2012届中考数学一元一次不等式组复习课件34

合集下载

中考复习第8课时一元一次不等式组课件

中考复习第8课时一元一次不等式组课件

当 堂 检 测
► 检测考点1 不等式的概念及性质
1.[2012· 湖南] 已知a<b,下列式子不成立的是( D ) A.a+1<b+1 B.3a<3b 1 1 C.- a>- b 2 2 a b D.如果c<0,那么 c< c
考点聚焦
豫考探究
当堂检测
第8课时┃ 一元一次不等式(组)
► 检测考点2
表示出来.
考点聚焦
豫考探究
当堂检测
第8课时┃ 一元一次不等式(组)
变式题 [2012· 襄阳] 取值范围是( B ) A.a≤3 C.a<2
1+x>a, 若不等式组 有解,则a的 2x-4≤0
B.a<3 D.a≤2
考点聚焦
豫考探究
当堂检测
第8课时┃一元一次不等式(组)
► 热考二 利用不等式(组)解决日常生活中的实际问题
考点聚焦
豫考探究
当堂检测
第8课时┃ 一元一次不等式(组)
【归纳总结】 性质1 性质2 性质3 对称性 若a>b,则a± c > 若a>b,c>0,则ac b± c
不等 式的 基本 性质
> bc,c >
a bc,c
a
b c b c
若a>b,c<0,则ac < 若a>b,则b


a c
同向传递性 若a>b,b>c,则a >
第8课时 一元一次不等式(组)
第8课时┃ 一元一次不等式(组)
考 点 聚 焦பைடு நூலகம்
考点1 不等式的基本性质
1.若a>b,则下列式子不一定成立的是( D ) A.a+m>b+m B.a(m2+1)>b(m2+1) a b C.- <- D.a2>b2 2 2 2 2.已知关于x的不等式(m+1)x<2的解集为x> , m+ 1 则m的取值范围是( B ) A.m<0 C.m>0 B.m<-1 D.m>-1

中考数学专题复习课件 --- 第九讲不等式与不等式组

中考数学专题复习课件 --- 第九讲不等式与不等式组

7.(2010·湘潭中考)解不等式2(x-1)<x+1,并求它的非负整 数解. 【解析】原不等式可化为2x-x<1+2,∴x<3,
∴它的非负整数解为0,1,2.
5 2x 3 8.(2011·南京中考)解不等式组 x 1 x ,并写出不等式组 3 2
的整数解.
5 2x 3 ① , 【解析】 x 1 x 3 2 ②
政府补贴.农民田大伯到该商城购买了冰箱、彩电各一台,可
以享受多少元的补贴?
(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、 彩电共40台,且冰箱的数量不少于彩电数量的 5 . 若使商场获
6
利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最 大获利是多少?
【解析】(1)(2 420+1 980)×13%=572(元). (2)设冰箱采购x台,则彩电采购(40-x)台,根据题意得
甲: 7 当 时,租车费用为7×2 000+3×1 800=19 400(元); 甲: 4 所以,当 时,租车费用最便宜,费用为18 800元. 6 乙:
1.(2010·温州中考)某班级从文化用品市场购买了签字笔和 圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔 每支2元,圆珠笔每支1.5元,则其中签字笔购买了_____支. 【解析】设签字笔购买了x支,则购买圆珠笔(15-x)支,由题
3
表示出来.
【解析】去分母,得3(x-1)≤1+x,
去括号,得3x-3≤1+x,
移项,合并同类项,得2x≤4,
系数化为1,得x≤2.
把解集在数轴上表示出来如图所示:
1 2 x 1 5 ① 4.(2010 ·毕节中考)解不等式组 3x 2 , 并把解 1 <x ② 2 2 集在数轴上表示出来.

专题3.3一元一次不等式(组)含参问题八年级数学上册全章复习与专题突破讲与练(浙教版)[含答案]

专题3.3一元一次不等式(组)含参问题八年级数学上册全章复习与专题突破讲与练(浙教版)[含答案]

专题3.3 一元一次不等式(组)含参问题(12大类型)(全章知识梳理与考点分类讲解)第一部分【题型目录】【题型1】已知含参方程的解的正负性,求参数取值范围............................1;【题型2】已知含参一元一次不等式的解集,求参数取值范围........................2;【题型3】已知含参一元一次不等式整数解,求参数取值范围........................2;【题型4】已知含参一元一次不等式组有解,求参数取值范围........................2;【题型5】已知含参一元一次不等式组无解,求参数取值范围........................2;【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围......3;【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围......3;【题型8】已知含参一元一次不等式组解集,求参数值或取值范围.............3;【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围........4;【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围...4;【题型11】直通中考...........................................................5;【题型12】拓展延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】已知含参方程的解的正负性,求参数取值范围【例1】(23-24八年级下·陕西汉中·期末)1.关于x 的分式方程32211x mx x -=+++的解为负数,则m 的取值范围是( )A .0m <B .4m >-C .4m <-D .4m <-且5m ¹-【变式1】(20-21八年级下·江苏扬州·期中)2.已知关于x 的方程232x mx -=-的解是非负数,则m 的取值范围为 .【变式2】(23-24七年级下·贵州黔东南·阶段练习)3.若关于x 的方程528x a -=的解是非正数,则a 的取值范围是( )A .4a >-B .4a <-C .4a ³-D .4a £-【题型2】已知含参一元一次不等式的解集,求参数取值范围【例2】(23-24七年级下·全国·期中)4.已知关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,则a 的取值范围是( )A .5a £B .<5a C .3a £D .>5a 【变式1】(23-24七年级下·黑龙江齐齐哈尔·期末)5.如果关于x 的不等式(1)1a x -³解集为11x a³-,则a 的取值范围是 .【变式2】6.如果关于x 的不等式()11a x a +>+的解集为1x <,那么a 的取值范围是 .【题型3】已知含参一元一次不等式整数解,求参数取值范围【例3】(2024七年级下·江苏·专题练习)7.若关于x 的一元一次不等式1x m +£只有1个正整数解,则m 的取值范围是 .【变式1】(23-24八年级下·陕西宝鸡·期中)8.若关于x 的不等式57x m x +³的正整数解是1234、、、.则m 的取值范围为( )A .10m <B .8m ³C .810m ££D .810m £<【变式2】(23-24六年级下·上海浦东新·期末)9.若关于x 的不等式0x m -³的最小整数解是2x =,则m 的取值范围是⋯( )A .12m £<B .12m <£C .23m <£D .23m £<【题型4】已知含参一元一次不等式组有解,求参数取值范围【例4】(23-24七年级下·河南南阳·期末)10.已知关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,则实数m 的取值范围是( )A .3m >B .2m ≥C .1m <D .1m £-【变式1】(23-24七年级下·全国·单元测试)11.若不等式组12x x k <£ìí>î有解,则k 的取值范围是( )A .2k <B .2k ³C .1k <D .12k £<【变式2】(23-24七年级下·湖南衡阳·期中)12.关于x 的不等式组3284a x x a ->ìí+>î有解且每一个x 的值均不在26x -££的范围中,则a 的取值范围是 .【题型5】已知含参一元一次不等式组无解,求参数取值范围【例5】(23-24八年级下·陕西西安·期末)13.若关于x 的一元一次不等式组11340x xx a ì-³-ïíï->î无解,则a 的取值范围是 .【变式1】(23-24六年级下·上海杨浦·期末)14.若关于x 的不等式组62x x m m -<<ìí-<î无解,那么m 的取值范围是【变式2】(24-25八年级上·湖南长沙·开学考试)15.已知不等式组40329x a x x -<ìí-³-+î无解,则a 的取值范围是.【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围【例6】(24-25八年级上·湖南衡阳·开学考试)16.若关于x 的不等式组()()324122x x x m x ì-<-í-£-î,恰好有三个整数解,则m 的取值范围是 .【变式1】(22-23八年级下·四川达州·期中)17.若关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,则m 的取值范围是 .【变式2】(23-24八年级下·全国·单元测试)18.关于x 的不等式组()1023544133x x k x x k +ì+>ïïí+ï+>++ïî恰有三个整数解,则k 的取值范围是( )A .112k <£B .112k £<C .312k £<D .312k <£【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围【例7】(22-23七年级下·湖北武汉·阶段练习)19.如果关于x 的不等式组2030x m n x -³ìí-³î仅有四个整数解;1-、0、1、2,那么适合这个不等式组的整数m 、n 组成的有序实数对(),m n 最多共有( )A .4个B .6个C .8个D .9个【变式】(23-24七年级下·四川资阳·期末)20.已知关于x 的不等式组0217x a x -<ìí-³î至少有两个整数解,且存在以3,a ,6为边的三角形,则整数a 的值有个【题型8】已知含参一元一次不等式组解集,求参数值或取值范围【例8】(2024·湖北·模拟预测)21.若关于x 的一元一次不等式组63(1)51x x x m -+<-ìí->-î的解集是2x >,则m 的取值范围是( )A .3m >B .3m …C .3m <D .3m …【变式1】(23-24八年级下·全国·单元测试)22.若关于x 的不等式组220x a b x ->ìí->î的解集为11x -<<,则2019()a b +的值是( )A .1B .12C .1-D .12-【变式2】(22-23七年级下·江苏盐城·阶段练习)23.不等式组29612x x x k +>+ìí-<î的解集为2x <.则k 的取值范围为 .【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围【例9】(22-23八年级下·重庆忠县·期中)24.如果关于x 的不等式组441113(22m x x x ->ìïí-<+ïî有且仅有三个整数解,且关于x 的分式方程26122mx x x --=--有非负数解,则符合条件的所有整数m 的和为 .【变式1】(23-24七年级下·重庆北碚·期末)25.已知关于y 的分式方程52211a y y --=---解为非负整数,且关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,则所有满足条件的整数a 的和为( )A .6B .5C .9D .13【变式2】(22-23八年级下·江苏无锡·阶段练习)26.已知方程21144a a a +=--,且关于x 的不等式组x a x b>ìí£î只有2个整数解,那么b 的取值范围是( )A .13b -<£B .23b <£C .45b £<D .34b £<【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围【例10】(24-25八年级上·湖南长沙·开学考试)27.若存在一个整数m ,使得关于,x y 的方程组432173453x y m x y m +=+ìí+=-î的解满足1x y +£,且让不等式5041x m x ->ìí-<-î只有3个整数解,则满足条件的所有整数m 的和是( )A .12B .6C .—14D .—15【变式】(23-24七年级下·山东威海·期末)28.已知关于x ,y 的方程组3454331x y m x y m +=-ìí+=+î的解满足0,0x y x y +<->,求m 的取值范围.第三部分【中考链接与拓展延伸】【题型11】直通中考【例1】(2024·四川南充·中考真题)29.若关于x 的不等式组2151x x m -<ìí<+î的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m £【例2】(2023·四川眉山·中考真题)30.关于x 的不等式组35241x m x x >+ìí-<+î的整数解仅有4个,则m 的取值范围是( )A .54m -£<-B .54m -<£-C .43m -£<-D .43m -<£-【题型12】拓展延伸【例1】(22-23七年级下·重庆江津·期中)31.已知关于x 、y 的方程组3453x y ax y a +=-ìí-=î,下列结论中正确的个数有( )① 当3a =时,41x y =ìí=î是方程组的解;② 不存在一个实数a ,使得x 、y 的值互为相反数;③ 当方程组的解是52x y =ìí=-î时,方程组()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïî的解为3272m n ì=ïïíï=ïî;④ x 、y 都为自然数的解有3对.A .1个B .2个C .3个D .4个【例2】(23-24九年级上·重庆九龙坡·阶段练习)32.关于x 的分式方程23133a x x x -+=++的解为整数,且关于y 的不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,则所有满足条件的整数a 的值之和为 .1.D【分析】本题考查了分式方程的解,分式方程的解为负数的条件是有解且解为负数,解题的关键是能正确解分式方程并理解分式方程的解为负数的条件为有解且解为负数.【详解】解:322,11x mx x -=+++方程两边同乘以()1x +得:()3221,x x m -=++解得:4,x m =+∵关于x 的分式方程32211x mx x -=+++的解为负数,10x \+¹且 0,x <即410m ++¹且40,m +<解得:4m <-且 5.m ¹-故选:D .2.6m £且4m ¹##4m ¹且6m £【分析】本题考查了分式方程的解,解不等式等知识,首先求出关于x 的方程232x mx -=-的解,然后根据解是非负数,再解不等式求出m 的取值范围..【详解】解:关于x 的方程232x mx -=-得6x m =-+,20x -¹Q ,2x \¹,Q 方程的解是非负数,60m \-+³且62m -+¹,解这个不等式得6m £且4m ¹.故答案为:6m £且4m ¹.3.D【分析】本题考查了解一元一次方程和解一元一次不等式,熟练掌握解方程和不等式的方法是解题的关键.先解一元一次方程,再根据题意构建一元一次不等式,最后解不等式即可.【详解】∵528x a -=,∴825ax +=,∵关于x 的方程528x a -=的解是非正数,∴8205ax +=£,解得4a £-,故选:D .4.A【分析】考查不等式的解集,掌握一元一次不等式的求法是解题的关键. 先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】解:解不等式 413x a +>得,34ax ->,解不等式2103x +>得,12x >-,Q 关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,3142a -\³-,解得:5a £,故选:A ;5.1a <【分析】本题考查了不等式的性质,根据题意可知关于x 的不等式(1)1a x -³解集为11x a³-,则x 的系数的正数,再根据这个结果求出a 的取值范围,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:∵关于x 的不等式(1)1a x -³解集为11x a³-,∴10a ->,∴1a <,故答案为:1a <.6.1a <-【分析】本题考查了不等式的性质和解不等式,根据不等式的性质求解即可,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】∵关于x 的不等式()11a x a +>+的解集为1x <,∴10a +<,解得:1a <-,故答案为:1a <-.7.2<3m £【分析】先解一元一次不等式可得x ≤m−1,然后根据题意可得11<2m £-,进行计算即可解答.本题考查了一元一次不等式的整数解,准确熟练地进行计算是解题的关键.【详解】解:1x m +£,解得x ≤m−1,∵一元一次不等式1x m +£只有1个正整数解,∴11<2m £-,∴2<3m £,故答案为:2<3m £.8.D【分析】本题考查解不等式,解57x m x +³得2m x £,再由题意可得452m£<,解这个不等数组即可得出答案.【详解】解:解57x m x +³得2mx £,∵该不等式的正整数解为1、2、3、4,∴452m £<解得810m £<.故选:D .9.B【分析】本题主要考查解一元一次不等式的基本能力,解关于x 的不等式求得x m ³,根据不等式的最小整数解是2x =即可作答.【详解】解:0x m -³,移项,得:x m ³,Q 不等式的最小整数解是2x =,12m \<£,故选:B .10.A【分析】本题考查了求不等式的解集及其参数,先求出不等式组的解集,再根据不等式组有解的情况得到关于m 的不等式,求解即可,理解题意,熟练掌握求不等式组的解集是解题的关键.【详解】解:()12432x mx x -ì<-ïíï-£-î①②,解不等式①得,2x m <-,解不等式②得,1x ³,∵关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,∴21m ->,解得:3m >故选:A .11.A【分析】本题考查已知不等式的解集求参数,根据求不等式组解集的方法“大中取大,小中取小,大小小大中间找,大大小小找不到” 的原则求解即可.【详解】Q 不等式组有解,\两个不等式的解有公共部分,2.k \<故选:A .12.1a <【分析】本题考查了解一元一次不等式组,根据不等式组的解的情况求参数的取值范围,先求出不等式组的解集为243a x a -<<-,再结合题意得出243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,求解即可得出答案.【详解】解:3284a x x a ->ìí+>î①②,解不等式①得:3x a <-,解不等式②得:24x a >-,Q 不等式组有解,243a x a \-<<-,Q 每一个x 的值均不在26x -££的范围中,\243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,解得:1a <,故答案为:1a <.13.0a ³【分析】本题考查了解一元一次不等式组,不等式组解集的情况求参数,先对不等式进行求解,再根据关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解即可解答,熟练掌握知识点的应用是解题的关键.【详解】解:11340x x x a ì-³-ïíï->î①②解不等式①得,0x £,解不等式②得,x a >,∵关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解,∴0a ³,故答案为:0a ³.14.3m £-【分析】本题考查了不等式的解集,先解不等式x m m -<,然后根据不等式组无解,即可求出m 的取值范围.【详解】解:解不等式x m m -<,得2x m <,∵62x x m m -<<ìí-<î无解,∴26m £-,∴3m £-,故答案为:3m £-.15.16a £【分析】本题考查了解一元一次不等式组.熟练掌握解一元一次不等式组是解题的关键.解40x a -<得4a x <,解329x x -³-+得4x ³,由不等式组40329x a x x -<ìí-³-+î无解,可得44a £,计算求解即可.【详解】解:40329x a x x -<ìí-³-+î,40x a -<,解得,4a x <,329x x -³-+,解得,4x ³,∵不等式组40329x a x x -<ìí-³-+î无解,∴44a £,解得,16a £,故答案为:16a £.16.14m £<##41m >³【分析】本题考查不等式组的整数解问题,正确理解恰有3个整数解得意义是解题的关键.先解不等式组,写出不等式组的解集,再根据恰有三个整数解,可求出m 的范围.【详解】解:()()324122x x x m x ì-<-í-£-î①②解不等式①得:2x >-,解不等式②得:23m x +£,Q 不等式组有解,\不等式组的解集是:223m x +-<£.Q 不等式组恰好有3个整数解,则整数解是1,0,1-,\2123m +£<.14m \£<,故答案为:14m £<.17.5433m -<£-【分析】本题考查了根据一元一次不等式组解的情况求参数的取值范围,先求出不等式组的解集,再根据不等式组的解集只有3个整数解可得3322m -<+£-,解不等式即可求解,掌握解一元一次不等式组是解题的关键.【详解】解:()213644x x m x +<ìïí-³+ïî①②,由①得,x <1,由②得,32x m ³+,∴不等式组的解集为321m x +£<,∵关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,∴3322m -<+£-,即322323m m +£-ìí+>-î,解得5433m -<£-,故答案为:5433m -<£-.18.D【分析】本题主要考查了根据不等式组的解集情况求参数,先分别求出不等式组中两个不等式得解集,再根据原不等式组只有三个整数解建立关于k 的不等式组,解之即可得到答案.【详解】解:()1023544133x x k x x k +ì+>ïïí+ï+>++ïî①② 解不等式①得:25x >-,解不等式②得:2x k <,∵原不等式组恰有三个整数解,∴223k <£,∴312k £<,故选:D .19.B【分析】先求出不等式组的解,得出关于m 、n 的不等式组,求出整数m 、n 的值,即可得出答案.【详解】解:∵解不等式20x m -³得:2m x ³,解不等式30n x -³得:3n x £,∴不等式组的解集是23m n x ££,∵关于x 的不等式组的整数解仅有1-,0,1,2,∴212m -<-≤,233n £<,解得:4269m n -<£-£<,,即m 的值是32--,,n 的值是6,7,8,即适合这个不等式组的整数m ,n 组成的有序数对(),mn 共有6个,是()()()()()()363738262728------,,,,,,,,,,,.故选:B .【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m 、n 的值.20.3【分析】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.依据不等式组至少有两个整数解,即可得到a 5>,再根据存在以3,a ,6为边的三角形,可得39a <<,进而得出a 的取值范围是59a <<,即可得到a 的整数解有3个.【详解】解:解不等式组得:4x a £<,∵至少有两个整数解,则整数解至少为4和5,∴5a >,又∵存在以3,a ,6为边的三角形,∴39a <<,∴a 的取值范围为59a <<,∴整数a 的值为:6,7,8,有3个故答案为:3.21.D【分析】本题考查的是解一元一次不等式组,求出第一个不等式的解集,根据口诀:“同大取大、同小取小、大小小大中间找、大大小小无解”即可确定m 的范围.【详解】解:解不等式63(1)5x x -+<-得x >2,解不等式1x m ->-得1x m >-,∵解集是2x >,∴12m -£,解得3m £,故选D .22.C【分析】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据不等式组的解集得到a 、b 的值,代入计算即可.【详解】解:220x a b x ->ìí->î①②,解①得:2x a >+,解②得:2b x <,∵不等式组220x a b x ->ìí->î的解集为11x -<<,∴2112a b +=-ìïí=ïî,解得:32a b =-ìí=î,∴()20192019()321a b +=-+=-.故选:C .23.0k ³##0k £【分析】本题考查了根据不等式组的解集求参数,先分别求解两个不等式,再根据口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”得出22k £+,求解即可.【详解】解:29612x x x k +>+ìí-<î①②,由①可得:2x <,由②可得:2x k <+,∵该不等式组的解集为2x <,∴22k £+,解得:0k ³,故答案为:0k ³.24.5【分析】本题主要考查解一元一次不等式组,分式方程的综合,掌握不等式的性质,不等式组的取值方法,解分式方程的方法是解题的关键.根据不等式的性质分别求解,根据不等式组的取值方法“同大取大,同小取小,大小小大中间找,大大小小无解”及不等式组的解集的情况可得04m <£,再根据解分式方程的方法得到61x m =-,由分式方程有非负数解,可得14m <<,由此即可求解.【详解】解:441113(22m x x x ->ìïí-<+ïî,解不等式44m x ->,得:44m x -<,解不等式111322x x æö-<+ç÷èø,得:72x >-,∵不等式组有且仅有三个整数解,∴4104m --<£,解得:04m <£,解关于x 的分式方程26122mx x x --=--,得:61x m =-,∵分式方程有非负数解,∴601m ³-,且621m ¹-,10m -¹,解得:1m ³且4m ¹且1m ¹,综上,14m <<,所以所有满足条件的整数m 的值为2,3,∴符合条件的所有整数m 的和为235+=.故答案为:5.25.A【分析】本题主要考查解分式方程和一元一次不等式方程组,首先解得不等式方程组的解,根据题意找到a 的范围,再解的分式方程的解,结合分式方程的解和a 的范围求得a 的可能值即可.【详解】解:2311122y a y ->ìïí+£ïî由23y a ->,解得32a y +>,由11122y +£,解得5y £,则不等式方程组的解为,352a y +<£,∵关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,∴3252a +££,解得17a ££,52211a y y --=---,去分母得,()()2152y a ---=,去括号、移项得,25y a -=-,系数化为1得,52a y -=,∵1y =为分式方程的增根,∴512a -¹,解得3a ¹,∵y 的分式方程52211a y y --=---解为非负整数,∴502a y -=³,解得5a £,∴15a £<且3a ¹,∴当1a =时,2y =;当2a =时,32y =,舍去;当3a =时,1y =,舍去;当4a =时,12y =,舍去;当5a =时,0y =;则所有满足条件的整数a 的和为156+=.故选:A .26.D【分析】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.先解分式方程,得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:解方程21144a a a+=--,得1a =,经检验,1a =是该分式方程的解,∵关于x 的不等式组x a x b >ìí£î,即1x x b >ìí£î只有2个整数解,∴34b £<.故选:D .27.D【分析】根据方程组的解的情况,以及不等式组的解集情况,求出m 的取值范围,再进行求解即可.本题主要考查了解二元一次方程组、解不等式组,求不等式的整数解等知识点,掌握解方程组和不等式组的方法是解题的关键.【详解】解:432173453x y m x y m +=+ìí+=-î①②,+①②,得:77714x y m +=+,∴2x y m +=+,∵1x y +£,∴21m +£, 解得:1m £-,解不等式50x m ->,得:5m x >, 解不等式41x -<-,得:3x <,故不等式组的解集是:35m x <<∵不等式组只有3个整数解,∴105m -£<,解得50m -£<,∴51m -££-,∴符合条件的整数m 的值的和为5432115-----=-,故选:D .28.31m -<<【分析】本题考查根据方程组的解集的情况求参数的范围,求不等式组的解集,根据方程组的解集的情况,得到关于m 的不等式组,求解即可.【详解】解:3454331x y m x y m +=-ìí+=+î①②,+①②得:7744x y m +=-,即447m x y -+=,-②①得:26x y m -=+,∵00x y x y +-,,∴4407260m m -ì<ïíï+>î∴31m -<<,故答案为:31m -<<.29.B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<ìí<+î,得:31x x m <ìí<+î,∵不等式组的解集为:3x <,∴13m +³,∴2m ≥;故选B .30.A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:35241x m x x >+ìí-<+î①②,由②得:3x <,解集为33m x +<<,由不等式组的整数解只有4个,得到整数解为2,1,0,1-,∴231m -£+<-,∴54m -£<-;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到231m -£+<-是解此题的关键.31.B【分析】此题考查了二元一次方程组的解,一元一次不等式组,①把3a =代入方程组求出解,即可做出判断;②根据题意得到0x y +=,代入方程组求出a 的值,即可做出判断;③()()()()391232106m n m n a m n m n aì++-=-ïí+--=ïî的各项和原方程成比例,故可得方程52m n m n +=ìí-=-î,即可解答;④用a 表示,x y ,可得一元一次不等式组,再根据a 的取值范围,即可解答,熟知方程的各项成比例时,两个方程的解相同,是解题的关键.【详解】解:当3a =时,原方程为343533x y x y +=-ìí-=´î,解得41x y =ìí=-î,故①错误;x 、y 的值互为相反数时,可得0x y +=,可得方程3453y y a y y a-+=-ìí--=î,方程无解,故②正确;()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïîQ 的各项和原方程成比例,故可得52m n m n +=ìí-=-î,解得3272m n ì=ïïíï=ïî,故③正确;解3453x y a x y a +=-ìí-=î,可得5212a x a y +ì=ïïí-ï=ïî,当,x y 为自然数时,可得502102a a +ì³ïïí-ï³ïî,解得51a -££且a 为奇数,故5,3,1,1a =---,即x 、y 都为自然数的解有4对,故④错误;故选:B .32.20-【分析】本题考查了分式方程的解,一元一次不等式组的整数解,由分式方程得12a x +=,由一元一次不等式组得23a y +<£-,根据不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,即可得到125a -<<-,再由12a x +=为整数,即可得到a 的值,正确掌握解一元一次不等式组和解分式方程得方法是解题的关键.【详解】解:∵23133a x x x-+=++,∴12a x +=,由1313212y y a y y +ì+³ïïí+ï<-ïî得23a y +<£-,∵不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,∴125a -<<-,∵12a x +=为整数,∴11a =-或9-或―7,又∵30x +¹,∴1302a ++¹,∴7a ¹-,∴11a =-或9-,∴所有满足条件的整数a 的值之和()11920=-+-=-,故答案为:20-.。

不等式复习课件

不等式复习课件
B,0
3
的最小整数解为( A )
A,-1
C,2
D,3
2 x 4 0 -3,-2 例7:不等式组 1 的整数解为_________ 2 x 2 0
4、不等式2x-2≥3x-4的正整数解的个数为(
(A)1个 (B)2个 (C)3个
B )
(D)4个
2 x 3 0 5、不等式组 的整数解的个数是( C ) 3 x 5 0
由不等式②得: x≥5
-1 0 1 2 3 4 5 6 7 8
注意:不等式组的 公共解集,可用口诀: 同大取大,同小取小 大小,小大中间夹, 大大小小无解答.
∴ 原不等式组的解集为:5≤x≤8
∴原不等式组的整数解x为: 5,6,7,8.
二,求不等式的特殊解:
例6:不等式 2 x
x 1 8 2x
数轴显示
b a
语言叙述
同大取大 同小取小
大小小大中间找 大大小小无解集
1 2

xa x b
xa x b
b
a
3 xa 4 xb
xa x b
b
a
b
a
一元一次不等式(组)的解
例1:不等式4-3x>0的解是( D )
4 A, x 3 4 B, x 3 4 C, x 3 4 D, x 3
x 2 0 x 3 0
x>2 的解集为___.ห้องสมุดไป่ตู้
的解集是
3x 1 5 x 7.(05上海)解不等式组: ,并把解集在 2 x 1 6 x 数轴上表示出来.
-5 -4 -3 -2 -1 O 1 2 3 4
4.(04青海)已知点M(3a-9,1-a)在第三象限,且它 们的坐标都是整数,则a=___ A. 1 B. 2 C. 3 D. 0 5.(05临沂市)关于x的不等式3x-2a≤-2的解集如图所 示,则a的值是___ 2 x 7>3 x-1 -1 0 1 6.(05天津)不等式组 的解集为___ x-2 0

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.

人教初中数学七下 9.3.2 一元一次不等式组课件 【经典初中数学课件】

人教初中数学七下 9.3.2 一元一次不等式组课件 【经典初中数学课件】

分析:从跷跷板的两种状况可以得到的不等关系:
妈妈的体重+小宝的体重 <
爸爸的体重;
妈妈的体重+小宝的体重+6千克 > 爸爸的体重。
学习目标:1、会用一元一次不等式组解决实际问题
自学指导:阅读课本P139-134,例2 思考: 1、“不能完成任务”是什么意思 2、“提前完成任务”又是什么意思?
学习目标:1、会用一元一次不等式组解决实际问题
运用规律求下列不等式组的解集:
((((68(2571(3))4)))xx32xxxxxxxxxxx>>>><<<<><<><>>--37-20-5243-760.,4,-3,.4..1,4., .
学习目标:1、会用一元一次不等式组解决实际问题
1、若不等式组 x a 无解,求a的取值范围
2x -1 3
o
0
o
o
X
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (3) x<5
2 、若把以上(1)、(3)两个不等式合起来,这 个一元一次不等式组中x取值范围是多少呢?
o
o
X
X的取值范围是:2<X<5
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
我来说一说!
第九章 9.3 一元一次不等式组(1)
第7课时
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (2) x<-2 (3) x<5 (4) x<-5
2、若把以上(1)、(2)两个不等式 合起来,这个一元一次不等式组中x取 值范围是多少呢?

浙教版八年级数学上册3.4一元一次不等式组课件(共21张PPT)

浙教版八年级数学上册3.4一元一次不等式组课件(共21张PPT)
2(x+70) >350 70x <7560
定义: 一般地,由几个同一未知数的一元一次不等 式所组成的一组不等式,叫做一元一次不等式组.
下列式子中,哪些是一元一次不等式组?
x 1 (1) x 3

2 x x 1 (2) x 8 4x 1

x y 0 (3) 不是 2 x y 1
练一练:
1.解下列各一元一次不等式组
2 x 1 x 1 (1) x 8 4 x 1
5 x 23( x 1) (2) 1 3 x 1 7 x 2 2
2.求出问题3中宽是多少。
例3. 求下列不等式组的解集:
x 3, (1) x 7.
x3
x 1, (4) x 4.
解:原不等式组的解集为 -3 -2 -1 0
1
2 3 4 5
x 1
小小取小
例3. 求下列不等式组的解集:
x 3, (5) x 7.
解:原不等式组的解集为
0
1 2 3 4 5 6 7 8 9
3 x7
x 1, (6) x 4.
1 解: 解不等式①,得 X< 2 12 解不等式②,得 X> 5
3X 2 X 2.5 4 2

把① ,②两个不等式的解表示在数轴上 所以原不等式组无解
-3 -2 -1 0 1 2 3 4 5 6
解一元一次不等式组的步骤: (1)分别求出各不等式的解 (2)将它们的解表示在同一数轴上 (3)求原不等式组的解(即为它们解的公共部分).
(5)2-x<x≤6-2x
x2 x 2 (4) 不是 x 1 0

一元一次不等式(组)复习课

一元一次不等式(组)复习课
a b . c c 不等式两边乘(或除以) 如果 a b,c 0 同一个负数,不等号的方 那么 ac bc,
性质3
向改变.
a b . c c
五、一元一次不等式的概念: 含有一个未知数,未知数次数是1的不等 式,叫做一元一次不等式.
• •
6、一元一次不等式组: 一般地,关于同一未知数的几个一元一次不 等式合在一起,就组成一个一元一次不等式 组. 在理解时要注意以下两点: 1) 不等式组里不等式的个数并未规定; 2) 在同一不等式组里的未知数必须是同一个.
一元一次不等式组
复习课
• 一、不等式的概念。 二、不等式的解使不等式成立的未知数的值. 三、一个含有未知数的不等式的所有的解, 组成这个不等式的解集.
求不等式的解集的过程叫做解不等式.
四、不等式的性质
文字语言 符号语言
不等式两边加(或减)同 如果 ab 那么 一个数(或式子),不等 性质1 ac bc 号的方向不变. 不等式两边乘(或除以) 如果 a b,c 0 那么 同一个正数,不等号的方 性质2 ac bc, 向不变.
• (1)设榕树的单价为x元/棵,香樟树的单 价是y元/棵, 根据题意得, x=y-20 • 3x+2y=340, 解得 x=60 • y=80,
• 答:榕树和香樟树的单价分别是60元/棵, 80元/棵;
• (2)设购买榕树a棵,则购买香樟树为 (150-a)棵, 根据题意得, • 60a+80(150-a)≤10840① • 150-a≥1.5a② 解不等式①得,a≥58, 解不等式②得,a≤60,
解:∵不等式组
1 3 (3) 2 1 x 5 5
2, x为何值时, 2 x 1 5x 1 代数式 1的值是非负数? 3 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x<-3 D. x≤2
【解析】由“大小小大中间找”可得不等式组的解集是-3<x≤2.所以,选B. 【易错警示】实心点和空心圆圈分不清,容易忘记.
-2x<6 1.不等式 的解集是( -2x>1
A.x>-3 C.-3<x<3 B.-3<x<- D.无解 1 2
)
答案:B
2.一个一元一次不等式组的解集在数轴上表示如下图,则该不等式组的解集是( )
2a+4=0 a=-2 ∴b+5 ,∴ ,∴a+b=-3. b=-1 2 =2
答案:-3
x<k+1 8.若不等式组 无解,则k的取值范围是________. x>2k-1
解析:根据“大大小小无解”可得2k-1≥k+1,∴k≥2. 答案:k≥2
9.把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 ________.
3. 不等式组
的整数解的个数是: A、1 B、2
4. 若不等式组
C、3
D、4
的解集为x>3,则m的取值范围是: D、 A、m≥3 B、m=3 C、m<3
D、m≤3
5. 某商品原价5元,如果跌价x%后,仍不低于4元, 那么―( ) A x≤20 B x<20 C x≥20 D x>20
知识点二 一元一次不等式组的解法
知识点四
一元一次不等式组的应用
利用列不等式组解决问题的方法步骤与列一元一次方程组解应用题的步骤类似,不同的 是后者寻求的是等量关系,列出的是等式,前者寻求的是不等量关系,并且解不等式组所得 的结果通常为解集,需从解集中找出符合条件的答案. 在列不等式组时注意关键词的运用,如“不少于”“至少”“至多”等词汇时要正确选 用不等式.
答案:C
x+9<5x+1 3.不等式组 的解集是x>2,则a的取值范围是( x>a+1 A.a≤2 B.a≥2 C.a≤1 D.a>1
)
解析:解①得x>2,解②得x>a+1,又其解集为x>2,利用“大大取大”得2≥a+1, ∴a≤1.
答案:C
2x+y=1-a 4.在方程组 中,若未知数x、y满足x+y>0,则a的取值范围为( x+2y=2
x-3x-2≤4, 11.解不等式组:1+2x 3 >x-1.
解:由①得x-3x+6≤4,-2x≤-2,x≥1. 由②得1+2x>3x-3,-x>-4,x<4. ∴原不等式组的解集为:1≤x<4.
3x+5≥-1, 12.解不等式组: 1 3-x> x. 2
解:解不等式①得x≥-2,解不等式②得x<2,∴原不等式组的解集为-2≤x<2.
x>3 1.如果一元一次不等式组 的解集为x>3,则a的取值范围是( x>a
)
A.a>3
B.a≥3 C.a≤3 D.a<3
解析:根据“大大取大”可得3≥a,∴a≤3. 答案:C
2x+5≥6, 2.解不等式组: 3-2x>1+2x.
2x+5≥6, 解: 3-2x>1+2x,
解:(1)设单独租用35座客车需x辆,由题意,得35x=55(x-1)-45,解得x=5. ∴35x=35×5=175(人). 答:该校八年级参加社会实践活动的人数为175人. (2)设租35座客车y辆,则租55座客车(4-y)辆, 35y+554-y≥175, 由题意,得 320y+4004-y≤1 500, 1 1 解这个不等式组,得1 ≤y≤2 . 4 4 ∵y取正整数,∴y=2. ∴4-y=4-2=2. ∴320×2+400×2=1 440(元) 答:本次社会实践活动所需车辆的租金为1 440元.
A.a>3 B.a<3 C.a≥3 D.a≤3
)
解析:根据条件x+y>0,想到①+②得x+y=
3-a 3-a ,∴ >0,∴a<3. 3 3
答案:B
x-4≤8-2x 5.不等式组 的最小整数解为( 2 x>-3
A.-1 B.0 C.1 D.4
)
2 解析:解不等式组得解集为- <x≤4,∴其最小整数解为x=0. 3
பைடு நூலகம்
解析:根据“大大取大”得x>1,注意区分实心点、空心圆圈. 答案:x>1
10.已知关于x的不等式组 ________.
x-a≥0 5-2x>1
只有四个整数解,则实数a的取值范围是
解析:解①得x≥a,解②得x<2,∴四个整数解应为1,0,-1,-2,∴-3<a≤-2. 答案:-3<a≤-2
三、解答题
① ②
1 解不等式①得x≥-2,解不等式②得x< . 2 在同一数轴上表示不等式①、②的解集如下:
1 ∴原不等式组的解集为-2≤x< . 2
3.和谐商场销售甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件 进价35元,售价45元. (1)若该商场同时购进甲、乙两种商品共100件,恰好用去2 700元,求能购进甲、乙两种 商品各多少件? (2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不 超过760元,请你帮助该商场设计相应的进货方案.
答案:B
二、填空题
-x+4<2 6.不等式组 的解集是________. 3x-4≤8
解析:解①得x>2,解②得x≤4,∴2<x≤4. 答案:2<x≤4
x-2a>4 7.关于x的不等式组 的解集是0<x<2,那么a+b的值等于________. 2x-b<5
解析:由①得x>2a+4,由②得x< b+5 2 ,又原不等式组的解集为0<x<2,
x≤4 解析:将两个不等式的解集求出,可得 x>3 取解法,可得解集为3<x≤4.
,根据不等式组“大小小大,中间找”
答案:D
2x-1<x 2.不等式组 1 的解集在数轴上表示正确的是( x≤1 5
)
2x-1<x x<1 解析:解①1 得 ,∴在数轴上可表示为选项C. x≤1 x≤5 5
A.-1≤x<3 B.-1<x≤3 C.x≥-1 D.x<3
答案:A
x+2>-x, 3.解不等式组: -2x≤4.
x+2>-x, ① 解: ② -2x≤4.
解不等式①,得x>-1 解不等式②,得x≥-2. ∴不等式组的解集为x>-1.
一、选择题
x-1≤3 1.不等式组 的解集为( ) 2x>6 A.x>3 B.x≤4 C.3<x<4 D.3<x≤4
x>2 1.若关于x的不等式组 的解集是x>2,则m的取值范围是________. x>m
【解析】∵“大大取大”,∴2≥m即m≤2. 【易错警示】容易漏掉m=2的情况.
2.解集在数轴上表示为如图所示的不等式组是( )
x≥-3 A. x≥2
x>-3 B. x≤2
x<-3 C. x≥2
第5讲
一元一次不等式组
①一元一次不等式组及其解法;②一元一次不等式组的特殊解.
知识结构总结:
一 知识体系
1 不等式的性质 <1> 若a>b, 则a+c>b+c <2>若a>b, c>0 则ac>bc 若c<0, 则ac<bc <3>若a>b, c>d 则a+c>b+d 同向不等式可以相加但不能相减
13.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐 满;若单独租用55座客车,则可以少租一辆,且余45个空座位. (1)求该校八年级学生参加社会实践活动的人数; (2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不 超过1 500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会 实践活动所需车辆的租金.
1.解不等式组一般先分别求出不等式组中各个不等式的解集,再求出它们的公共部分 (一般方法是在数轴上把每个不等式的解集表示出来,由图形得出公共部分),就得到不等式 组的解集. 2.两个一元一次不等式所组成的不等式组的解集一般情况可见下表(其中a<b):
知识点三 一元一次不等式组的特殊解
一元一次不等式组的特殊解主要是指整数解、非负整数解、负整数解等.不等式组的特 殊解,包含在它的解集中.因此,解决此类问题的关键是先求出不等式组的解集,然后求其 特殊解.
解:(1)设该商场购进甲种商品x件, 根据题意可得15x+35(100-x)=2 700,解得x=40. 乙种商品:100-40=60(件) 答:该商场购进甲种商品40件,乙种商品60件. (2)设该商场购进甲种商品a件,则购进乙种商品(100-a)件, 20-15a+45-35100-a≥750, 根据题意得 20-15a+45-35100-a≤760, 解得48≤a≤50. ∵a是正整数,∴a=48或a=49或a=50. ∴进货方案有三种: 方案一:购进甲种商品48件,购进乙种商品52件; 方案二:购进甲种商品49件,购进乙种商品51件; 方案三:购进甲种商品50件,购进乙种商品50件.
相关文档
最新文档