f z cos =在z=0点处的泰勒展式.解:因为z e z cos =()()()[]z i z i iz iz z e e e e e -+-+=+112121()()⎥⎦⎤⎢⎣⎡-++=∴∑∑∞=∞=00!1!121cos n nn n n n z z n i z n i z e =()()[]n nn n n z i z i n --+∑∞=11!1210 ()+∞<z由于i +1=ie 42πi ei 421π-=-代入上式有()n i n i n n nzz e e n z e ⎪⎪⎭⎫ ⎝⎛+=-∞=∑440!221cos ππ =()n n nz n n ∑∞=0!4cos 2π()+∞<z .2.2逐项求导、逐项求积法.例5 用逐项求导法求函数()311z -在1<z 内的泰勒展式.解:因为()311z -=()[]"--1121z ()1<z 所以用逐项求导法算得 ()311z -=()20012121-∞=∞=∑∑-="⎥⎦⎤⎢⎣⎡n n n n z n n z =()()n n z n n 12210++∑∞= ()1<z .例6 求()11ln +-=z z z f 在z=0点的泰勒展开式,其中()z f 是含条件()i f π=0的那个单值解析分支.解:()1111111111ln ++-='⎪⎭⎫ ⎝⎛+--+='⎪⎭⎫ ⎝⎛+-='z z z z z z z z z f=()()[]n n n nn nn nz z z ∑∑∑∞=+∞=∞=--=---01111上式两端在1<z 内沿0到z 积分,得:()[]n n n z z dz z z i z z ∑⎰∞=+--='⎪⎭⎫ ⎝⎛+-=-+-0101111ln 11ln π ()[]n n n z ni z z 11111ln10--+=+-∴+∞=∑π ()1<z . 2.3利用级数的乘除运算.例7 写出()z e z +1ln 的幂级数展式至含5z 项为止,其中()z +1ln 在0=z 点处的值为0.解:由题设条件可知 ()z +1ln 是主值支.又由 +++++=!!212n z z z e nz()+∞<z()()+-+-+-=+nzz z z z n n 1321ln 32 ()1<z 在公共收敛区域1<z 内作柯西乘积,得()z e z+1ln = ++++53240332z z z z ()1<z .例8 求z tan 在点0=z 的泰勒展式.分析:函数z tan 的奇点为z cos 的零点π⎪⎭⎫ ⎝⎛+=21k z k ( 2,1,0±±=k )而距原点最近的奇点为20π=z 21π-=-z .故函数z tan 在2π<z 内解析,且能展为z 的幂级数.解: +-+-=753!71!51!31sin z z z z z +-+-=642!61!41!211cos z z z z可以像多项式按幂级数排列用直式做除法那样分离常数.将分子、分母的幂级数做直式相除,缺项用0 代替,得到+++==531523cos sin tan z z z z z z (2π<z ). 2.4待定系数法.例9 设∑∞==--0211n nn z c z z ()1证明:()221≥+=--n c c c n n n . ()2求出展式的前5项. ()1 证明:利用待定系数法,有()() +++++--=n n z c z c z c c z z 2210211=()()() +--++--+-+--n n n n z c c c z c c c z c c c 212012010 比较两端同次幂的系数得0;;0;0;121012010=--=--=-=--n n n c c c c c c c c c21012010,,2,1,1--+==+====∴n n n c c c c c c c c c ()2≥n .()2解:1|11020=--==z z z c ()1121|11022021=--+='⎪⎭⎫⎝⎛--===z z z z z z z c 从而由()1依次得 211012=+=+=c c c , 312213=+=+=c c c ,523234=+=+=c c c , 即+++++=--4322532111z z z z zz . 当然,对于幂级数的展开还有其它多种方法,在这里就不一一赘述了. 最后值得一提的是用间接法解题时应注意的问题.我们通常是用已知函数的泰勒展式进行代入简化,这时应注意这些展式成立的范围与题目条件是否相吻合;其次,也应注意是在题目要求的点进行展开,展开的点的不同,最后的结果也会不同.参考文献:[1]钟玉泉.《复变函数论》.北京:高等教育出版社,2004.1. [2]钟玉泉.《复变函数学习指导书》.北京:高等教育出版社,2005.[3]李建林.《复变函数 积分变换 导教 导学 导考》.西安:西北工业大学出版社,2001.9.。
幂级数展开式常用公式 csdn

幂级数展开式常用公式一、概述幂级数展开是微积分中非常重要的一个概念,它在数学、物理、工程等领域都有着广泛的应用。
在实际问题中,往往需要根据实际情况来拟定幂级数展开式,以便进行进一步的分析和计算。
本文将介绍一些幂级数展开式的常用公式,以帮助读者更好地理解和应用这一重要的数学工具。
二、常见的幂级数展开式1. $e^x$的幂级数展开式可以利用泰勒公式得到$e^x$的幂级数展开式:$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$这个幂级数在实际计算中有着广泛的应用,特别是在微积分和概率论中。
2. $\sin x$的幂级数展开式$\sin x$函数的幂级数展开式为:$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$3. $\cos x$的幂级数展开式$\cos x$函数的幂级数展开式为:$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$4. $\ln(1 + x)$的幂级数展开式$\ln(1 + x)$函数的幂级数展开式为:$$\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$5. $(1 + x)^\alpha$的幂级数展开式当$\alpha$为实数时,$(1 + x)^\alpha$的幂级数展开式为:$$(1 + x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \cdots$$这个幂级数展开式在概率论和统计学中有着广泛的应用。