7.4 基本不等式及不等式的应用

合集下载

基本不等式及其应用(公开课)

基本不等式及其应用(公开课)

基本不等式及其应用砀山中学 侯玉林高考命题趋势:基本不等式是每年的高考热点,主要考察命题的判定,不等式的证明以及求最值问题。

特别是求最值问题往往在基本不等式的使用条件上设置一些问题。

考察学生恒等变形的能力,运用基本不等式的和与积转化作用的能力。

教学目标1. 知识与技能理解基本不等式,了解变式结构;理解基本不等式的“和”、“积”放缩作用。

会运用基本不等式解决相关的问题。

2. 过程与方法通过师生互动、学生主动的探究过程,让学生体会研究数学问题的基本思想方法,学会学习,学会探究。

3. 情感态度与价值观鼓励学生大胆探索,增强学生的信心,获得探索问题的成功情感体验。

逐步养成学生严谨的科学态度及良好的思维习惯。

重点:运用基本不等式求最值难点:恰当变形转化,构建出满足运用基本不等式的条件教学过程:一、 要点梳理1、基本不等式若a 、b ∈R,则a 2+b 2≥2ab,当且仅当a=b 时取“=”若a 、b ∈R +,,则ab b a ≥+2,当且仅当a=b 时取“=”2、常用变形形式:① ()0,02222≥≥+≤+≤b a b a b a ab ④ ② 22222b a b a ab +≤⎪⎪⎭⎫ ⎝⎛+≤ ⑤ ③ 同号)、b a a bb a (2≥+3、求最大值、最小值问题(1)如果x 、y ∈(0,+∞),且xy=p (定值),那么当x=y 时,x+y 有 。

(2)如果x 、y ∈(0,+∞),且x+y=s (定值),那么当x=y 时,xy 有 。

概括为:“一正,二定,三相等”二、 基础巩固ab b a 222≥+21≥+xx1、函数f(x)=x+421--x (x>2),则f(x)有( ) A.最大值0 B.最小值0 C. 最大值-2 D. 最小值-22、下列各式中最小值是2的是( ) A.x y y x + B.4522++x x C.tan θ+cot θ D.x x -+22 3、已知2a 为1-b 、1+b 的等比中项,则ab 的最大值是 ; a+2b 的最大值是 。

高中数学配套基本不等式公开课获奖课件

高中数学配套基本不等式公开课获奖课件

题型一
运用基本不等式证明简朴不等式
【例 1】 已知 x>0,y>0,z>0. 求证:xy+xz xy+yz xz +yz ≥8.
思维启迪 解析 探究提高 由题意,先局部运用基本不等式, 再利用不等式的性质即可得证.
第12页
题型分类·深度剖析
题型一
运用基本不等式证明简朴不等式
【例 1】 已知 x>0,y>0,z>0. 求证:xy+xz xy+yz xz +yz ≥8.
14分
方法二 y=a+1ab+1b=ab+a1b+ab+ba
=ab+a1b+a2a+bb2=ab+a1b+a+ba2b-2ab=a2b+ab-2.
6分
令 t=ab≤a+2 b2=14,即 t∈0,14.
第30页
题型分类·深度剖析
易错警示
9.忽视最值获得条件致误
典例:(14 分)已知 a、b 均为正实数,且 a+b=1,求 y=a+1ab+1b的最 小值.
数学 苏(文)
§7.4 基本不等式
第七章 不等式
第1页
基础知识·.基本不等式
ab≤a+2 b
难点正本 疑点清源
1.在应用基本不等式求
(1)基本不等式成立的条件:a≥ 0,b≥ 0 . 最值时,要把握不等式
(2)等号成立的条件:当且仅当 a=b 时 成立的三个条件,就是
取等号.
“ 一 正 —— 各 项 均 为
【例 1】 已知 x>0,y>0,z>0. 求证:xy+xz xy+yz xz +yz ≥8.
思维启迪 解析 探究提高
利用基本不等式证明不等式是综 合法证明不等式的一种情况,证明
思路是从已证不等式和问题的已

高中数学基础之基本不等式及应用

高中数学基础之基本不等式及应用

当acb取得最大值时,3a+1b-1c2的最大值为( C )
A.3
B.94
C.1
D.0
[思路引导] (1)2x-1>0,y-1>0→构建与2x-1,y-1相关的基本不等式. (2)三元变成二元→确定acb取得最大值时a,b,c的关系→求出结果.
[解析]
(1)依题意得2x-1>0,y-1>0,则
4x2 y-1
(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多 少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范 围内?
[解]
(1)依题意得,y=
920v v2+3v+1600

920 3+v+16v00

920 83
,当且仅当v=
16v00,即v=40时,等号成立,
3-
k m+1
(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知
2021年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,
厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定
投入和再投入两部分资金).
(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;

y2 2x-1

[2x-1+1]2 y-1

[y-1+1]2 2x-1

42x-1 y-1

4y-1 2x-1
≥4×2
2yx--11×2yx--11
=8,即
4x2 y-1

y2 2x-1
2x-1=1,
≥8,当且仅当
y-1=1, 2yx--11=2yx--11,

基本不等式及其应用

基本不等式及其应用

基本不等式及其应用篇一:基本不等式及其应用基本不等式及其应用一、知识结构二、重点叙述1. 基本不等式模型一般地,如果a>0,b>0,则立。

我们常把叫做正数a、b的算术平均数,把ab叫做正数a、b的几何平均数, ,或,当且仅当a=b时等号成即两个正数的算术平均数不小于它们的几何平均数,当且仅当两个正数相等时等号成立。

拓展:若a、b∈R,则2. 基本不等式证明方法,当且仅当a=b时等号成立。

3.基本不等式的应用①利用基本不等式证明不等式或比较大小; ②利用基本不等式求最值或求范围; ③利用基本不等式解决实际问题。

三、案例分析案例1:(1)(2009天津·理)设的最小值为A8B4C 1D (2) (2007海南、宁夏·理7)已知,,成等差数列,若成等比数列,则A.B.的最小值是()C.D.分析:(1)由是与的等比中项,得。

用“1代换法”,把看成,进而利用基本不等式求得最小值。

(2)可用直接法解之。

根据等差、等比数列的“等距离”性质,把多元函数转化为x、y的二元函数,由二元的基本不等式求其最小值。

也可以用特殊值法解决。

解:(1)∵是与的等比中项,∴,得。

∴,当且仅当即时,“=”成立。

故选择C。

成等差数列,成等比数列,(2)(直接法)∵∴∴,∵,,∴,∴,当且仅当时,等号成立。

∴。

故选D。

成等差数列,成等比数列分别都为另解:(特殊值法)令,则,故选D。

案例2:(1) (2009重庆·文)已知A.2B.,则C.4的最小值是()D.5(2)(2007山东·理16)函数y=loga (x+3)-1(a>0,a1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n>0,则的最小值为________________.分析:(1)用基本不等式解之,由于两次使用基本不等式,两次的“等号”成立应该“同时”。

(2)抓住函数图象过定点,求得定点A的坐标,建立m、n的线性关系,两次应用基本不等式求得最小值,同样注意两次的“等号”成立是否“同时”?只有“同时”,最小值才存在。

2022年高考复习 7.4 基本不等式

2022年高考复习   7.4  基本不等式

课堂考点探究
考向3 利用消元法求最值
2 +3
例 3 已知正实数 a,b 满足 a2-b+4≤0,则 u=
(
)
+
[思路点拨] 利用不等式性质对已
14
知条件进行变形,进而将 u 的表达
14
式中的 b 消去,然后再通过变换结
A.有最大值 5
B.有最小值
5
C.有最小值 3
D.有最大值 3
构,结合基本不等式求解.
课前双基巩固
5.当 x≥4 时,x+
4
-1
的最小值为
.
[答案]
16
3
4
4
[解析] 设 x-1=t,则 x+-1=t+ +1,又由 x≥4 得 t≥3,
4
而函数 y=t+ +1 在[3,+∞)上是增函数,因此 t=3

4
16
3
3
时,y 取得最小值 3+ +1= .
课前双基巩固
4
1
6.已知正实数 x,y 满足 x+y=3,则 + 的最小值

.
[答案] 3
4 1 1 4 1
+
3
[解析] + =
1
3
4



1
3
(x+y)=
4+ + +1 ≥ 5+2
4



4



· =3,
当且仅当 = ,即 x=2,y=1 时,
4 1
+ 取得最小值

基本不等式及其应用

基本不等式及其应用

基本不等式及其应用基本不等式及其应用一、知识结构二、重点叙述1. 基本不等式模型一般地,如果a>0,b>0,则立。

我们常把叫做正数a、b的算术平均数,把ab叫做正数a、b的几何平均数, ,或,当且仅当a=b时等号成即两个正数的算术平均数不小于它们的几何平均数,当且仅当两个正数相等时等号成立。

拓展:若a、b∈R,则2. 基本不等式证明方法,当且仅当a=b时等号成立。

3.基本不等式的应用①利用基本不等式证明不等式或比较大小; ②利用基本不等式求最值或求范围; ③利用基本不等式解决实际问题。

三、案例分析案例1:(1)(xx天津·理)设的最小值为A 8B 4C 1D (2) (xx海南、宁夏·理7)已知,,成等差数列,若成等比数列,则A.B.的最小值是()C.D.分析:(1)由是与的等比中项,得。

用“1代换法”,把看成,进而利用基本不等式求得最小值。

(2)可用直接法解之。

根据等差、等比数列的“等距离”性质,把多元函数转化为x、y的二元函数,由二元的基本不等式求其最小值。

也可以用特殊值法解决。

解:(1)∵是与的等比中项,∴,得。

∴,当且仅当即时,“=”成立。

故选择C。

成等差数列,成等比数列,(2)(直接法)∵∴∴,∵,,∴,∴,当且仅当时,等号成立。

∴。

故选D。

成等差数列,成等比数列分别都为另解:(特殊值法)令,则,故选D。

案例2:(1) (xx重庆·文)已知A.2B.,则C.4的最小值是() D.5(2)(xx山东·理16)函数y=loga (x+3)-1(a>0,a1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n>0,则的最小值为________________.分析:(1)用基本不等式解之,由于两次使用基本不等式,两次的“等号”成立应该“同时”。

(2)抓住函数图象过定点,求得定点A的坐标,建立m、n的线性关系,两次应用基本不等式求得最小值,同样注意两次的“等号”成立是否“同时”?只有“同时”,最小值才存在。

(完整版)基本不等式及其应用

(完整版)基本不等式及其应用

基本不等式及其应用1.ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0; (2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b .3.算术平均数与几何平均数(1)设a ≥0,b ≥0,则a ,b 的算术平均数为a +b2,几何平均数为ab .(2)基本不等式可叙述为两个非负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们正的等比中项.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 24; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p .选择题:设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82解析 ∵x >0,y >0,∴x +y 2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43 B.53 C .2 D.54解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2] 解析 22x +y ≤2x +2y =1,∴2x +y ≤14,即2x +y ≤2-2,∴x +y ≤-2若实数x ,y 满足xy >0,则x x +y +2yx +2y的最大值为( ) A .2- 2 B .2+ 2 C .4+2 2 D .4-2 2 解析x x +y+2y x +2y=x (x +2y )+2y (x +y )(x +y )(x +2y )=x 2+4xy +2y 2x 2+3xy +2y 2=1+xy x 2+3xy +2y 2=1+1x y +3+2y x≤1+13+2=4-22,当且仅当x y =2yx ,即x 2=2y 2时取等号若函数()f x =x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +my (m >0)的最小值为3,则m 等于( ) A .2 B .2 2 C .3 D .4解析 由2x -3=(12)y 得x +y =3,1x +m y =13(x +y )(1x +m y )=13(1+m +y x +mx y )≥13(1+m +2m ),(当且仅当y x =mx y 时取等号),∴13(1+m +2m )=3,解得m =4已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2解析 圆x 2+y 2-2y -5=0化成标准方程,得x 2+(y -1)2=6,∴圆心为C (0,1) ∵直线ax +by +c -1=0经过圆心C ,∴a ×0+b ×1+c -1=0,即b +c =1 ∴4b +1c =(b +c )(4b +1c )=4c b +b c +5 ∵b ,c >0,∴4c b +bc ≥24c b ·b c =4,当且仅当4c b =b c 时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c 取得最小值9已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( )A.32B.53C.94D.256解析 由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, ∴q 2-q -2=0,解得q =2或q =-1(舍去)a m a n =4a 1,∴q m +n -2=16,∴2m +n -2=24,∴m +n =6 ∴1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n )≥16(5+2n m ·4m n )=32当且仅当n m =4m n 时,等号成立,故1m +4n 的最小值等于32在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5a 6的最大值是( ) A .3 B .6 C .9 D .36解析 ∵a 1+a 2+…+a 10=30,∴5(a 1+a 10)=30,即a 1+a 10=a 5+a 6=6,∵a 5+a 6≥2a 5a 6,∴6≥2a 5a 6,即a 5a 6≤9,当且仅当a 5=a 6时取等号,∴a 5a 6的最大值为9若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2 B .2 C .2 2 D .4 解析 依题意知a >0,b >0,则1a +2b ≥22ab =22ab,当且仅当1a =2b ,即b =2a 时,“=”成立.∵1a +2b =ab ,∴ab ≥22ab ,即ab ≥22,∴ab 的最小值为2 2已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是( ) A .3 B .4 C .5 D .6解析 由题意知:ab =1,∴m =b +1a =2b ,n =a +1b =2a ,∴m +n =2(a +b )≥4ab =4若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ·⎝ ⎛⎭⎪⎫1+4a b 的最小值为( ) A .7 B .8 C .9 D .10 解析 ∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4ab =9,当且仅当b =2a >0时取等号已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24 解析 由3a +1b ≥m a +3b ,得m ≤(a +3b )(3a +1b )=9b a +ab +6又9b a +ab +6≥29+6=12,∴m ≤12,∴m 的最大值为12已知a >0,b >0,a +b =1a +1b ,则1a +2b 的最小值为( )A .4B .22C .8D .16 解析 由a >0,b >0,a +b =1a +1b =a +b ab ,得ab =1,则1a +2b ≥21a ·2b =2 2.当且仅当1a =2b ,即a =22,b 2时等号成立已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( ) A.72 B .4 C.92 D .5 解析 依题意,得1a +4b =12(1a +4b )·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4ab ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3解析由题意得⎩⎪⎨⎪⎧ab >0,ab ≥0,3a +4b >0,∴⎩⎨⎧a >0,b >0.又log 4(3a +4b )=log 2ab ,∴log 4(3a +4b )=log 4ab ,∴3a +4b =ab ,故4a +3b =1. ∴a +b =(a +b )(4a +3b )=7+3a b +4ba ≥7+23ab ·4b a =7+43,当且仅当3a b =4b a 时取等号若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( )A .1B .6C .9D .16解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1,同理可得b >1,∴1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1·9(a -1)=6,当且仅当1a -1=9(a -1),即a =43时等号成立,∴最小值为6设()f x =ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A .q =r <p B .q =r >p C .p =r <q D .p =r >q 解析 ∵0<a <b ,∴a +b2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=12ln a +12ln b =ln(ab )12=f (ab )=p ,故p =r <q已知函数()f x =x +px -1(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为( ) A .1 B .2 C.94 D.74 解析 由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号, ∵f (x )在(1,+∞)上的最小值为4,∴2p +1=4,解得p =94填空题:已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________解析 1=x +4y ≥24xy =4xy ,∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎪⎨⎪⎧x =12y =18时,(xy )max =116已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n 的最大值为________解析 ∵m ·n >0,m +n =-1,∴m <0,n <0,∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n =-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·mn=-4,当且仅当m =n =-12时,1m +1n 取得最大值-4已知x <54,则()f x =4x -2+14x -5的最大值为________解析 ∵x <54,∴5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1函数y =x 2+2x -1(x >1)的最小值为________解析 y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2当且仅当(x -1)=3(x -1),即x =3+1时,等号成立函数y =x -1x +3+x -1的最大值为________解析 令t =x -1≥0,则x =t 2+1,∴y =t t 2+1+3+t =tt 2+t +4当t =0,即x =1时,y =0;当t >0,即x >1时,y =1t +4t +1, ∵t +4t ≥24=4(当且仅当t =2时取等号),∴y =1t +4t +1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________解析 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________ 解析 由已知得x =9-3y1+y ,∵x >0,y >0,∴y <3,∴x +3y =9-3y 1+y +3y =3y 2+91+y=3(1+y )2-6(1+y )+121+y=121+y+(3y +3)-6≥2121+y ·(3y +3)-6=6, 当且仅当121+y=3y +3,即y =1,x =3时,(x +3y )min =6已知函数()f x =x 2+ax +11x +1(a ∈R ),若对于任意x ∈N +,()f x ≥3恒成立,则a 的取值范围是______解析 对任意x ∈N +,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3设g(x)=x+8x,x∈N+,则g(2)=6,g(3)=173∵g(2)>g(3),∴g(x)min=173,∴-(x+8x)+3≤-83,∴a≥-83,故a的取值范围是[-83,+∞)已知x>0,y>0,且1x+2y=1,则x+y的最小值是________解析∵x>0,y>0,∴x+y=(x+y)(1x+2y)=3+yx+2xy≥3+22(当且仅当y=2x时取等号),∴当x=2+1,y=2+2时,(x+y)min=3+2 2函数y=1-2x-3x(x<0)的最小值为________解析∵x<0,∴y=1-2x-3x=1+(-2x)+(-3x)≥1+2(-2x)·3-x=1+26,当且仅当x=-62时取等号,故y的最小值为1+2 6若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________解析分离变量得-(4+a)=3x+43x≥4,得a≤-8设a+b=2,b>0,则12|a|+|a|b取最小值时,a的值为________解析∵a+b=2,∴12|a|+|a|b=24|a|+|a|b=a+b4|a|+|a|b=a4|a|+b4|a|+|a|b≥a4|a|+2b4|a|×|a|b=a4|a|+1,当且仅当b4|a|=|a|b时等号成立又a+b=2,b>0,∴当b=-2a,a=-2时,12|a|+|a|b取得最小值若当x>-3时,不等式a≤x+2x+3恒成立,则a的取值范围是________解析设f(x)=x+2x+3=(x+3)+2x+3-3,∵x>-3,所以x+3>0,故f(x)≥2(x+3)×2x+3-3=22-3,当且仅当x=2-3时等号成立,∴a的取值范围是(-∞,22-3]若对于任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________解析 xx 2+3x +1=13+x +1x ,∵x >0,∴x +1x ≥2(当且仅当x =1时取等号),则13+x +1x ≤13+2=15,即x x 2+3x +1的最大值为15,故a ≥15.解答题:已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg10=1,∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝⎛⎭⎪⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2xy 时,等号成立.由⎩⎨⎧2x +5y =20,5y x =2xy ,解得⎩⎨⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020专项能力提升设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为( ) A .4 B .4 3 C .9 D .16解析 由32+x +32+y=1得xy =8+x +y , ∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立), 即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,∴xy 的最小值为16设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( ) A .0 B .1 C.94 D .3 解析 由已知得z =x 2-3xy +4y 2,(*)则xyz =xyx 2-3xy +4y2=1x y +4y x -3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,∴2x +1y -2z =1y +1y -1y 2=-⎝ ⎛⎭⎪⎫1y -12+1≤1已知m >0,a 1>a 2>0,则使得m 2+1m ≥|a i x -2|(i =1,2)恒成立的x 的取值范围是( )A .[0,2a 1]B .[0,2a 2]C .[0,4a 1]D .[0,4a 2]解析 ∵m 2+1m =m +1m ≥2(当且仅当m =1时等号成立),∴要使不等式恒成立, 则2≥|a i x -2|(i =1,2)恒成立,即-2≤a i x -2≤2,∴0≤a i x ≤4, ∵a 1>a 2>0,∴⎩⎪⎨⎪⎧0≤x ≤4a 1,0≤x ≤4a 2,即0≤x ≤4a 1,∴使不等式恒成立的x 的取值范围是[0,4a 1]已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________ 解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号).又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号) 综上可知4≤x 2+4y 2≤1211设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为________解析 由题意知3a ·3b =3,即3a +b =3,∴a +b =1,∵a >0,b >0,∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b ≥2+2b a ·a b =4,当且仅当a =b =12时,等号成立点(a ,b )为第一象限内的点,且在圆(x +1)2+(y +1)2=8上,则ab 的最大值为________解析 由题意知a >0,b >0,且(a +1)2+(b +1)2=8,化简得a 2+b 2+2(a +b )=6,则6≥2ab +4ab (当且仅当a =b 时取等号),令t =ab (t >0),则t 2+2t -3≤0,解得0<t ≤1,则0<ab ≤1,∴ab 的最大值为1.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________解析 ∵a >0,b >0,1a +9b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b ≥10+29=16,由题意,得16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立,而x 2-4x -2=(x -2)2-6,∴x 2-4x -2的最小值为-6,∴-6≥-m ,即m ≥6.。

基本不等式(共43张)ppt课件

基本不等式(共43张)ppt课件
15
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b ������ · =4, ������ b 1 b 1 2
即 + ≥4,当且仅当 a=b= 时等号成立.
题型一
题型二
题型三
第4讲 基本不等式及不等式的应用
-13考纲考向 考点基础
重点难点 重点难点
随堂演练
题型一
利用基本不等式证明不等式
例1
点拨提示
迁移训练1
利用基本不等式证明时,应先观察题目的条件是否满足基本不等式的使用 条件,若不满足,则应通过添项、拆项、配系数、“1”的代换等方法,使其满足,再 结合不等式的基本性质,达到证明的目的.
最大)
基础梳理
自我检测
第4讲 基本不等式及不等式的应用
考纲考向
考点基础
重点难点
随堂演练
基础梳理
1-2
3
4
温馨提示
( 1) 若各项不为零时 , 在应用基本不等式求最值时 , 要把握不等式成立的三个条件 , 就是“ 一正 ——各项均为正 ; 二定 ——积或和为定值 ; 三相等 ——等号能否取得” , 若忽略了某个条件 , 就会出现错误 . ( 2) 运用公式解题时 , 既要掌握公式的正用, 也要注意公式的逆用 , 例如
考纲考向
考点基础
重点难点 重点难点
随堂演练
题型一
利用基本不等式证明不等式
例1
点拨提示
迁移训练1
(1)设 a,b,c 都是正数,求证:
b������ ������������ ������b + + ≥a+b+c; ������ b ������ 1 ������ 1 b
(2)已知 a>0,b>0,a+b=1,求证: + ≥4. 思路分析: (1)题可直接利用基本不等式 ,再结合不等式的基本性质 —— 同向不等式相加,进行证明; (2)题中可把“ + ”中的“1”用“a+b”代换,创设出运用基本不等式的 条件.
2 ������+������ 2 ������2+������ (a,b∈R).(4) 2 2 2 2 2
������ ������
������ ������

������+������ 2 (a,b∈R). 2
(5)
������2+������ 2

������+������ 2
≥ ������������ ≥ 1
题型一
题型二
题型三
第4讲 基本不等式及不等式的应用
-14考纲考向 考点基础
重点难点 重点难点
随堂演练
题型一
利用基本不等式证明不等式
例1
点拨提示
迁移训练1
已知 a>0,b>0,c>0,且 a+b+c=1. 求证: + + ≥9. 证明:∵ a>0,b>0,c>0,且 a+b+c=1, ∴+ + =
������ ������ ������ ������ 1 ������ 1 ������ 1 ������ ������+������+������ ������+������+������ ������+������+������ + + ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ + ������ ������ 1 3 ������ ������ 1 ������ 1 ������ 1 ������
随堂演练
题型二
利用基本不等式求最值
1 ������ 9 ������
例2
规律总结
迁移训练2
(1)已知 x>0,y>0,且 + =1,求 x+y 的最小值; (2)已知 x< ,求函数 y=4x-2+
5 4 1 的最大值. 4������-5
思路解析:(1)注意条件中“1”的代换,也可用三角代换. (2)因为 4x-5<0,所以要先“调整”符号;又(4x-2)· 4x-2 要添项“配凑”.
������2 +������ ������+������ a +b ≥2ab的逆用就是 ab≤ ; ≥ 2 2
2 2
2
������������ ( a, b>0) 的逆用就是
������+������ 2 ab≤ ( a, b>0) 等. 还要注意“ 添、拆项 ” 技巧和公式等号成立的条件等 . 2
第4讲 基本不等式及不等式的应用
第4讲 基本不等式及不等式的应用
考纲考向
考点基础
重点难点
随堂演练
考纲展示 1. 基本不等 式 : ab ≤
a+b ( a, b>0) 2
命题分析 基本不等式是不等式中的重要内容,也是历年高考 重点考查的知识点之一,它的应用范围涉及高中数 学的很多章节,且常考常新,但是它在高考中却不外 乎用于判断大小、求最值、求取值范围等.题型上选 择、填空、解答题都能出现,属中档题. 在高考中一般不可能出现单独考查不等式证明的试 题,命题方向重在考查逻辑推理能力,在题目的设计 上,常常将不等式的证明与函数、数列、三角综合. 因为它是高中数学的重要内容,同时也是高中数学 的一个难点,加之题型广泛,涉及面广,证法灵活,所以 备受命题者的青睐.
( 1) 了解基本不等式的证 明过程 . ( 2) 会用基本不等式解决 简单的最大 ( 小) 值问题 . 2. 理解算术 —几何平均 不等式 .
第4讲 基本不等式及不等式的应用
考纲考向
考点基础
重点难点
随堂演练
基础梳理
1-2
3
4
1.基本不等式 ������������
������+������ 2
(1)基本不等式成立的条件 :a > 0, b> 0. (2)等号成立的条件 :当且仅当 a=b 时取等号. 2.几个重要的不等式 (1)a +b ≥2ab(a,b∈R).(2) + ≥2(a, b 同号). (3)ab≤
=3+ + + + + + =3+
������ ������ + ������ ������
+
+
������ ������ + ������ ������
≥3+2+2+2=9.
当且仅当 a=b=c= 时,取等号.
题型一
题型二
题型三
第4讲 基本不等式及不等式的应用
-15考纲考向 考点基础
重点难点 重点难点
������1+������2+„+������������ ������ ≥ ������
们的算术平均不小于它们的几何平均, 即 当 a1=a2=…=an 时, 等号成立.
基础梳理 自我检测
������1 ������2 „������������ , 当且仅
第4讲 基本不等式及不等式的应用
考纲考向
迁移训练1
证明:(1)∵ a,b,c 都是正数,∴ , ∴ +
������������ ������ ������������ ≥2c,当且仅当 ������
a=b 时等号成立, b=c 时等号成立, a=c 时等号成立. ≥2(a+b+c), a=b=c 时等号成立.
������������ ������������ + ≥2a,当且仅当 ������ ������ ������������ ������������ + ≥2b,当且仅当 ������ ������
题型二
题型三
第4讲 基本不等式及不等式的应用
-12考纲考向 考点基础
重点难点 重点难点
随堂演练
题型一
利用基本不等式证明不等式
例1
点拨提示
迁移训练1
(2)∵ a>0,b>0,a+b=1, ∴+ = ≥2+2
1 ������ 1 ������ 1 b ������+b ������+b b ������ + =2+ + ������ b ������ b
1(a>0,b>0). + ������ ������
2
基础梳理
自我检测
第4讲 基本不等式及不等式的应用
考纲考向
考点基础
重点难点
随堂演练
基础梳理
1-2
3
4
3. 算术平均数与几何平均数 ( 1) 设 a>0 , b>0 , 则 a, b的算术平均数为
������+������ , 几何平均数为 2
������������ , 基本不等式
( 3) 对使用基本不等式时等号取不到的情况 , 可考虑使用函数 y=x+ ( m >0) 的 单调性 .
������ ������
基础梳理
自我检测
第4讲 基本不等式及不等式的应用
考纲考向
考点基础
重点难点
随堂演练
自我检测
1 ������
1>0)的值域为( A.(-∞,-2]∪[2,+∞) B.(0,+∞) C.[2,+∞) 答案:C
1 不是常数,所以对 4������-5
题型一
题型二
题型三
第4讲 基本不等式及不等式的应用
-16考纲考向 考点基础
相关文档
最新文档