量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15up @

合集下载

量子力学答案(第二版)苏汝铿第六章课后答案6.16-6#8

量子力学答案(第二版)苏汝铿第六章课后答案6.16-6#8
代入薛定鄂方程: i
(s x + s y + s y ) ??
sin qe- iwt ÷ ÷ ÷ - cos q ÷
,设 f (t )=ç ç
¶f = Hf ¶t
骣 a(t )÷ ÷,则有 ç ÷ b(t )÷ 桫
i d a(t ) = cos qa(t ) + sin qe- iwt b(t )......(1) - m0 B dt i d b(t ) = - cos qb(t ) + sin qeiwt a(t ).....(2) - m0 B dt
c1' = iw1e- iwt c2
化简得: 其中:
c2' = iw1eiwt c1
cos q, w1 = m0 B sin q, w2 = w + 2w0
w0 =
m0 B
a(t ) = c1eiwt b(t ) = c2e- iwt
解得: c2 '' = iw2c2 '- w12c2 (*) 由初始条件:
( S1z - S 2 z )c 1 = 0 ( S1z - S 2 z )c 2 = 0 c 4 ( S1z - S 2 z )c 3 = c 3 ( S1z - S2 z )c 4 = 2 2
骣1 2 ç A ç ç 4 ç ç ç ç ç ç 0 ç 所以得到: H ' = ç ç eB ç ç ç ç mc 2 ç ç ç ç ç 0 ç 桫
eB ( S1z - S2 z ) mc 解: eB =H 0 + A( sx 2 + s y 2 + sz 2 ) + ( S1z - S2 z ) mc H = H 0 + AS1 S2 +

量子力学答案(第二版)苏汝铿第六章课后答案6.10-6#6 @

量子力学答案(第二版)苏汝铿第六章课后答案6.10-6#6 @
点), 这样就有 L
1 N L 2
耦合之后总磁矩
1 1 N L J ( g p g N )N S J J 2 2 R J ( J 1)
因 J LS 有
N 3 ( g p g N ) N (1) J / 2
旋 S , 然后总自旋再与轨道角动量 l 耦合形成总角动量 J , 用核磁子表示你的结果. 已知质子和 中子的磁矩分别是 2.79 和-1.91 核磁子. 解: (i) S,D 态的宇称为正, 而 P 态的宇称为负, 由于宇称守恒, 开始时为 S 态的量子态在任何 时刻都不可能有 P 态混入 (ii)
1 1 1.5 ( g p g N ) N J 0.31 N J 2 2
取 J 方向的投影并使 J s 为最大值 J 1 , 从而有 0.31 N 6.11 一个 介子(赝标粒子, 自旋为零, 奇宇称)最初别束缚在氘核周围, 并处在最低库仑态
的角分布是多少? (i). 反应前后宇称守恒, 有
p( ) p(d )(1) L1 p(n) p(n)(1) L
L1 , L2 分 别 是 d 及n+n 的 轨 道角 动量 . 但反 应 前 是 在库 仑 势的 最低 能 态
中, L1 0 , 且已知: p( ) 1, p(d ) 1 有
2/3 c , 2/ d 3 , 1/ 3
p 1,1 p 1, 1 0 n 1, 0
查 C G 系数表, 可得
a 1 / 3b ,
共振态的 I 3/ 2 , 经过此面的截面比为 1 2 4 2 a : b : c 1: a : ac 1: : 9 9
能的, 因为 L 1 , 所以几率为 0 (iii) 从而有 初始态为 J , J z 1,1 , 将其变成非耦合表象 L 1, S 1, L, L3 , S , S z

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#5

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#5
2 2 [S 12 , S12 ] 0,[ S 123 , S123 ] 0 .
S1 , S2 , S3 互相对易,而且
2 2 2 S1 S2 S3
3 4
因此
2 2 2 S 12 S1 S2 2S1 S2 2 S 123
3 2S1 S2 2
9 2( S1 S2 S2 S3 S3 S1 ) 4
(1, 2) (1) (2)
2
1 [ (1) (2) (1) (2)] 2
2
总自旋 S 共有两个本征值:0 和 2. S 0 的本征 (1) (2) (1) (2)] 2
2
在体系的自旋态 中测得 S 0 的概率为
2 S12 S ( S 1), S 0,1
2
2
2
2
2
2
1 1 3 2 S123 S ( S 1), S , , 2 2 2
代入 H 的表达式,就得到能级值,记为 ESS 。由于体系能量与 ( S123 ) z ,即总自旋 z 分量的 本征值 [S , S 1,
r 1 1 ] e [ S , S x ] e ( S [ x , S ] x [ S , S ]) r r r
l
和 S 对易,但 l 和 S n 并不对易,利用基本对易式 [l , x ] i x , 容易证明
[l , Sn ] [l , S
,(S )] 无关,故能级 ESS 的简并度 (2S 1) 。量子数 S , S 的可能组合以
及能级和简并度如下:
S S
1 3/2 1/2
0 1/2
ESS
简并度 (2S 1)
A B 4 2

量子力学导论第6章答案

量子力学导论第6章答案

第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p -==∙μ (1)总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) m p +=21μ,m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m R ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m uR p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mp p -⨯++⨯= )2)(1(⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。

总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m pP u m p m m u m m p P u m p m m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m m μ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、和的算术表示式r i ∇-= R i ∇-= ,p r P R L ⨯+⨯=解: ()()211221121r r m m Mi p m p m M ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15

1 的本征态,粒子 2
1 2 的本征态,取 =1 ,求体系总自旋 S 的可能值及相应的概率。 2
解: S x ;
1 Sz ; Sz ; 2
1 2

(1)
Sz ; Sx ;
(2)
系统处于 S1z ; S2 x ; 的态上,将其写到 S z 的表象中为
S1z ;
编辑者:霍团长 6— 7
对于两个自旋 1/2 的例子组成的体系,证明张量算符
S12
3 (σ1 r )(σ2 r ) σ1 σ2 r2
和 S 2 及 J 对易。 S 为总自旋, J 是总角动量 J = S + l ,l 是体系的轨迹角动量,在质心坐 标系中, l 的算符形式是:
l r p i r , r = r1 - r2
而 S s( s 1)
2
1 S2 z ; S2 z ; 2

其可能值为 0或2 总自旋为零的态可表示为:
0
1 S1z ; S2 z ; S1z ; S2 z ; 2
0
1 1 1 S2 z ; S1z ; S1z ; S2 z ; 2 2 2
证明: (1)
3 2 , σ1 3, ( 1n )2 1 4 1 S s1 s2 (σ1 σ2 ) 2 3 1 ∴ S 2 σ1 σ 2 2 2 1 1 Sn S n (σ1 n σ2 n) ( 1n 2 n ) 2 2 1 1 1 ∴ Sn 2 ( 1n 2 2 n 2 2 1n 2 n ) 1n 2 n 4 2 2
2 解:取系统的力学量完全集为 ( H , S12 , S 2 , Sz )

量子力学曾谨言习题解答第六章

量子力学曾谨言习题解答第六章

第六章:中心力场[1]质量分别为 m 1,m 2的两个粒子组成的体系,质心座标及相对座R标r为:R =212211m m r m r m ++ (1)r 12r r r-= (2)试求总动量21p p P+=及总角动量21l l L +=在R ,r表象中的算符表示。

1. [解] (a )合动量算符21p p P+=。

根据假设可以解出1r ,2r令21m m m +≡ : r m m R r121-= (3)r m m R r212+= (4)设各个矢量的分量是),,(1111z y x r ,),(22,22z y x r ,),,(z y x r和),,(Z Y X R 。

为了计算动量的变换式先求对1x , 2x 等的偏导数:xX m m x x x X x X x ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂1111 (5)xX m m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂2222 (6) 关于1y ∂∂,2y ∂∂,1z ∂∂,2z ∂∂ 可以写出与(5)(6)类似的式子,因而: )()(212^1^^2^1^x x i p p p p P x x x x ∂∂+∂∂=+=+==Xi x X m m x X m m i ∂∂=∂∂+∂∂+∂∂-∂∂ )(21 RiZ i k Y i j X i i P ∇=∂∂+∂∂+∂∂= ^(b)总角动量)(2211^2^1^∇⨯+∇⨯=+=r r il l Lx x r r iL )(2211^∇⨯+∇⨯==)()(2222111y z z y i z z y i ∂∂-∂∂+-∂∂ 利用(3),(4),(5),(6): ))({(12^zZ m m y m m Y i L x ∂∂-∂∂-=))((12y Y m m z m m Z ∂∂-∂∂-- ))((21zZ m m y m m Y ∂∂+∂∂++ )})((21yY m m z m m Z ∂∂+∂∂+- =)()({1y Z z Y Y Z Z Y m m i ∂∂-∂∂-∂∂-∂∂ )()(221y z z y m m Y z Z y m m m ∂∂-∂∂+∂∂-∂∂-)()(2yZ z Y Y Z Z Y m m ∂∂-∂∂+∂∂-∂∂+)}()(2221yz z y m m Y z Z y m m m ∂∂-∂∂+∂∂-∂∂+=)}(){(yz z y Y Z Z Yi∂∂-∂∂+∂∂-∂∂ =x r R r iR i )(∇⨯+∇⨯因而 r R r iR i L ∇⨯+∇⨯=^[2]证明r r r ∂∂+=∇1],[212,∇=∇],[212r(证明)第一式ψ)(2122∇-∇r r =))((21222222222ψz y x zy x ++∂∂+∂∂+∂∂ )(21222222222zy x z y x ∂∂+∂∂+∂∂++-ψψψ但xz y x z y x x z y x x∂∂+++++=++∂∂ψψψ222222222)( 22222222()(z y x x x z y x x ++∂∂=++∂∂ψψ+)222xzy x ∂∂++ψ =232222222)())((z y x x x xz y x ++-+∂∂++ψψψ+2222223222)(xz y x z y x x x∂∂+++++∂∂ψψ即2222222222x z y x z y x x ∂∂++-++∂∂ψψ=232222222)(2z y x x zy x x x++-+++∂∂ψψψ同样写出关于y,z 的式子,相加得:22222222{21)(21zy x zz y y x xr r ++∂∂+∂∂+∂∂=∇-∇ψψψψ+}3222zy x ++-ψψ=r z r z y r y x r x ψψψψ+∂∂+∂∂+∂∂ =ψ)1(rr +∂∂ 因ψ是任意函数,因而第一式得证。

量子力学教程(二版)习题答案

量子力学教程(二版)习题答案

第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。

证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。

波长。

解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。

)一维谐振子的能量。

(2)在均匀磁场中作圆周运动的电子的轨道半径。

)在均匀磁场中作圆周运动的电子的轨道半径。

已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。

的热运动能量相比较。

解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。

量子力学答案(第二版)苏汝铿第六章课后答案6.13-6#1

量子力学答案(第二版)苏汝铿第六章课后答案6.13-6#1
2 2

1 1 2 2 2 1 1 x 2 cos s c 4s 2c 2 cos E2 E3 t / 2 2 2 2 1 x 2

1 x 2 Et /

1
1 sin 2 1 x2

1 x 2 Et / 2
批注 [JL1]: 应为 S z
Sz
2
, Sz
2

在 t 0 时,体系状态是
(t 0) 。这一粒子沿 y 轴运动,通过一沿 y 轴方向的均匀磁场
B B0 j 。
(ⅰ)、求
(t ) ,用 和 来表示。
(ⅱ)、 S x 、 S y 、 S z 作为时间函数的表达式。

i
i

B0t B0t 1 S x (t ) | S x | (t ) cos sin B0t , sin = 2 2 2
S y (t ) | S y | (t ) 0 ,
2 2 2 1 2 2 2 2 1 d i qB ( eB )2 2 E 2u d c 2c 2 2 2 z 2

1 ,所以
在极限情况 0 H / E
1 ,则 x
E g1 g 2 1 0 H g1 g 2 0 H , 4 2 2 E E 1 E2 2 1 x2 1 2 x g1 g 2 0 H , 4 4 2 E 1 E3 1 2 1 x2 g 2 g1 0 H , 4 2 E g1 g 2 1 E4 0 H g1 g2 0 H 4 2 2 E1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C0
1 S1z , S2 z , S1z , 2
...
S12 1, 1 E A B ,此能级简并度是 2; 4 S 1/ 2, S12 1, 1 1 E A B ,此能级简并度是 4; 4 2 S 3/ 2,
r S r
故 [ Sn , J ] [ Sn , S ] [ Sn , l ] 0 又 [S 2 , J ] 0 故 [ S12 , J ] 0
6— 8
一个由两个自旋为 1/2 的非全同粒子组成的体系。已知粒子 1 处在 S1z 2 处在 S1x
1 的本征态,粒子 2
1 2 的本征态,取 =1 ,求体系总自旋 S 的可能值及相应的概率。 2
2 ∵ s1
故有
3 (σ1 r )(σ 2 r ) σ1 σ 2 r2 3(σ1 n)(σ 2 n) σ1 σ 2 S12 3 1n 2 n σ1 σ 2 1 1 3 1 6( 1n 2 n ) 2( σ1 σ 2 ) 2 2 2 2 2 6Sn 2S 2
证明: (1)
3 2 , σ1 3, ( 1n )2 1 4 1 S s1 s2 (σ1 σ2 ) 2 3 1 ∴ S 2 σ1 σ 2 2 2 1 1 Sn S n (σ1 n σ2 n) ( 1n 2 n ) 2 2 1 1 1 2 2 2 ∴ Sn ( 1n 2 n 2 1n 2 n ) 1n 2 n 4 2 2
编辑者:霍团长 6— 7
对于两个自旋 1/2 的例子组成的体系,证明张量算符
S12
3 (σ1 r )(σ2 r ) σ1 σ2 r2
和 S 2 及 J 对易。 S 为总自旋, J 是总角动量 J = S + l ,l 是体系的轨迹角动量,在质心坐 标系中, l 的算符形式是:
l r p i r , r = r1 - r2
E A 3 B 3 [( S12 1) S12 ] [ S ( S 1) S12 ( S12 1) ] 2 2 2 4
where
1 S1z , S2 z , 2 C4 S1z , S 2 z ,
S12 0, 3 E A ,此能级简并度是 2; 4 S 1/ 2,
H S12 , S3 , S , mS E S12 , S3 , S , mS ,
H AS1 S2 B( S1 S2 ) S3 A 2 B [ S12 S12 S2 2 ] [ S 2 S12 2 S32 ] 。 2 2 A 2 3 B 2 3 [ S12 ] [ S S12 2 ] 2 2 2 4
利用 [l , x ] i x
1 [ S n, lz ] [lz , S x x S y y S z z ] r 1 i ( yS x xS y ) r 1 i (r S ) z r
则 [ Sn , l ] [ S n, l ] i
1 1 1 1 0, 1 2 2 2 2
则总自旋 S 2 为 0 的几率是:
The state with the total spin zero is
P 0
2
1 4
s 0, sz 0
3 4
1 S1z , S2 z 2
而总自旋 S 2 为 4 的几率是
The states with the total spin one are
s 1, sz 0
1 S1z , S2 z 2
其中 S12 S1 S2 , S S12 S3 S1 S2 S3 ,则本征函数取为 S12 , S3 , S , mS , 定态方程为
s 1, sz 1 S1z , S2 z ,
These four states form a complete set of bases, we then have
6— 9
考虑三个自旋为 1/2 的非全同粒子组成的体系。体系的哈密顿量是:
s 1, sz 1 S1z , S2 z ,
H AS1 S2 B( S1 S2 ) S3
A、B 为实常数,试找出体系的守恒量,并确定体系的能级和简并度(取 1 为单位) 。
2 解:取系统的力学量完全集为 ( H , S12 , S 2 , Sz )

其可能值为 0或2 总自旋为零的态可表示为:
批注 [JL1]: The possible values of
1 0 S1z ; S2 z ; S1z ; S2 z ; 2
S2
are
s( s 1)
s:
2
, with
0
1 1 1 S2 z ; S1z ; S1z ; S2 z ; 2 2 2
解: S x ;
1 Sz ; Sz ; 2
1 2

(1)
Sz ; Sx ;
(2)
系统处于 S1z ; S2 x ; 的态上,将其写到 S z 的表象中为
S1z ;
而 S s( s 1)21 S2 z ; S2 z ; 2

C0
1 S1z , S 2 z , S 2 C1 S1z , S 2 z , C2
3 B 3 A H S12 , S3 , S , mS [(S12 1) S12 ] [ S ( S 1) S12 ( S12 1) ] S12 , S3 , S , mS 2 2 4 2
又 [Sn , S ] [ S n, S ] [ S , S ] n S [n, S ] 0
2 2 2 2
∴ [S12 , S ] 6[ Sn , S ] 6Sn [ Sn , S ] 6[ Sn , S ]Sn 0
2 2 2 2 2
(2)
2 [ S12 , J ] [6Sn 2S 2 , J ] 2 6[ Sn , J ] 2[ S 2 , J ]
6Sn [ Sn , J ] 6[ Sn , J ]Sn 2[ S 2 , J ]

[ S n , S ] [ S n, S ] [ S n , S e ] [ S , S ]n e i S n e (i S n )e i S r r
相关文档
最新文档