偏微分方程求解的一种新颖方法——格子Boltzmann模型
格子boltzmann方法

格子boltzmann方法
格子Boltzmann方法是一种基于格子模型的统计力学方法,用于计算和模拟多体系统的平衡态和非平衡态性质。
它以物质由大量的微观粒子组成的假设为基础,通过在一个分割成小格子的空间中定义离散的状态,并考虑这些粒子之间的相互作用来描述系统的行为。
在格子Boltzmann方法中,将系统中的宏观性质与微观粒子的状态之间建立联系。
通过定义一个格子上的离散状态,如在每个格子上确定粒子是否存在或具有某些属性,并通过考虑粒子之间的相互作用以及它们在不同的状态之间转移的过程,可以模拟出系统的动力学行为。
这种方法常用于模拟气体动力学、流体力学、固体力学等领域。
格子Boltzmann方法的优点在于它能够处理复杂多体系统,并在很大程度上简化了真实系统的描述。
它可以考虑系统中的不均匀性,如存在的物理场的作用,并可以模拟非平衡态及各种传输过程,如热传导、质量传输等。
格子Boltzmann 方法还可以通过调节格子模型的分辨率以及模型参数的选择来适应不同尺度和
条件下的模拟需求。
然而,格子Boltzmann方法也有一些局限性,如对于高密度和高速度流体的模拟需要更细致的离散化格子,会增加计算复杂度。
此外,由于需要离散化描述系统,格子Boltzmann方法在处理连续和非连续性质之间的界面时可能存在困难。
因此,在具体应用时需要综合考虑这些因素,并结合其他技术和方法进行分析和模拟。
格子Boltzmann方法模拟二维轴对称狭窄血管内的脉动流

201020446(2) 北京师范大学学报(自然科学版)Journal of Beijing Normal University (Natural Science ) 139 格子Boltzmann 方法模拟二维轴对称狭窄血管内的脉动流3张立换 康秀英 吉驭嫔(北京师范大学物理学系,100875,北京)摘要 将格子Boltzmann 方法应用到二维轴对称余弦狭窄血管模型,模拟比较加入脉动后流场速度、压强和剪切应力分布,并详细分析了不同狭窄模型、Reynolds 数和Womersley 数对血液流动规律的影响,从而为研究血管壁病变和动脉硬化形成机制提供了有用的理论参考.关键词 格子Boltzmann 方法;Reynolds 数;Womersley 数;脉动流;动脉狭窄3北京师范大学青年科学基金资助项目通信作者收稿日期:2009205219 格子Boltzmann 方法(lattice Boltzmann met hod ,简称LBM )是20世纪80年代迅速发展起来的一种新的流体动力学数值模拟方法[122].与以宏观连续方程的离散化为基础的传统数值方法不同,LBM 从微观层次出发,采用统计物理方法得出流体的宏观特性,而且在可操作性方面,它计算方便,编程易于实现,边界易于处理等优点已经得到广泛地证实.由于心血管疾病多集中于具有复杂几何形状和具有复杂流动特性的区域,流动区域和剪切应力的分布对理解、诊断和治疗这种疾病有很重要的作用.近年来,LBM 在血液动力学方面的应用越来越受到重视[326].本文的主要工作是用格子Boltzmann 方法模拟二维轴对称狭窄血管内脉动流的流动特性.首先对狭窄血管内定常流特性进行了研究,模拟比较不同狭窄模型和不同Reynolds 数对管壁切应力、压强和压力梯度分布的影响.然后对二维轴对称狭窄血管内脉动流的流动特性进行了研究,模拟比较在改变Reynolds 数、Womersley 数时动脉血流的流动特性,找到动脉血流的非定常性对狭窄血管中流场速度、压强和剪切应力分布的影响,从而对常见的心血管疾病发展机制给出物理解释,为进一步分析动脉粥样硬化的形成、发展及其影响提供新的研究方法和理论参考.1 二维轴对称狭窄血管内定常流特性的研究111 管壁几何模型 假定血管的狭窄处为轴对称,如图1所示,狭窄形状采用常用的余弦形状,即y =h2[1+co sπL(x -x 0)],(1)图1 二维轴对称余弦狭窄模型 其中h 是狭窄的最大高度,对应于x =x 0处,L 是狭窄总长度的一半,L x 是血管段的长度,L y 是狭窄发生前的血管宽度.112 数值计算 模拟中,计算网格选为N x ×N y =300×40,狭窄中心处为x 0=121,通过调整h 和L 来控制血管狭窄程度.血管出入口采用压强边界条件[7],管壁边界采用Mei 改进的曲线边界条件[8].为了研究不同狭窄情况下管壁的切应力、压强和压强梯度的变化规律,我们选择3个不同的狭窄模型,如表1.表1 不同的狭窄模型狭窄模型M1M2M3狭窄高度h L y /8L y /4L y /4狭窄长度2L16h 8h 16h 在保证Reynolds 数(Re =ρUL y μ=UL yν,ν=μ/ρ为流体运动学黏滞系数,U 为入口附近的平均速度)一定时,计算得3种模型管壁切应力、压强和压强梯度见 140 北京师范大学学报(自然科学版)第46卷 图2~4.Re =114,狭窄中心x 0=121.图2 3种狭窄模型下管壁切应力分布 从图2中可以看出,管壁切应力振荡的负峰值在靠近狭窄中心(x 0=121)的上游,这个峰值达到一定值后,该部位血管内皮组织易发生机械应力损伤.当狭窄长度一定时,狭窄高度越大,切应力的负峰值越大,如图2中的M1和M2;当狭窄高度一定时,狭窄长度越短,切应力的负峰值越大,如图2中的M2和M3.同时也可以看出在狭窄处的下游切应力变小,特别是M2,血液容易在此处发生流体分离.模拟得到狭窄区域的压强和压强梯度分布如图3和4所示.在相同狭窄长度下,狭窄高度越大,血管狭窄上游压强下降越大,下游压强上升越大,同时狭窄区域前后的压强落差越大,如图3中的M1和M2.另一方面,在相同狭窄高度下,狭窄长度越长,血管狭窄上游压强下降越大,同时狭窄区域前后的压强落差越大,如图3中的M2和M3.压强梯度在狭窄区域波动加图3 管壁上压强分布(Re =114),p 0是狭窄发生前的压强,u 0是x =20处的中心流速 图4 管壁上的压强梯度分布(Re =114) 剧,压强梯度波动最大的是狭窄模型M2(图4),其对应的切应力负峰值也为最大值,狭窄部位管壁切应力与压强梯度的变化规律具有相似性.选择模型M2,比较管壁切应力和狭窄附近的流场分布随Re 的变化规律,如图5和6.从图5中可以看出,狭窄模型一定时,随着Re 的增加,管壁切应力增大,在狭窄区域的下游,切应力的增加相对减小,这是由于出现了流体分离,如图6的流场分布.图6显示了模型M2在不同Re 下狭窄附近的流场分布,可以看出,随着Re 的增大,在狭窄下游管壁处出现流动分离区,且Re 越大,流动分离区越大.113 分析与结论 通过改变参数,我们获得了大量有关狭窄血管中的流场的信息.模拟结果表明,血管局部图5 管壁切应力随Reynolds 数的变化曲线(狭窄模型M2) 第2期张立换等:格子Boltzmann方法模拟二维轴对称狭窄血管内的脉动流141图6 不同Re下的流场分布(M2,Re=114、215、318)狭窄会对血液的流动状态产生明显的影响,从而带来一系列的生理和病理方面的复杂变化.例如,动脉硬化斑块主要发生在几何形状急剧变化和高Re流动状态的血管内.在动脉硬化斑块发展的初期,血管狭窄度比较小,对于黏度是常数的血液流体,其Re比较小,无流动分离,管壁切应力可能达到临界应力值,对狭窄上游血管壁内皮细胞造成损伤,使壁面进一步异常增生,导致血管狭窄度增加,进而导致此处流动Re的增加.当血管狭窄增大到一定值时,在狭窄下游管壁附近就会有流动分离区形成,在该区域内血液会发生滞留,血液中的血小板和纤维蛋白就会沉积,并在血管壁处形成网络结构致使血液中的脂质颗粒沉积,而最终导致动脉粥样硬化现象的出现.同时,狭窄度较大时,对应的压力梯度的值也会较大,也可以反映病变血管的异常血液流动情况.2 二维轴对称狭窄血管内脉动流的流动特性选择模型M2为研究对象,模拟中选取周期T=10000,流动的Womersley数(α=L y2ων,ω=2πf=2π/T是脉动的角频率)为α=31357,入口压强随时间周期性变化,即p(0,t)=Δp cosωt+p out,Δp为一常量,出口压强pout设为定值,图7显示一个周期8个不同时刻的脉动流管道中心中轴线上的压强分布.从图7中可以看出,中轴线上的压强不是线性变化,在靠近狭窄部位压强下降幅度明显增加,在最大狭窄处附近压强出现极小值,狭窄下游压强又逐渐回升,远离狭窄后,压强变化逐渐恢复类直管变化趋势,并且压强随时间的波动存在一定的滞后,如图中1/8T和7/8T,2/8T和6/8T以及3/8T和5/8T不完全重合.狭窄中心x0=121,狭窄长度为78.图7 iT/8时刻中轴线上的压强分布 142 北京师范大学学报(自然科学版)第46卷 脉动流前半周期的流场分布如图8所示.从图中可以看出,在T/4时刻,在狭窄下游管壁附近开始出现流动分离区,且分离区逐渐扩大,如3T/8时刻,接着又缓慢消失,如T/2时刻,流体平滑地流过凸包.图8 脉动流在前半周期内不同时刻的流场分布 需要注意的是心脏的周期性泵血作用使动脉中的血液以脉动的形式流动,动脉中血液流动的参量———压强、流量等流动参数也会随时间变化,虽然动脉中血液的流动是脉动流而不是定常流,但动脉中血流的方向平均来说却是始终不变的,即总是从动脉流向毛细血管,再流向静脉.因此,可以把由心脏收缩和舒张所引起的动脉中的脉动流看作是一定常流分量与一振荡分量的叠加,即在图8所示的流场分布中叠加上一个定常流,最终倒流的出现时间将非常短暂,且流速很小.对应于一个周期中的不同时刻,我们发现,管壁切应力的随时间的波动也存在一定的滞后.如图9给出前半周期的切应力分布.3 结束语我们讨论了二维余弦狭窄血管中血液流动的切应力、流场速度、压强和压强梯度在不同狭窄模型和不同图9 前半周期内管壁切应力的变化曲线Re下的分布规律,所得结论与用其他实验,理论和数值模拟得到的结论相同[9211],但用LBM方法编程简单,参数易于选择,从分布函数就可以得到所有主要宏 第2期张立换等:格子Boltzmann方法模拟二维轴对称狭窄血管内的脉动流143观量,证实了LBM在此模型下的适用性.考虑到血液流动的脉动性,研究了一个脉动周期中流场的变化特点,并与定常流动比较,分析其差异.由于Womersley数的选择在血流参数范围内,故认为上述结论具有参考性.值得注意的是,流动分离区并不同于定常流动所述那样在管壁处停留,而是随着时间的演化,流动分离区间歇性的出现,如对α=710797的流场分布模拟显示,与α=31357的不同点是流动分离区在管壁附近产生后,随着时间的推移,又会向管轴附近发展.与定常流情况下在Re达到300后才出现明显的分离区不同,对于脉动流,在Re较小时,就已经可以观察到明显的流动分离区了.4 参考文献[1] Qian Y H,d’Humieres D,lallemand ttice B GKmodels for Navier2Stokes equation[J].Europhys Lett, 1992,17:479[2] Chen H,Chen S,Matthaeus W H.Recovery of theNavier2Stokes using a lattice2gas Boltzmann method[J].Phys Rev A,1992,45:R5339[3] Artoli A M,Kandhai D,Hoef sloot H ttice B GKsimulations of flow in a symmetric bif urcation[J].FutureG eneration Computer Systems,2004,20:909[4] Boyd J,Buick J,Cosgrove J A,et al.Application of thelattice Boltzmann model to simulated stenosis growth in a two2dimensional carotid artery[J].Phys Med Biol,2005, 50:4783[5] Li H B,Fang H P,Lin Z ttice Boltzmannsimulation on particle suspensions in a two2dimensional symmetric stenotic artery[J].Phys Rev E,2004,69: 031919[6] 康秀英,刘大禾,周静,等.用格子Boltzmann方法模拟动脉分叉流场[J].北京师范大学学报:自然科学版,2005, 41(4):364[7] Z ou Q,He X.On pressure amd velocity boundaryconditions for the lattice Boltzmann B GK model[J].Phys Fluids,1997,9(6):1591[8] Mei R,L uo L S,L uo Shyy W.An accurate curvedboundary treatment in the lattice Boltzmann method[J].J Comput Phys,1999,155:307[9] 姚力,李大治.刚性轴对称狭窄血管内压强及其梯度的研究[J].应用数学和力学,2006,27(3):311[10] 刘国涛,王先菊,艾保全,等.狭窄动脉血管中Poiseuille流动对管壁切应力的影响[J].中山大学学报:自然科学版,2004,4(6):29[11] 秦杰,刘辉,孙利众,等.刚性狭窄管内血流压力分布的研究[J].生物力学,1989,4(6);57SIMU LATING B LOOD FLOW IN A TWO2DIMENSIONALSYMMETRIC STENOTIC ARTER Y BYTHE LATTICE BOL TZMANN METH ODZHAN G Lihuan KAN G Xiuying J I Yupin(Depart ment of Physics,Beijing Normal University,100875,Beijing,China)Abstract In t his st udy t he lattice Boltzmann met hod has been applied to a two2dimensional symmet ric stenotic artery.The velocity,p ressure and shear st ress distribution of blood flow were simulated and compared when p ulsatio n over t he blood was added.We have observed t he impact of blood flow when changing t he steno sis struct ure,Reynolds number and Womersley number.These data provide a p hysical explanation for blood vessel lesions and arterio sclero sis.K ey w ords lattice Boltzmann met hod;Reynolds number;Womersley number;p ulsating blood;steno sed artery。
格子boltzmann方法的原理与应用

格子Boltzmann方法的原理与应用1. 原理介绍格子Boltzmann方法(Lattice Boltzmann Method)是一种基于格子空间的流体模拟方法。
它是通过离散化输运方程,以微分方程的形式描述气体或流体的宏观运动行为,通过在格子点上的分布函数进行更新来模拟流体的动态行为。
格子Boltzmann方法的基本原理可以总结为以下几点:1.分布函数:格子Boltzmann方法中,将流场看作是由离散的分布函数表示的,分布函数描述了在各个速度方向上的分布情况。
通过更新分布函数,模拟流体的宏观行为。
2.离散化模型:为了将连续的流场问题转化为离散的问题,格子Boltzmann方法将流场划分为一个个的格子点,每个格子点上都有一个对应的分布函数。
通过对分布函数进行离散化,实现流场的模拟。
3.背离平衡态:格子Boltzmann方法假设流体运动迅速趋于平衡态,即分布函数以指定的速度在各个方向上收敛到平衡分布。
通过在更新分布函数时引入碰撞过程,模拟流体的运动过程。
4.离散速度模型:分布函数描述了流体在各个速度方向上的分布情况,而格子Boltzmann方法中使用的离散速度模型决定了分布函数的更新方式。
常见的离散速度模型有D2Q9、D3Q15等。
2. 应用领域格子Boltzmann方法作为一种计算流体力学方法,已经在各个领域得到了广泛的应用。
以下是一些常见的应用领域:2.1 流体力学模拟格子Boltzmann方法具有良好的可并行性和模拟精度,适用于复杂流体流动的模拟。
它可以用于模拟包括自由表面流动、多相流动、多物理场耦合等在内的各种复杂流体力学问题。
2.2 细胞生物力学研究格子Boltzmann方法在细胞力学研究中也有广泛应用。
通过模拟流体在细胞表面的流动,可以研究细胞运动、变形和介观流的形成机制。
格子Boltzmann方法在细胞生物力学领域的应用已成为一个重要的研究方向。
2.3 多相流模拟格子Boltzmann方法在多相流动模拟中的应用也非常广泛。
格子boltzmann方法

格子boltzmann方法格子玻尔兹曼方法是一种常用的数值计算方法,它主要用于模拟稀薄气体等流体力学问题。
下面我将从方法原理、模拟过程和应用领域三个方面详细介绍格子玻尔兹曼方法。
首先,格子玻尔兹曼方法基于玻尔兹曼方程和格子Boltzmann方程,通过将连续的物理系统离散化为网格系统进行模拟。
网格系统中的每个格子代表一个微观粒子的状态,而碰撞、传输和外部力的作用通过计算和更新这些格子的状态来实现。
该方法主要包含两个步骤:碰撞和传输。
在碰撞过程中,格子中的粒子通过相互作用和碰撞来改变其速度和方向,从而模拟了分子之间的碰撞过程。
在传输过程中,碰撞后的粒子根据流体的速度场进行移动,从而模拟了背景流场对粒子运动的影响。
其次,在格子玻尔兹曼方法中,模拟的过程可以简化为两个部分:演化和碰撞。
在每个时间步长内,系统首先根据粒子速度和位置的信息计算出相应格点上的分布函数,然后通过碰撞步骤更新这些分布函数以模拟粒子之间的碰撞效应。
通过迭代演化和碰撞步骤,系统的宏观行为可以得到。
格子玻尔兹曼方法中最常用的碰撞操作是BGK碰撞算子,它根据粒子的速度和位置信息计算出新的分布函数,并用该新分布函数代替原来的分布函数。
而在传输过程中,粒子通过碰撞后得到的新速度和方向进行移动。
最后,格子玻尔兹曼方法在流体力学领域具有广泛的应用,特别是在稀薄气体流动、微纳尺度流动和多相流等问题中。
由于其适用于模拟分子尺度和介观尺度流动问题,因此在利用普通的Navier-Stokes方程难以模拟的问题中表现出了良好的效果。
此外,格子玻尔兹曼方法还可以用于模拟流动中的热传导问题、气体分子在多孔介质中的传输问题以及颗粒与流体相互作用等多种复杂流动现象。
近年来,随着计算机性能的不断提高,格子玻尔兹曼方法也得到了快速发展,在模拟大规模真实流体问题方面取得了不错的结果。
总结来说,格子玻尔兹曼方法通过将连续的物理系统离散化为网格系统,模拟粒子碰撞和传输过程,实现了对流体力学问题的数值模拟。
格子Boltzmann方法原理及其应用

格子Boltzmann方法原理及其应用摘要在上世纪八十年代后期提出的格子Boltzamnn方法克服了格子气方法的缺点,其本身也在不断的发展之中.格子Boltzamnn方法在流体运动计算方面展现了非凡的风采,成功地模拟了包括均相不可压缩湍流和多孔介质中的多相流动在内的流体动力学问题.但和成熟的流体动力学计算方法相比,特别在工程实际应用上,该方法还有许多值得研究的地方.本文主要介绍工程实际应用时,具体模型的选择问题.首先从理论上对应用最为广泛的几种基本模型进行了详尽的分析和比较.选择了Poiseuille流动,然后从计算精度、数值稳定性和收敛速度这几个方面进行了细致的比较.从理论和实验两个角度验证了D2G9模型的优越性,为工程实际应用上模型的具体选择提供了一定的参考依据.通过研究二阶精确的格子Boltzamnn模型,提出了非牛顿流体.非牛顿流动性是使用幂法则模型实现的.它可以估算出模型的精确程度,同时不会限制这个模型.二阶精度由剪切变稀和剪切增稠液体的幂法则模型参数范围给出.这些结果与Gabbanelli等人的结果相比,精确度更高,并且得到了更快的计算效率.结果表明了格子Boltzamnn方法适用于非牛顿流体模拟.对于实际流动模拟,本文应用二维9速度模型模拟了四种情况的方柱绕流问题.在第一种情况中,单个方柱位于流场中央,给出了流线图,等涡线图,模拟了卡门涡街现象,并计算了升、阻力系数,Strouhal数等参数;在第二种情况中,计算细长矩板截面柱绕流问题,得到了Strouhal数随着矩形长宽不同的比值下的变化情况;在第三种情况中,两个方柱并列位于流场中央,考察了方柱间距对于流场的影响;在第四种情况中,计算了水平来流为剪切流的方柱绕流问题,比较了速度梯度取不同值下流场的变化情况.所有有关力的求解均采用动量转换法.所得结果,包括流线、等涡线、升/阻力系数曲线等均与已有文献的实验或数值结果基本一致,显示LBM方法及其力的求解方法——动量转换法是有效的,能够精确的模拟各流场.其次,我们还引入一种两相耦合机制对D2G9模型进行了修正,从而使之可以正确处理气固两相流中输运相和颗粒相之间的相互作用.随后,我们模拟了后台阶流动,并和传统CFD方法的模拟结果以及修正其他模型的模拟结果进行了验证,得到了令人满意的结论.从一定程度上验证了两相耦合机制的可行性.通过软件模拟获得了水包油、过渡流型和油包水三种流型的典型模拟图.经分析发现:由软件模拟的流型特点和由探针获得的流型特点具有较好的一致性.在本文最后,我们介绍了以经典算例一方腔流为例,对格子Boltzamnn方法的核心代码进行了优化的方法,主要讲述对时间和空间上的优化,优化的程序使计算效率提高数倍.在并行的框架下,核心演化的代码换为优化后的程序,计算效率有大幅度的提高.关键词:格子方法;格子Boltzamnn 方法;格子气自动机;格子Boltzamnn模型.AbstractIn the latter of 80’s,the Lattice Boltzamnn Method(LBM)was introduced mainlyto cope with major drawbacks of its ancestor,the Lattice Gas Automata(LGA).Eversince,it has undergone a number of refinements and extensions which have taken it tothe point where it can successfully compute a number of non trivial flows,raging fromhomogeneous incompressible turbulence to multiphase flows in porous geometries.Yet,when compared with conventional computational fluids dynamics methods,such as finiteelement,finite difference,it is apparent that there is still a way to go before LBM canachieve full engineering status.In this paper,we mostly focus on the choice of the basic LB models in theengineering application fields.Firstly,we expatiate the basic LB models in theory.Then,we simulate the Poiseuille flow with those basic LB models.And wecompare the simulation results from the computation precision、the numerical stabilityand the convergence rate.Finally,we draw a conclusion that the D2G9 model is the bestchoice in the engineering application fields.Simulation of Flow past square cylinder with LB Method.For the simulation of actual flow,we use D2Q9 investigate fourcases of flow past square cylinders in this paper.For case 1,one singlesquare cylinder is located at the center of the channel,we describe thestreamline contour,vortices contours,simulate the Karman vortex,then compute the lift coefficient,drag coefficient,Strouhal numbersetc.For the case 2,simulate the flow past a cylinder of rectangularcross-section;compute the change of Strouhal numbers varying withthe side ratio.For case 3:two square cylinders arranged side by side inthe center of the channel,the flow features at different spacing ratiosare studied.For case 4:we compute the linear shear flow over a squarecylinder,compare the evolution of flow with different velocitygradient.The results of thesimulation including the streamlines,vorticity contours,lift and drag coefficients etc.are agreed with thoseof available literatures,and show that LB method and itsmomentum-exchange method can achieve accurate results and obtainthe reasonable flow in detail.we employ a two-way coupling mechanisms to modify theD2G9 model.With the modified D2G9 model,we can handle with the interactionsbetween carrier phase and dispersed phase in the model.Then,we simulate abackward-facing step model,and the results are compared qualitatively with the result ofthe traditional CFD method and the other modified LB models.Though the comparison,we can see that the two-way coupling mechanisms can handle with the gas-solid twophases flows successfully.Three kinds of flow pattern,which are oil-in-water flow,transitional flow andwater-in-oil flow,have been got by simulation.According to the result of simulation,theoil-water two-phase flow pattern transition boundary model has been got by.By the analysisof simulation,the characteristic of three kinds of flow pattern of vertical oil which has beengot by analysis of the signals is consistent with results by simulation.We take the classical problem-cavity flow as an example and optimize the kerne codes of the LBM. The optimization include two aspects :time and space .The efficiency of the optimized code increased much more .In the parallel frame,the efficiency also increased if the kernel code is taken the optimized code.Key word:1atrice method;1atrice bohzmann method;lattice gas automata;LBM目录第1章概述 11.1研究格子 Boltzamnn方法的意义 11.2 格子 Boltzamnn方法的发展历程 31.2.1孕育阶段 31.2.2 萌芽到成长阶段 31.3 格子 Boltzamnn方法应用概况及优缺点 51.3.1格子Boltzamnn方法应用概况 51.3.2格子Boltzamnn的优缺点 61.4本论文的研究目的 81.5 相关研究的综述与专注情况 8第2章格子Boltzamnn方法介绍 102.1 Boltzamnn方程的产生 102.2细胞自动机(CA) 112.3格子气自动机(LGA) 122.4格子Boltzamnn方法(LBM) 132.5 格子Boltzamnn的基本结构 162.6本章小结 17第3章格子Boltzamnn方法的基本模型比较 183.1 格子 Boltzamnn 方法基本模型概述 183.2 进行常压力梯度驱动的Poiseuille流动模拟比较几种基本模型 23 3.3本章小结 27第4章格子Boltzamnn方法的算法设计 284.1格子Boltzamnn方法的算法实现 284.2格子Boltzamnn方法的高效算法设计 304.2.1优化算法 304.2.2优化实验 324.3 本章小结 34第5章格子Boltzamnn方法的实际应用 355.1二阶精确格子Boltzamnn非牛顿流体的流动模拟 35 5.1.1理论背景 355.1.2方法和计算结果分析 385.1.3 本节小结 405.2 格子Boltzamnn方法的方柱绕流模拟 405.2.1 单个方柱位于流场中央的绕流问题 405.2.2 细长矩形截面住绕流问题 425.2.3 两个并列方柱的绕流问题 445.2.4来流为剪切流的绕流问题 495.3格子Boltzamnn方法模拟气固两相流 515.3.1对气固两相流的模拟模拟对象简介 515.3.2 计算结果分析 545.3.3本节小结 565.4 格子Boltzamnn方法模拟油水两相流软件设计 565.4.1 LBM油水两相流的关键因素选取 575.4.2 软件的设计 605.4.3 本节小结 635.5 简述格子Boltzamnn方法在其他领域中的应用 645.5.1 颗粒悬浮问题的模拟 645.5.2 热导和对流—扩散问题的模拟 645.5.3 偏微分方程的模拟 655.5.4 多相流和多元流的模拟 65结论及展望 67参考文献 68第1章概述1.1研究格子Boltzamnn方法的意义自从二十世纪四十年代出现了第一台电子计算机以来,人们开始进入了电子信息时代.随着高存储、高速度计算机的出现,人们所能解决的问题也越来越广泛,同时所面临的问题也越来越复杂.在对流动现象的研究中,以往人们大部分依靠的是解析方法,但所解决的问题非常有限.而现实生活中所面临的流动问题往往十分复杂,如航空航天器的亚跨超音速飞行、舰船的航行等等,依靠解析的方法来解决这些复杂的流动现象是不可能的.到现今为止,人们对流体运动的研究主要靠实验方法和数值计算方法.实验方法具有直观、结果基本可靠的特点.但也存在较大的缺点:耗费大、周期长,并且结果受实验条件的影响也较大,尤其是如今的航空航天飞行,速度高、飞行条件复杂,用风洞来模拟困难是相当大的.而流体的运动可以由一组偏微分方程描述.在大多数情况下,这些方程(如N-S方程)都是高度非线性的,采用解析的求解方法是不实际也是不可行的.随着大型计算机的出现,使人们可以借助于计算机用数值计算方法来解决复杂的流动问题.因此,在二十世纪六十年代,用数值方法分析求解流动问题的学科——计算流体力学(CFD)逐渐发展起来.伴随着电子计算机的飞速发展以及各种新颖算法的不断出现,CFD已经形成了一门独立的学科,并且在航空航天、船舶、大型能源装置(如核电站)、新型交通工具、海洋工程、环境保护等众多工程技术部门和领域都得到了广泛的应用.随着计算技术的发展、巨型计算机的出现、计算方法的不断改进,计算流体力学在解决流动的理论和工程实际问题中愈加显示出它的巨大作用.目前,计算流体力学已经成为现代计算科学的最有力的推动力之一.在计算流体力学中,传统的数值模拟方法可以分为两大类:(1)从宏观角度出发,基于连续介质假设,采用数值计算方法,求解全位势方程或Euler方程或N-S方程;(2)从微观角度出发,采用分子动力学的方法,对流动进行数值模拟.其中,格子Boltzamnn方法就是典型的一种.格子Boltzamnn方法(Lattice Boltzamnn Method,LBM)1.1.2格子Boltzamnn法(lattice Boltzamnn method)起源于格子气自动机(Lattice Gas Automata,LGA).LGA方法是元胞自动机(Cellular Automata,CA)在流体力学中的具体应用,是空间、时间和速度空间都离散的一个虚拟微观模型,与以连续微分方程为基础的宏观计算流体力学方法有着本质的不同.LGA的微观特性使得它的边界条件非常容易实现,并且计算也很简单.因此,LGA方法非常适于处理边界复杂的问题.更为重要的是,LGA的计算具有局部性和并行性,非常容易在并行机上实现.LGA的出现不但为并行计算提供了许多新思想,而且对并行计算机制造技术产生了重要的影响.但是,LGA方法也有许多不足之处.例如,由于含有随机因素,LGA的计算结果往往包含很大的统计噪声,LGA的宏观方程也不是标准的流体运动宏观方程.格子Boltzamnn方法是为克服LGA方法的一些内在不足而发展起来的一种新方法.LBM不但克服了LGA的缺点,继承了LGA的主要优点,而且还有许多新的优点,如计算量小、计算效率高、编程简单等.LBM的产生与发展,不仅在计算流体力学领域中产生了深远的影响,它所使用的处理方法和观点对其他许多学科也是富有启发性的.格子Boltzamnn法是一种应用非连续介质思想研究宏观物理现象,并可平行运行,求解流体力学问题的新方法.它是由格子气自动机(lattice gas automata,简称LGA)方法发展而来的.该法把流体及其存在的时间、空间完全离散,把流体看成由许多只有质量没有体积的微小粒子组成,所有这些粒子同步地随着离散的时间步长,根据给定碰撞规则在网格点上相互碰撞,并沿网格线在节点之间运动.碰撞规则遵循质量、动量和能量守恒定律.流体运动的宏观特征是由微观流体格子相互碰撞并在整体上表现出来的统计规律.该法是直接从微观模型出发,经过Boole化处理后进行计算,可认为是N-S差分法逼近的一种无限稳定的格式.被广泛应用于复杂几何边界流体流动、多孔介质流、多相流及反应流等.格子气自动机的基本思想是,把计算区域分成许多均匀的正三角形(或正方形)的网格,而那些只有质量无体积的粒子只能在网格点上存在,并沿着网格线在网格间运动.当某一个粒子从某一网格点到邻近的网格点时,有可能和从其他网格点到达该点的粒子相碰撞.根据Pauli不相容原理,在同一时刻同一点上,沿着每一网格线运动方向最多只有一个粒子,流场中的粒子速度不是0(静止)就是1(设格子边长及时间间隔都为1).以三角形网格为例,每一个网格上在某一时刻,其周围的6个网格上粒子沿着网格线聚集到该点,加上该点可能还有一个静止粒子,这样,可能有7个粒子在该点发生碰撞,然后根据碰撞规则再散射出去,演化为新的运动粒子流向各节点的邻居,形成格子气自动机.1986年MeNamaxa和Zaneltti,提出把格子气自动机中的整数运算变成实数运算,建立了格子Boltzamnn 模型,克服了格子气自动机的数值噪声的缺点.后来陈十一和钱跃宏采用了单一时间松弛方法,满足了各项同性,GalIean不变性,并得到了独立于速度的压力项.使格子Boltzamnn模型保留了格子气自动机的优点,克服了其不足,并在理论分析和数值模拟方面都具有很大灵活性,而且程序编制简单,计算效率较高.从格子Boltzamnn方法诞生至今天已有20年,20年间,其在理论和应用研究等方面都取得了迅速发展,并逐渐成为在相关领域研究的国际热点之一,受到国内外众多学者关注.与之传统模拟方法不同,格子Boltzamnn方法基于分子动理论,具有清晰的物理背景.该方法在宏观上是离散方法,微观上是连续方法,因而被称为介观模拟方法.在许多传统模拟方法难以胜任的领域,入微尺度流动与换热、多孔介质、生物流动、磁流体、晶体生长等,格子Boltzamnn方法都可以进行有效的模拟,因此它被用于多种复杂现象的机理研究,推动了相关学科的发展.可以说,格子Boltzamnn方法不仅仅是一种数值模拟方法,而且是一项重要的科学研究手段.此外,格子Boltzamnn方法还具有天生的并行特性,以及边界条件处理简单、程序易于实施等优点.可以预计,随着计算机技术的进一步发展,以及计算方法的逐渐丰富,格子Boltzamnn方法将会取得更多成果,并为科技发展发挥更重要的作用.1.2 格子Boltzamnn方法的发展历程格子Boltzamnn方法自诞生至今年已取得了长足发展,被誉为现代流体力学的一场变革.1.2.1孕育阶段:对格子Boltzamnn方法发展使得了解,得先从格子自动机说起.格子气自动机使更广泛的元胞自动机在流体学中的应用.元胞自动机是一个时间和空间离散的数学模型.20世纪60年代,Broadwell等人首先提出了离散速度模型,用以研究流体中的激波结构.20世纪70年代,为了研究流体的运输性质,法国的Hardy、Pomeau和Pazzis提出了第一个完全离散模型,该模型命名HPP模型.这是历史上的第一个格子气自动机模型.1986年,法国的Frisch、Pomeau和美国的Hasslacher提出具有足够对称的二维正六变形格子气自动机模型,,命名为FHP模型.由于这些方法在还处在一些缺点:(1)有格子气自动机演化方程推导出来的动量方程不满足Gaililei不变形;(2)流体状态方程不仅仅依赖于密度和温度,还与宏观流速有关;(3)破装蒜子具有指数复杂性,对计算量和存储量也有较大要求.因而,我们将这一段格子气自动机的发展过程称作格子Boltzamnn方法的孕育期.1.2.2 萌芽到成长阶段:自1988年底一篇关于格子Boltzamnn方法的论文出现至今,格子Boltzamnn方法从萌芽逐渐成长壮大,并成为目前一大国际研究热点,受到越来越多学者的关注.1988年,McNamra和Zanetti提出把格子气自动机中的Bool运算变成时数运算,格子点上的粒子数不是用整数0或1来表征,而是用实数f来表示系综平均后的局部粒子分布函数,用Boltzamnn方程代替格子气自动机的演化方程,并将该模型用于流体的数值计算.这是最早的格子Boltzamnn模型,从此开启了格子Boltzamnn方法的历史大门.1989年,Higuera和Jimenez提出了一种简化模型:通过引入平衡分布函数,将碰撞算子线性化.该模型不需要碰撞模型,并忽略各自粒子间的碰撞细节,相比于多粒子碰撞模型,容易构造.同年,Higuera等进一步提出了强化碰撞算子方法,以增加模型的数值稳定性.这两模型统成为矩阵模型.经历了上述两类模型,格子Boltzamnn方法消除了统计噪声,克服了碰撞算子指数复杂性,但是由于依然使用Fermi-Dirac平衡态分布函数,格子气自动机的其他缺点仍然存在.1991年,Chen等提出了单松弛时间法,用同一个时间松弛系数来控制不同例子靠近各自平衡态的快慢,进一步简化了碰撞算子;Qian等人在1992年也提出了类似的方法,称之为格子BGK(LBGK)模型.LBGK模型与矩阵模型类似,但与前面两种模型不同的是,当粒子种类数增加时,碰撞算子本身发生生变化,不会变得复杂.至此,格子Boltzamnn方法完全克服了格子气自动机的一系列缺点,并逐渐成熟,成为国际研究的热点.早期的格子Boltzamnn模型只能用于等温不可压缩流动的模拟.但因为存在可压缩效应,会引起一定的误差.为了消除或强敌有可压缩效应引起的误差,许多学者致力于新的格子Boltzamnn模型的研究,并提出了多种等温不可压模型.而后,一些不可压缩热模型成功实现了对有效范围温度变化的热力学和传热学问题的模型.其中,最成功的要数双分布函数模型.他是在密度分布函数的基础上引入了温度分度函数、或内能分布函数、或总能分布函数,并用密度分布函数演化得到速度场,这类模型具有与等温不可压模型相同的数值稳定性,而且可以从根本上解决压缩功和耗热问题.边界处理方面,经历了20年的发展,格子Boltzamnn方法已逐渐发展出适合不同边界条件、不同模型的边界处理格式.网格划分方面,最初的格子Boltzamnn方法是基于正六边形或正四边形的均匀对称网格.由于均匀网格在计算效率、计算精度等方面的不足,从而促进了非均匀网格、多快以及多重网格、无网格等多技术出现.总的来说,这些网格技术延展了格子Boltzamnn方法的应用范围,使得格子Boltzamnn方法主机去年从理论的神殿走向更可能多的实际应用领域.1.3 格子boltzamnn方法应用概况及优缺点1.3.1格子boltzamnn方法应用概况与传统的宏观数值方法相比,具有介观特性的格子Boltzamnn方法其主要优点是物理图像清晰、便捷容易处理以及并行性能好等.因而自诞生之日起,格子Boltzamnn方法就得到了国内外学术界的广泛关注,并寄希望该方法能再注入为尺度流体、多相流、多孔介质内流动与换热、化学反应流等传统法就延受限的领域取得开拓性进展.事实上,在20年的发展过程中,格子Boltzamnn方法的确也已成一个十分活跃极具发展前景的模拟手段.并迅速在微/纳米尺度流、多孔介质流、多相多质流、非牛顿流体、粒子悬隔i浮流、湍流、化学反应流、燃烧问题、磁流体、晶体生长等许多领域得到应用.下面分别以多孔介质流、多相流和非牛顿流体三个方面为例,做较详细说明.由于格子Boltzamnn方法边界条件易于实施,在模拟具有复杂几何构型的问题具有较大的优势,因而这个方向的发展非常迅速.目前,采用格子Boltzamnn方法对多孔介质流进行模拟主要在空隙尺度和代表单元尺度上进行.在孔隙尺度上,可以直接使用格子Boltzamnn方法描述孔隙内的流体流动,多孔介质则当做固体壁面,流体与介质相互作用使用边界处理格式来描述.在多相流方面,由于真实的流动问题常常是多相的,因而对其开展研究具有重要的现实意义.由于格子Boltzamnn方法的介质特性,它可以方便地描述数流动中不同相之间的相互作用,因而在多相流领域具有较好的应用前景.按照设计方法的不用,现有模拟多相流的格子Boltzamnn模型可分为四大类:着色模型、伪势模型、自由模型和其他模型.格子Boltzamnn方法在非牛顿流体领域的应用刚刚起步,主要研究对象是非牛顿幂律流体.Aharonov等最早提出使用矩阵碰撞该算子来计算幂律流问题,即在每一个时步内,调整碰撞算自来该表局部的动力学黏性系数.Boek用该模型模拟了幂律流体在简化多孔介质中模型的流动,模拟结果与达西定律符合良好.最近,Gabbanelli又对上述模型进行了改进,引入分段幂律方程描述剪切率和表现黏度的关系.以上可看出,到目前为止,格子Boltzamnn方法的研究者主要局限在科学界.尽管如此,随着格子Boltzamnn 方法理论体系逐渐完善,以及计算机技术的进一步发展,格子Boltzamnn方法也会走向更加广泛的工业实际应用中.1.3.2格子Boltzamnn的优缺点流体力学的理论描述通常建立在纳维--斯托克斯方程的基础上,作为流体力学的基石,它已处在了一个多世纪.在通常尺度下,|人们对此方程的物理可靠性即准确性并不抱异议.理论上人们一般通过求纳维--斯托克斯方程及其各种简化形式的途径来处理复杂的流体力学问题,现行的计算流体力学研究也主要是围绕着纳维--斯托克斯方程的计算方法展开的.然而,基于其本质上的非线性以及边界条件处理的困难,除少数简单问题外,解析和数值求解纳维--斯托克斯方程都是极具挑战性的任务.除了求解的困难外,作为一种对流体物理的描述,与描述经典力学运动的牛顿运动方程,或与描述量子力学运动的薛定谔方程等原理方程不同,纳维--斯托克斯方程是从更根本的原理性方程出发,在合理地假定某些物理机制可以忽略后,经过统计平均得到的.本质上纳维--斯托克斯方程当然不可能描述那些被忽略了的物理机制带来的宏观现象,比如流体系统中的相变、非牛顿的本构关系以及在分子运动自由程尺度上的物理现象,在这些领域,纳维--斯托克斯方程明显的显示出了他的局限性.从20世纪80年代末开始,一种对于流体力学的全新的理论表相及有效的计算方法初步形成,这就是现在人们通常所谓的格子Boltzamnn方法.关于格子Boltzamnn方法的早期发展,上文已有较全面的综述,在此仅作简单介绍.从历史角度来讲,格子Boltzamnn方法最初是从所谓的格子气模型演化而来的,而后者是一种抽象简化的分子运动数学模型.格子Boltzamnn方法最初的引入有两个主要原因:一是为了降低模型导致的数值噪音;而是能够克服格子气模型里处在的非物理缺陷.可以证明,格子Boltzamnn系统的宏观表象基本满足纳维--斯托克斯方程.从而,人们可以模拟格子Boltzamnn系统地方法来间接地解纳维--斯托克斯方程.标准格子Boltzamnn方程一般用一下的数学表达式描述:式中——粒子分布函数;——碰撞项.用格子玻尔兹曼模型进行流体的数值模拟有一些明显的优越性.如,它的对流(advection)过程是通过常数值速度实现的.这相应的计算是一项极其简单的操作步骤.当适当的格子网格选定后,该过程通常可以用完全平移的方式实现.用计算数学里的常规有限插值语言来讲,它对应于上风插值.但所不同的是其对应的柯郎数(Courant Number)等于1.相比之下,纳维——斯托克思方程的对流项是一个随时空变化的非线性函数.众所周知,对于它的计算不是一项简单的事,并且,数值稳定性的要求迫使人们在实际问题的计算中只能使用比1小得多的柯朗数.在给定空间分辨度的情况下,小柯朗数意味着小时间步长,从而大大延长了计算时间:同时,小柯朗数也增大了数值扩散误差,迫使人们采用更高精度格式或隐式格式.其后果是,或者算法变得极为复杂,并行效率大大降低;或者计算只限制在处理定常流的情况下.事实上,定常流是对流动情况的极大限制.许多重要的流体力学问题,如分离流,即使我们只关心它的时间平均的结果,也是不能用定常流假设来近似的.在此我们也要提一下格子玻尔兹曼方程的另一个本质特性:所有非线性效应在格子玻尔兹曼方法里都包含在碰撞项中,并且是以纯粹局部信息的方式体现的.这进一步发挥了并行计算的长处.所有这些理由意味着格子玻尔兹曼方法是对非定常流动实行大规模并行模拟计算的一种比较优越的方法.相比之下,以流体力学方程(纳维一斯托克思方程或Burnett类型方程)宏观描述为基础的传统计算方法对许多这类问题存存基本困难.除边界条件之外,利用各种封闭性假设推导出的超越纳维一斯托克思的宏观方程直至现今仍存在对其数学规范性的疑问和争议,多相流的计算也存存同样问题.众所周知,流体系统中存在多相的物理机制是分子问的长程作用力,这种机制早已超出了流体力学方程所能描述的物理现象范围.以流体力学方程为基础的多相流计算方法必须依赖额外的模型来模拟流体力学方程本身所不包含的物理现象.除了实际数值结果显示的问题之外,这种方法本质上隐含着严重的基本物理缺陷,这种缺陷集中表现在对相交界面的准确描述上面,即在十分尖锐的相界面附近,纳维一斯托克思方程之类近平衡态的近似表象是有相当疑问的.这也反映在相界面和兀滑动(no—slip)固体边界条件的互斥性上面,为了修补这一缺憾,人们不得不引入各种滑动经验模型.反之,以细观(mesoscopic)为表象基础的格子玻尔兹曼方法可容忍更大的非平衡态程度及更广义的严格边界条件.另外,压力的状态方程在细观表象中是由粒子的相互作用自然得出的,而不用直接输入和处理.在相变情况下,物体的宏观特性将产生不连续性,而对应的微观和细观力学机制并无改变.格子玻尔兹曼方法在模拟多相流上有着广泛的使用.然而,这种为大多数人所熟悉的格子玻尔兹曼方法的理论框架存在本质上的缺陷.由于它运用逆向切普曼一安斯柯格展开的途径来适定平衡态分布函数中的关键参数,以达到复建宏观物理体系的目的,这就使其。
多孔介质内流体传质过程的模拟与优化

多孔介质内流体传质过程的模拟与优化引言多孔介质是指由颗粒、纤维或孔隙构成的具有连续分布孔隙结构的物质。
在自然和工程领域中,多孔介质在很多领域都起着重要作用,如土壤中的水分运移、岩石中的石油储藏和传输、过滤材料中的颗粒捕捉等。
而在多孔介质内部,流体的传质过程又是一个关键的研究领域。
通过对多孔介质内流体传质过程的模拟与优化,可以帮助我们更好地理解和掌握多孔介质的传质规律,进而指导工程实践和优化设计。
传质过程的数学模型多孔介质内流体传质过程可以用一组偏微分方程来描述。
其中最常用的模型是输运方程,也称为Fick定律或Darcy定律。
该方程描述了物质在多孔介质内的扩散和对流过程。
具体表达式如下:$$ \\frac{{\\partial C}}{{\\partial t}} = D \ abla^2 C - \ abla \\cdot (u C) $$其中,C为物质的浓度,D为扩散系数,u为流体的速度。
这个方程由两部分组成,第一部分描述了扩散传质过程,第二部分描述了对流传质过程。
通过数值模拟来解决这个方程,可以得到多孔介质内流体传质过程的时间和空间分布规律。
数值模拟方法为了模拟多孔介质内流体传质过程,可以采用多种数值模拟方法,如有限差分法、有限元法和格子Boltzmann法等。
这些方法本质上是离散化连续问题,通过将空间和时间离散为一系列节点和时间步长,然后求解离散化的方程组来求得流体传质过程的数值解。
有限差分法有限差分法是最常用的数值模拟方法之一。
它通过将空间和时间离散化,将连续的偏微分方程转化为离散的差分方程来求解。
具体来说,空间离散化时将多孔介质划分为一系列小网格,时间离散化时将传质过程划分为一系列小时间步长。
然后,根据有限差分近似的表达式,将偏微分方程转化为一组代数方程,通过求解这组方程得到多孔介质内流体传质过程的数值解。
有限元法有限元法是另一种常用的数值模拟方法。
它以有限维空间为基础,通过选取适当的试探函数和权函数来近似描述多孔介质内流体传质过程。
格子boltzmann法

格子boltzmann法
格子波尔兹曼法(Grid-Based Boltzmann Method)是用于计算复杂系统的一种数值模拟方法,该方法基于玻尔兹曼方程,采用格子划分的非总熵方案计算分布函数所描述的传播动力学系统的平衡性质。
格子波尔兹曼方法由三个部分组成,分别是分子动力学基础、格子化方案以及格点迭代方案。
在空间上,格子波尔兹曼方法采用密度聚类格子,由于每个格子内节点之间的影响,允许改变每个节点状态。
在时间上,格子波尔兹曼方法通过欧拉法和龙格-库塔法,将弹性系统的猝灭问题转换为一个接近平衡态的迭代问题。
最终,根据初始条件和格子化方案计算本征周期、如粒子操纵力学系统中的陷阱模式等。
热格子Boltzmann法分析及应用

热格子Boltzmann法分析及应用陈杰;钱跃竑【摘要】格子Boltzmann方法(lattice Boltzmann method,LBM)是一种基于气体动理论的介观计算方法,其物理背景清晰、边界处理简单,已成功应用于等温(或无热)流动中.简要介绍现有的几种热格子Boltzmann模型,并运用几种热格子模型求解热Couette流、方腔自然对流等典型算例,对比不同热格子模型的数值稳定性、准确性、模型的计算效率等.将两种热格子模型用于多孔介质内的流动与传热问题中,对比热格子模型在处理复杂结构时的数值特性.%Lattice Boltzmann method (LBM) is a mesoscale computational method based on the gas kinetic theory. For solving Fourier-Navier-Stokes equations, the thermal lattice model has attracted much research attention. This paper compares several thermal lattice models in terms of accuracy, stability and computational efficiency. The thermal flow in pore-scale porous is also studied using different thermal lattice models.【期刊名称】《上海大学学报(自然科学版)》【年(卷),期】2012(018)005【总页数】7页(P489-495)【关键词】格子Boltzmann方法;热格子Boltzmann方法;多孔介质【作者】陈杰;钱跃竑【作者单位】上海大学上海市应用数学和力学研究所,上海200072;上海大学上海市应用数学和力学研究所,上海200072【正文语种】中文【中图分类】O351格子Boltzmann方法(lattice Boltzmann method,LBM)是近20年发展成熟起来的一种数值计算方法.LBM基于气体动理论,通过分布函数的演化获得宏观信息.作为一种简单且能处理复杂流动问题的有效数值方法[1-2],LBM具有良好的数值稳定性、天然的并行性、简单的边界处理等优点,自出现之日起就被广泛用于多孔介质流[3]、多相流[4]、反应扩散系统[5]等诸多领域.早期的LBM只应用于等温流动(或无热流动)的模拟,但是基于这种方法具备处理复杂问题的能力以及解决传热问题的需要,研究者一直在不断地探索研究热格子Boltzmann模型,已形成了一些经过数值验证具有模拟热流动能力的热LBM[6-10],并应用于多孔介质流动与传热、燃烧及化学反应流、湍流等问题.本研究简述了不同热格子Boltzmann模型的基本理论,并通过数值分析对比了不同热格子Boltzmann模型的计算结果及数值特性,进而用于多孔介质流动传热问题中.1 等温LBM基本原理LBM中除时间、空间被离散之外,无限维的粒子速度空间也都被离散成有限的速度序列.在标准LBM模型中,物理空间被离散成正方形(体)格子,流体粒子在格点x上碰撞并按离散速度E=[e0,e1,…,eq-1]迁移到x+eiδt格点.fi(x,t)定义为t时刻在格点x上速度为ei的粒子密度,满足如下的格子Boltzmann方程:式中为平衡态函数,ω为松弛因子.通过简单地向平衡态不断趋近的过程代替真实的复杂碰撞,即BGK(Bhatnagar-Gross-Krook)近似,所以此模型也称为LBGK 模型.平衡态分布函数的选取是LBM的关键.DnQm系列[1]中均采用式中,cs为格子声速,Wi为不同速度粒子的权重.本研究在数值模拟中均采用D2Q9模型.宏观密度和速度分别定义为2 热格子Boltzmann模型现有的热格子Boltzmann模型通常可以分为两大类:第一类是流场温度场耦合统一求解的模型,如多速格子Boltzmann模型(multi-speed LBM,MSLBM)、熵格子Boltzmann方法(entropic LBM,ELBM);另一类则是对流场与温度场分别求解,如被动标量格子Boltzmann模型(passive scalar LBM,PSLBM)、双分布函数(double-distribution-function,DDF)模型,以及其他与传统计算流体动力学(computational fluid dynamics,CFD)结合的混合方法,如混合热格子Boltzmann方法(hybrid-thermal LBM,HTLBM).2.1 多速格子Boltzmann模型(MSLBM)多速格子Boltzmann模型是等温LBM模型的直接推广,其密度、速度、内能等均由速度分布函数的各阶速度矩得到.Qian[6]基于等温LBGK模型,提出了D1Q5,D2Q13,D3Q21,D3Q25热力学LBGK模型.在这些模型中,除了要满足等温模型的守恒条件外,还应满足能量守恒和平衡态热通量为0的条件:平衡态分布函数是Maxwell分布的截断形式:式中,Ap,Bp,Dp为待定参数,由满足的守恒条件确定.平衡态包含了速度的三阶项,离散速度也在D2Q9的基础上在主坐标轴上增加了4个速度.Qian[6]采用此模型对一维激波管、二维 Rayleigh-Benard对流进行了模拟,证明了该模型的有效性.MSLBM具有良好的物理基础,宏观方程绝对耦合,已成功模拟了一些传热现象,但只能模拟狭窄的温度范围和较小的Ma数,存在稳定性问题,限制了该模型的广泛应用.2.2 熵格子Boltzmann方法(ELBM)熵格子Boltzmann方法考虑了H定理,通过在守恒约束下最小化波尔兹曼H函数求解平衡态分布函数,由此得出的正定的分布函数保证了模型的稳定性和准确性[11].Prasianakis等[10]将ELBM拓展到热流动问题的求解中,证实了该方法的有效性,本研究参照此方法.H函数定义为平衡态分布函数则是在满足守恒约束条件:的情况下,求H函数最小值得到的,具体形式详见文献[10].Prasianakis等[12]采用在ELBM中加入高阶量的补偿算法,较大地提高了基于D2Q9标准格子的ELBM可模拟的温差和Ma数,但是模型实施较为复杂.2.3 双分布函数模型双分布函数模型,即存在两个分布函数:密度分布函数和内能(温度或总能)分布函数,其中密度分布函数用于模拟速度场,而内能(温度或总能)分布函数则用来模拟温度场.温度、内能或总能分布函数均通过不同的方式构造,但其演化都独立于密度分布函数.2.3.1 被动标量格子Boltzmann模型(PSLBM)被动标量格子Boltzmann模型基于如下原理:在忽略压力做的功和粘性热耗散的情况下,温度可以看作是随流体运动的一个标量,遵循对流扩散方程.由于此方程与组分浓度场的控制方程一样,于是Shan[7]提出使用两组分模型模拟单组分热流动问题:组分1模拟流体的运动;组分2模拟被动的温度场.平衡态密度函数为式中,σ表示组分,两组分共享速度,2.3.2 内能双分布函数模型内能双分布函数模型最早由He等[8]提出,其速度场仍用密度分布函数演化模拟,温度场则由内能分布函数模拟.该模型的基本思想是通过对连续Boltzmann方程进行特殊的离散得到等温LBM,如果进行同样的操作,则热LBM可以由离散内能的演化方程得到.根据内能的定义ρε=∫(ξ-u)2/2f dξ,引入内能分布函数g(r,ξ,t)=(ξ-u)2f/2,并引入新的碰撞模型,得到内能分布函数满足的演化方程:式中,q=(ξ-u)·[∂tu+(ξ·)u].然后对演化方程离散,得到可用于数值计算的离散的分布演化方程,具体的离散过程详见文献[8].相比于PSLBM,内能DDF的构造更具有物理基础,并包含了粘性热耗散和可压缩功.相比于MSLBM,DDF模型具有更好的数值稳定性,Pr数不受限制,因此被广泛用于各种近似不可压流体流动与传热问题.2.4 混合热格子Boltzmann模型(HTLBM)HTLBM是指使用 LBM解速度场,使用传统CFD解温度场,并通过一定的方式相互影响.这种方法利用了LBM能简单处理复杂流动问题的优势以及传统CFD在传热问题上的成熟技术,可以处理一些仅仅使用传统CFD较难解决的复杂流动传热问题.最初,Lallemand等[13]将多速多松弛模型和有限差分法(finite difference method,FDM)相结合,提出了混合模型,速度场用多松弛LBM求解,温度场采用FDM求解.本研究采用有限容积法(finite volume method,FVM)与LBM相结合的混合方法,即采用如下的FVM求解能量守恒方程:式中,S为广义源项,包括压力做的功和粘性热耗散.速度场与温度场的耦合通过在LBM中添加温度相关的外力项以及在FVM中添加广义源项S来实现.此外,普朗特数、比热容等热物性以及随温度变化的输运系数可以实现相应的调节.本研究中FVM与LBM采用同一套网格系统,FVM采用绝对稳定且具有与LBM相同精度的二阶迎风格式(second-order upwind scheme,SUS).PSLBM,DDF以及HTLBM这类模型的一个关键之处在于流场与温度场之间的耦合,其模型往往不满足气体完全状态方程,温度场对速度场的影响只是通过施加一个外力来实现.如Guo等[9]针对Boussinesq方程组,通过在密度分布函数演化方程中增加一个外力项以实现温度对流场的影响.Filippova等[14]基于HTLBM研究了小Ma数下高温燃烧,用温度场修正密度场以满足状态方程.3 计算结果及分析为了进一步对比各类模型,本研究采用ELBM,PSLBM,内能DDF模型以及HTLBM,对热Couette流、封闭方腔自然对流和多孔介质内非等温流动等问题进行了模拟对比.3.1 热Couette流模拟考虑两平板间热Couette流,上平板以速度U向右运动,下板静止,且上下平板分别保持恒温Th,Tc,且Th>Tc.横截面温度廓线的解析形式为式中,H为平板间距离,Pr=ν/χ为普朗特数,χ为热扩散系数,Ec=U2/[Cp(Th -Tc)]为埃克特数.热Couette流中不考虑流体可压缩性的影响,而粘性耗散效应明显,因而分别运用ELBM,内能DDF模型和HTLBM对该问题进行了模拟,网格数均为64×64.模拟中Re=UH/ν=20,计算结果如图1所示.固定Pr=4,Ec分别为1,10和20的无量纲温度廓线,散点为不同方法的计算值,曲线为解析解公式(10).由图可见,三种模型都成功模拟了粘性耗散效应,且与解析解吻合得很好.本工作进一步研究了三种模型的计算效率问题.图2给出了温度残差随CPU时间的变化曲线,可见ELBM和HTLBM明显优于内能DDF模型.3.2 封闭方腔自然对流模拟封闭方腔尺寸为H(正方形边长),左右壁面分别保持恒温Th,Tc,且Th>Tc,上下壁面绝热,四壁面速度均为无滑移边界.方腔内充满均质空气,考虑向下的重力.描述自然对流的无量纲参数Ra数定义为图1 热Couette流温度廓线Fig.1 Temperature variation of the thermal Couette flow图2 热Couette流温度残差变化曲线Fig.2 Temperature residuals variation of the thermal Couette flow式中,β为热膨胀系数.物性满足Boussinesq假设,这里通过施加外力G=-β(T-T0)g实现温度场对速度场的影响.在方腔自然对流中,可压缩效应以及粘性耗散效应可忽略不计.从模型分析可以看出,PSLBM在这种情况下与DDF模型类似,而ELBM边界实施较为复杂.因此,本研究分别采用不包含粘性耗散效应的PSLBM和HTLBM对该问题进行了模拟,模拟中Pr=0.71,Ra数分别为104,105和106.图3和图4分别为HTLBM在不同Ra数下流动稳定后得到的流线、等温线,与以往的数值及实验结果一致.由图3可见,随着Ra数的增大,方腔中心的近似圆形的涡逐渐变成椭圆形,进而分裂成两个涡.当Ra= 106时,两个涡分别向左右壁面移动,在中心出现了第三个涡.由图4可见,随着Ra数的增大,竖直的等温线逐渐变得水平,主导的传热机理由导热变为对流.为了进一步定量考核,本研究计算了努塞尔数Nu和平均努塞尔数 Numean.表1给出了热壁面的Numean、最大Nu数Numax及相应位置的yNumax、水平中心线上最大速度vmax及相应的位置x、垂直中心线上最大速度umax以及相应的位置y.HTLBM和PSLBM求解的结果与Barakos等[15]的基准解一致.同样,本研究对HTLBM和PSLBM的计算效率进行了对比,图5所示为两种方法模拟自然方腔对流Ra=105时,速度残差随CPU时间的变化曲线.可以明显看出,两种方法中残差均呈现震荡下降趋势,且HTLBM收敛快于PSLBM,HTLBM残差收敛到10-7以下时的耗时为PSLBM的57%.图3 方腔自然对流不同Ra数的流线Fig.3 Predicted streamlines of natural convection图4 方腔自然对流不同Ra数的等温线Fig.4 Predicted temperature profiles of natural convection表1 数值解与基准解对比Table 1 Comparison of numerical results between thermal models and benchmarksRa数模型 Numean Numax(y/H) umax(y/H) vmax(x/H) PSLBM 2.247 3.538(0.141) 0.194(0.824) 0.234(0.121) Ra=104 HTLBM 2.242 3.553(0.145) 0.194(0.824) 0.234(0.121) Barakos等[16]2.2453.539(0.143) 0.193(0.818) 0.234(0.119) PSLBM4.512 7.827(0.075)0.128(0.854) 0.256(0.065) Ra=105 HTLBM 4.507 7.723(0.085) 0.134(0.854) 0.260(0.065) Barakos等[16] 4.510 7.636(0.085) 0.132(0.859) 0.258(0.066) PSLBM 8.809 17.454(0.033) 0.079(0.852) 0.261(0.037) Ra=106 HTLBM 8.792 17.435(0.040) 0.081(0.854) 0.263(0.040) Barakos等[16] 8.80617.442(0.037) 0.077(0.859) 0.262(0.039)图5 方腔自然对流速度残差变化曲线Fig.5 Velocity residuals variation of thenatural convection3.3 多孔介质非等温流动模拟多孔介质内部结构十分复杂,其流动传热现象也相当复杂.格子Boltzmann方法在模拟孔隙内的流体运动时可以方便地使用反弹格式处理复杂流场,因此,该方法在孔隙尺度模拟多孔介质内部复杂流动上有明显的优势及较高的计算率.对于多孔介质内流动与传热的问题,以往使用比较广泛的是PSLBM和内能DDF模型.本研究将HTLBM用于多孔介质流动与传热分析中,并与PSLBM进行了对比.本研究分析了分形多孔介质中的自然对流,分形结构采用Sierpinski地毯,依次对分形等级N=2和3的Sierpinski情况进行了模拟.无量纲控制参数Pr=0.71,Ra数分别为104,105和106,固体区域温度保持线性温度分布.图6为采用HTLBM计算N= 2分形结构内自然对流得到的流线图,图7为相应的等温线.由图可见,模拟结果与PSLBM一致,随Ra数的逐步增大,传热机理由导热主导变化为对流主导.图8为N=3,Ra=106时的流线图及等温线.由图可见,固体的增多明显地抑制了对流作用.同样对HTLBM在计算效率的问题上和PSLBM进行了对比.图9为Ra=106时两种方法模拟N=2分形结构时的速度残差曲线,此时HTLBM耗时为PSLBM的76%,仍具有优势.图6 多孔介质方腔自然对流流线(N=2)Fig.6 Predicted streamlines of porous cavity(N=2)图7 多孔介质方腔自然对流等温线(N=2)Fig.7 Predicted temperature profiles of porous cavity(N=2)图8 多孔介质方腔自然对流流线及等温线(N=3)Fig.8 Predicted streamlines and temperature profiles of porous cavity(N=3)4 结论本研究简要介绍了几种热格子Boltzmann模型(MSLBM,ELBM,PSLBM,内能DDF模型及HTLBM),并运用不同热格子模型求解了两个典型算例以及多孔介质流动传热问题,得到如下结论.图9 多孔方腔自然速度残差变化曲线Fig.9 Velocity residuals variation of porous cavity(1)速度场温度场耦合求解的模型还需要进一步发展才能被广泛应用.(2)相比于PSLBM和DDF模型,HTLBM在保证计算精度的前提下,具有较高的计算效率.(3)数值模拟验证了HTLBM在处理多孔介质复杂结构时可行、有效,且比PSLBM 的效率高.参考文献:[1] QIANY H,D’HUMIERESD,ttice BGK models for Navier-Stokes equation [J].Europhysics Letters,1992,17(6):479-484. [2] QIANY H,SUCCIS,ORSZAGS A.Recent advances in lattice Boltzmann computing[M]∥ DIETRICH S.Annual reviews of computational physicsⅢ.New J ersey:World Scientific Publishing Company,1995:195-224.[3] ZHAOC Y,DAIL N,TANGG H,et al.Numerical study of natural convection in porous media(metals) using lattice Boltzmann method (LBM) [J].International Journal of Heat and Fluid Flow,2010,31 (5):925-934. [4]严永华,石自媛,杨帆.液滴撞击液膜喷溅过程的LBM模拟[J].上海大学学报:自然科学版,2008,14(4):399-404.[5]李青,徐旭峰,周美莲.三维斑图形成的格子Boltzmann方法模拟[J].上海大学学报:自然科学版,2007,13(5):516-518.[6] QIANY H.Simulating thermohydrodynamics with lattice BGK models [J].Journal of Scientific Computing,1993,8(3):231-242.[7] SHANX.Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method[J].Physical Review E,1997,55(3):2780-2788. [8] HEX,CHENS,DOOLENG D.A novel thermal model for the latticeBoltzmann method in incompressible limit[J].Journal of Computational Physics,1998,146 (1):282-300.[9] GUOZ,ZHENGC,SHIB,et al.Thermal lattice Boltzmann equationfor low Mach number flows:Decoupling model[J].Physical Review E,2007,75 (3):036704.[10] PRASIANAKISN I,CHIKATAMALAS S,KARLINI V,et al.Entropic lattice Boltzmann method for simulation of thermal flows[J].Mathematics and Computers in Simulation,2006,72(2):179-183. [11] ANSUMALIS,KARLINI V,OTTINGERH C.Minimal entropic kinetic models for hydrodynamics [J].Europhysics Letters,2003,63(6):798-804.[12] PRASIANAKISN I,KARLINI ttice Boltzmann method for simulation of compressible flows on standard lattices[J].Physical Review E,2008,78(1):016704.[13] LALLEMANDP,LUO L S.Theoryofthelattice Boltzmann method:Acoustic and thermal properties in two and three dimensions[J].Physical Review E,2003,68(3):036706.[14] FILLIPPOVAO,HANELlD.A novellatticeBGK approach for low Mach number combustion[J].Journal of Computational Physics,2000,158(2):139-160.[15] BARAKOSG,MITSOULISE,ASSIMACOPOULOSD.Natural convection flow in a square cavity revisited:Laminar and turbulent models with wall functions[J].International Journal for Numerical Methods in Fluids,1994,18(7):695-719.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7 6 邻 节 点
大 学 数 学
第2 7卷
) 撞 , 一 个 节 点 上 从 相 邻 节 点 运 动 来 的 粒 子 发 生 碰 撞 , 据 质 量 、 量 和 能 量 守 恒 规 则 改 碰 在 根 动
其 中 r 松弛 时间 尺度 , 制达 到平衡 的速 度 ( 是 控 可根据 需 要 进行 设 置 ) 由于稳 定 性 的原 因 , 过 实 际测 , 经 算 r必须 大于 1e /.
事 实 上 不 同 的 网 格 剖 分 有 着 不 同 的平 衡 分 布 函数 , B 建 立 模 型 的 核 心 问 题 就 是 根 据 不 同 的 网 格 L M
[ 键 词 ] 格 子 B l ma n方 法 ; 衡 态 分 布 函 数 ; Q 关 ot n z 平 D2 9模 型 ; a i — tk s 程 ; 流一 扩 散 方 程 N ve So e 方 r 对 [ 图 分 类 号 ] O2 1 8 中 4 .2 [ 献标识码]A 文 [ 章 编 号 ] 17 —4 4 2 1 ) 30 7 —8 文 6 21 5 (0 1 0 —0 50
在 低 Mah 马赫 ) 的假 设下 ( l c)其 中粒子平 衡态 分布 函数 为 c( 数 I , U《
~ P
[ + 一 ] +
且
C =c 4 /  ̄,
。 /, 一4 9
1 U 一 3 一(2 一 4 1 9, ∞ 一 6 7 8 1 3 , — / 5 一∞ 一∞ — / 6
第2 7卷 第 3期
21 0 1年 6 月
大 学 数 学
Co LLEG E A T H EM A T I M CS
V o1 2 № .3 . 7,
J n 2 1 u.01
偏 微 分 方 程 求 解 的一 种 新 颖 方 法 格 子 B l ma n模 型 ot z n
1 引
言
偏 微 分 方 程 广 泛 应 用 在 物 理 、 学 、 物 、 料 、 融 和 广 大 工 程 技 术 领 域 , 学 数 学 的 数 学 物 理 方 化 生 材 金 大
程 课 程也 牵 涉其 中 , 偏微 分 方程 求解 主 要有 两种 方 法 : 析 方法 和数 值方 法. 对 解 一般 情况 下 , 格求 解 偏 严
个静 止粒 子 存在 , 上与 其相 邻 的有 8个 节点 , 以称 为二 维 九点 格 子模 型 , 为 D Q9 型 . 目前 加 所 记 2 模 到
一
为 止 已 建 立 的 LBM 模 型 有 : Q3 , Q9 D2 , Q1 , Q1 D3 8 D3 7等 ( 指 维 数 , 指 粒 D1 D2 , Q7 D2 3 D3 5, Q1 , Q2 D Q
7 7
二张Bb: 向aa2内 阶量一l2 量=l 的积 1 2 (a 1 与 , ) n— ・l c +6 n , ・ c f 乏一6n,:6 Bn 6 1n 口+。 , b 口 。 。6 l : [ :・,= +n 口6 : c 。 6 6, 口 1 n 6+ 。 = . 2 n 1
确 定对应 的平 衡分 布 函数 和格 子 B l ma ot n模 型 的演化 方 程 , D Q9 型 , 们 就取 上 面 的平 衡 分 布 z 对 2 模 我
函数.
在节 点 ( ,) x f上根 据质 量和 动量守 恒规 则 , 流体 的宏 观密 度 、 度 、 强定 义如 下 : 速 压
作 格 子波 尔兹 曼方 法 ) 近 几 十 年 发 展 的 偏微 分 方 程模 拟 方 法 , 先 由 Mc maa和 Z n t 在 1 8 是 首 Na r a et i 98
年 提 出 , 继 承 了 格 子 气 自 动 机 ( at eG sAuo tn L 它 L ti a t mao , GA) 主 要 原 理 并 对 L A 作 了 改 进 , 功 c 的 G 成
p p , 一∑ f( , 一∑/ ( , =( X) x ) ’ x )
‘
( 3 ) ( 4 )
() 5
‘ : uxc一∑ c ,一 ∑ c ( , D l(, t 0 ‘ ) 。( 厂x ) x 厂 )
一c ( , x ),
另 外 满 足 动 量 通 量 守 恒 法 则
f X+ C ,+ A 一f X ,) Q ( ( ,) (一 0, , , ) ( t A ) ( £一 - X £) 厂 1… 8.
n ( ( ) 为碰撞 算子 , 厂 X,) 称 表示 碰撞 引起 的变化 . g ea等在 1 8 Hiu r 9 9年作 了一个 非 常重要 的简 化 , 假定
和 基 本 原 理 。并 通 过 不 可 压 N ve— tk s方 程 组 和 二 维 含 源 项 扩 散 方 程 的 数 值 模 拟 计 算 实 例 , 明 格 子 a i So e r 说
B l ma n方 法 的有 效 性 , 示 了广 阔 的 应 用 前 景 , 今 后 更 深 入 的研 究 和 广 泛 应 用 提 供 参 考 . ot n z 展 为
所对 应 的 L B方程 ( B ) ( 称 为格 子 B l ma L E是 t g ot n模 型 的演 化方 程) z :
厂( X+ c ,+△ ~厂 ( , 一 ~ ( ( ,) ;’ X,) (一 0 1 … , ) t £ ) ,X £ A ) X -f ( ) , , 8 () 1
将 流体 存在 的区域 划分 为 均匀 网格 , 流 体 想 象 成许 多 只 有 质 量没 有 体 积 的微小 粒 子 组 成 , 同 将 在
一
时刻 同一 网格 节点 上 , 子 向九个 方 向运 动 ( 图 1 , 动 到最 近 的 网格 节 点. 中 每个 节 点上 允 许 粒 如 )移 其
乐 励 华 , 高 云 , 刘 唐 伟
( 华 理工大学 数学 与信息科学学 院, 西 抚 州 340) 东 江 4 0 0
[ 摘
要 ] 介 绍 了一 种 偏 微 分 方 程 求 解 的一 种 新 颖 方 法 格 子 B l ma n模 型 , 细 分 析 了 它 的 基 本 理 论 ot n z 详
变 粒 子 的 速 度 , 后 各 个 粒 子 又 以 改 变 后 的 速 度 迁 移 . 两 个 步 骤 交 替 循 环 , 到 流 场 达 到 收敛 . 然 这 直
\ l. / ‘ / ’ \
× ×
图 1 二 维 九 点格 子模 型 速 厦 方 向 以及 网格 划 分
设 ( £代表 在时刻 t 置 X一( , 处 的节点 , X, ) , 位 z ) 流体 的密度 为 p ( £, =pX, 流体 的速度 为 u ( , ) =u X,) 时间步长为 AtF 0 △f2 , , A f格子步长为 △ , 子迁移速率 c AL , , ,Af… m , 粒 一 E 粒 子 离 散 速 度 c一 ( ,) 。 00 ,
B ・n一
2 2 从 Latc o tma m 模 型 再 现 宏 观 流 场 控 制 方 程 . . tieB l z n
格 子法 建模 的核 心 就是确 定 对应 网格 的平衡 分 布 函数 , 而建模 成 功与 否 , 格 子 B l ma n模 型能 看 ot n z 否恢 复宏 观 流场 控制 方程 . 面 以 L t c GK( B 下 at eB i L GK) 型对 Na ir tk s 程 ( 称 N— 模 ve— o e 方 S 简 S方 程 ) 恢 复 为例加 以说 明.
2 格 子 B l ma n L ) 法 模 型 的 建 立 ot n ( B 方 z
2 1 格 子 B l ma n方 法 的 主 要 思 想 . . ot n z
这 里 以 二 维 中 常 用 的 D Q9模 型 为 例 , 介 绍 格 子 B l ma n方 法 . 2 来 ot n z
地 进 行 了流 体 力 学 模 拟 ,对 许 多 问题 建 立 的 格 子 模 型 , 得 了意 想 不 到 的效 果 ; 些 学 者 对 N ve— 取 一 ai r S o e 方程 , ue 方程 , tk s E lr mKd 方 程 , V 对流 一扩 散方 程 , 应 一扩 散 方程 , 反 热传 导 方 程 等 进 行 了数 值 求
微 分 方 程 是 非 常 困 难 , 仅 一 些 具 有 简 单 边 界 或 者 有 比较 严 格 物 理 限 制 的 现 象 才 能 够 得 到 理 论 解 析 解 . 仅
最 广 泛使用 的是数 值解 法 , 如有 限元 ( E F M) 和有 限差 分 方法 ( D 等 . 子 B l ma n L 方 法 ( F ) 格 ot n ( B) z 也称
,
C一(o ,n ), 一(一1 2 ~4 , / (o ,n ),( (~5 2 cs is c ( O i )/ ,一1 ) C一 ̄ cs s f 一 )/ + / ,一5 ) i 4 i ~8 ,
粒 子 分 布 函数 f ( , 表 示 节 点 ( ,) 运 动 速 度 为 C 粒 子 数 量 ,一 0 1 … , , 粒 子 分 布 函 数 演 X £ ) X £处 的 i , , 8 向 的总数 ) .
其 演 化 过 程 主 要 分 两 个 步 骤 :a 迁 移 , 子 从 一 个 节 点 在 一 个 时 间 步 长 内 , () 粒 以恒 定 的 速 度 运 动 到 相
[ 稿 日期 ] 2 0 —8 2 收 0 8 0 —8
[ 金 项 目] 国家 自然 科 学 基 金 项 目“ 基 复杂 流 动 的 格 子 B l ma n建 模 与 计 算 机 仿 真 ” 6 7 3 9 ) 中 国科 学 院 边 缘 海 ot n z (0715 ;