解一元三次方程的方法

合集下载

一元三次方程求解

一元三次方程求解

1.卡丹公式法(卡尔达诺公式法)特殊型一元三次方程X^3+pX+q=0 (p、q∈R) 判别式Δ=(q/2)^2+(p/3)^3 【卡丹公式】X⑴=(Y1)^(1/3)+(Y2)^(1/3);X⑵= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2;标准型方程中卡尔丹公式的一个实根X⑶=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,其中ω=(-1+i3^(1/2))/2;Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。

标准型一元三次方程aX ^3+bX ^2+cX+d=0 令X=Y—b/(3a)代入上式,可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。

【卡丹判别法】当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根;当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根;当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根。

2.盛金公式法三次方程应用广泛。

用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。

范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。

【盛金公式】一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。

重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd,总判别式:Δ=B^2-4AC。

当A=B=0时,盛金公式①:X⑴=X⑵=X⑶=-b/(3a)=-c/b=-3d/c。

当Δ=B^2-4AC>0时,盛金公式②:X⑴=(-b-Y⑴^(1/3)-Y⑵^(1/3))/(3a);X(2,3)=(-2b+Y⑴^(1/3)+Y⑵^(1/3))/(6a)±i3^(1/2)(Y⑴^(1/3)-Y⑵^(1/3))/(6a);其中Y(1,2)=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。

一元三次方程的三个解

一元三次方程的三个解

一元三次方程的三个解一元三次方程的解法一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax+bx+cx+d=0的标准型一元三次方程形式化为x+px+q=0的特殊型。

一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。

归纳出来的形如x+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。

归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。

方法如下:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x=(A+B)+3(AB)^(1/3)x,移项可得(4)x-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得(6)A+B=-q,AB=-(p/3)(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A 和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay+by+c=0的一元二次方程两个根的韦达定理,即(8)y1+y2=-(b/a),y1*y2=c/a(9) 对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)=c/a(10)由于型为ay+by+c=0的一元二次方程求根公式为y1=(-b+(b-4ac)^(1/2))/(2a)y2=(-b-(b-4ac)^(1/2))/(2a)可化为(11)y1=-(b/2a)-((b/2a)-(c/a))^(1/2)y2=-(b/2a)+((b/2a)-(c/a))^(1/2)将(9)中的A=y1,B=y2,q=b/a,-(p/3)=c/a代入(11)可得(12)A=-(q/2)-((q/2)+(p/3)^(1/2) B=-(q/2)+((q/2)+(p/3))^(1/2) ((13)将A,B代入x=A^(1/3)+B^(1/3)得(14)x=(-(q/2)-((q/2)+(p/3))^(1/2))^(1/3)+(-(q/2)+((q/2)+(p/3))^(1/2))^(1/3)式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了将其以下图具体显示注意此处的三次方程是实数域的。

一元三次方程快速解法

一元三次方程快速解法

一元三次方程快速解法
标准型的一元三次方程ax3+bx2+cx+d=0(a,b,c,d∈R,且a≠0),其解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于发表的盛金公式法。

一元三次方程通用求根公式
一元三次方程的因式分解法
例题:x3-3x2+4
答案:x1=-1,x2=x3=2
解题思路:解一元三次方程,首先要得到一个解,这个解可以凭借经验或者凑数得到,然后根据短除法得到剩下的项。

具体过程:我们观察式子,很容易找到x=-1是方程的一个解,所以我们就得到一个
项x+1。

剩下的项我们用短除法。

也就是用x3-3x2+4除以x+1。

因为被除的式子最高次数是3次,所以一定有x2
现在被除的式子变成了x3-3x2+4-(x+1)*x2=-4x2+4,因为最高次数项是-4x2,所以一定有-4x
现在被除的式子变成了-4x2+4-(-4x2-4x)=4x+4,剩下的一项自然就是4了
所以,原式可以分解成(x+1)*(x2-4x+4),也就是(x+1)*(x-2)2
(x+1)*(x-2)2=0
解得x1=-1,x2=x3=2
感谢您的阅读,祝您生活愉快。

一元三次方程组的解法公式

一元三次方程组的解法公式

如何轻松解决一元三次方程组
一元三次方程组,是指含有三个未知数的三个方程,解决起来常
常让人望而却步。

但是,只要掌握了解决公式,这个难题也就迎刃而
解了。

步骤一:标准形式
将一元三次方程组化为标准形式。

标准形式是指各个方程中的未
知数的幂次数从高到低依次排列,同一幂次数前面系数较大的排在前面。

步骤二:列方程
根据标准形式可以列出一个一元三次方程,使用高斯消元法求解。

具体的做法是,将主元调整为1,再使用代入法解出未知数值。

步骤三:解方程组
根据求解出的一个方程得到一个未知数的解,在其他方程中代入
这个解,得到另一个方程。

继续使用高斯消元法解一元二次方程,得
到另一个未知数的解。

将这个解代入第三个方程,得到第三个未知数
的解。

通过以上步骤,我们就可以轻松解决一元三次方程组。

当然,在
实际中,还可以使用其他方法,如牛顿-拉夫森方法、高斯-若尔当消
元法等。

总之,熟练掌握以上方法,就可以解决一元三次方程组的难题。

求解一元三次方程的技巧

求解一元三次方程的技巧

求解一元三次方程的技巧求解一元三次方程是数学中的一种常见问题,通常会使用不同的方法和技巧。

下面将介绍一些常用的方法和技巧,帮助您解决这类问题。

一、因式分解法当一元三次方程能够进行因式分解时,可以使用这种方法来求解。

具体步骤如下:1. 将方程写成标准形式:ax^3 + bx^2 + cx + d = 0。

2. 尝试对方程进行因式分解,看是否能找到一个因式。

常见的技巧包括因式定理、分组分解法、平方差公式、变量替换等。

3. 如果找到了一个因式,将方程进行因式分解。

例如,如果找到了因式(x - a),则将方程分解为(x - a)(px^2 + qx + r) = 0。

4. 解出求解方程px^2 + qx + r = 0,该方程为二次方程,可以使用求解二次方程的方法进行处理。

5. 求解得到的根代入(x - a) = 0,解得方程的其他根。

二、配方法当一元三次方程无法进行因式分解时,可以尝试使用配方法进行求解。

具体步骤如下:1. 将方程写成标准形式:ax^3 + bx^2 + cx + d = 0。

2. 将方程左侧的三次项和一次项的系数进行合并,得到方程的配方形式:x^3 + px + q = 0。

3. 将方程的配方形式整理成 (x + m)^3 + n = 0 的形式,其中 m、n 是待定常数。

4. 比较原方程和配方形式的系数,得到 m 和 n 的表达式。

5. 将方程的配方形式展开,并与原方程进行比较,得到关于 m 和 n 的方程组。

6. 解方程组得到 m 和 n 的值。

7. 代入 m 和 n 的值,得到方程的解。

三、牛顿迭代法当以上两种方法均无法求解一元三次方程时,可以使用牛顿迭代法来逼近方程的解。

具体步骤如下:1. 将方程写成标准形式:ax^3 + bx^2 + cx + d = 0。

2. 选择一个初始近似解 x0。

3. 根据迭代公式 xn+1 = xn - f(xn)/f'(xn),依次计算迭代值xn+1,直到满足迭代精度要求或达到最大迭代次数为止。

一元三次方程的一般解法

一元三次方程的一般解法

一元三次方程的一般解法一元三次方程是一种数学形式,描述数据变化以及解答相应问题的方程,常被用于解答实际存在的问题。

了解一元三次方程解法,对于准确解决实际中涉及数学的问题具有重要意义。

那么,具体一元三次方程的一般解法有哪些呢?一、特征方程法特征方程法是一种天然的、直观的解决一元三次方程的方法,即对一元三次方程的三次项求特征多项式,并求解相应的根,从而求出方程的根。

1. 先求特征多项式的根:(1) 将方程的各项分别排列,把系数加以收敛,使其构成方程的一个齐次多项式;(2) 将齐次多项式化为零,并求解得出特征多项式;(3) 根据特征多项式的分母,根据普通的多项式求根法求出一元三次方程的特征多项式的根,即一元三次方程的解。

2. 根据特征多项式的根求一元三次方程的解:(1) 如果特征多项式只有一个根,则可以将此根作为一元三次方程的解;(2) 如果特征多项式有多个不相等的根,则可以将此多个根作为一元三次方程的解;(3) 如果特征多项式有多个相等的根,则每个相等的根可以作为一元三次方程的两个解,即一元三次方程的解即为特征多项式的根组成的有理方程组。

二、分段组合解法把一元三次方程分解成若干内容较为简单的一元二次方程的求解过程,将已知的实数范围分成若干段,由此确定出每一段内适当的近似解,然后结合方程的初始条件,最终得到方程的解。

三、借助代数解法借助代数解法,将一元三次方程变为积分方程,先求积分方程的积分,再利用积分的特性和方程的恰当初值条件,求得方程的解。

四、精确积分法将一元三次方程转化为形式适当的积分分段函数部分,然后对积分分段函数进行精确的积分,通常最后只要代入一个数值即可计算出方程的解。

总结1. 特征方程法:首先求解特征多项式并求其根,从而得到方程的根;2. 分段组合解法:将已知实数范围分成若干段,确定适当的近似解,结合方程的初始条件,求出方程的解;3. 借助代数解法:将一元三次方程变为积分方程,求其积分并应用解法特性,得到一元三次方程的解;4. 精确积分法:先将一元三次方程转化为形式适当的积分分段函数,再精确积分,最后代入一个数值即可计算出方程的解。

解一元三次方程的方法

解一元三次方程的方法

解一元三次方程的方法
一元三次方程是高中数学中的重要内容,解一元三次方程的方法有多种,包括直接代入、因式分解、配方法、换元法等。

下面将逐一介绍这些方法。

直接代入法是解一元三次方程最直接的方法之一。

当一元三次方程的系数较为简单时,可以直接将可能的根代入方程进行验证,找到满足方程的根。

这种方法简单直接,但对于系数较为复杂的一元三次方程来说,不太适用。

因式分解法是解一元三次方程的另一种常用方法。

当一元三次方程可以进行因式分解时,可以通过因式分解的方式将方程化简为一次因式相乘的形式,从而求得方程的根。

这种方法适用于一些特殊的一元三次方程,但并不是所有的一元三次方程都可以通过因式分解来解。

配方法是解一元三次方程的另一种常用方法。

通过合理的配方法,可以将一元三次方程化简为一个完全平方的形式,从而求得方程的根。

这种方法在一些特殊的一元三次方程中比较有效,但对于一般的一元三次方程来说,需要一定的技巧和经验。

换元法是解一元三次方程的另一种常用方法。

通过合理的换元,可以将一元三次方程转化为一个二次方程,从而求得方程的根。


种方法在一些特殊的一元三次方程中比较实用,但需要对换元的技
巧有一定的了解和掌握。

综上所述,解一元三次方程的方法有多种,选择合适的方法取
决于方程的具体形式和系数的大小。

在解题过程中,需要根据具体
情况选择合适的方法,并灵活运用各种方法,从而解得一元三次方
程的根。

希望以上方法能够帮助您更好地理解和掌握解一元三次方
程的技巧,提高数学解题的能力。

解一元三次方程专题

解一元三次方程专题

解一元三次方程专题---一元三次方程是指次数最高为三次的方程,通常的形式为:$$ax^3+bx^2+cx+d=0$$解一元三次方程的方法有多种,下面将介绍其中的几种常用方法。

---方法一:分离变量法分离变量法是一种常用的解一元三次方程的方法。

它的基本思想是将方程中的$x$和常数项用不同的符号表示,然后将方程化为两个关于不同变量的方程,进而求得解。

具体步骤如下:1. 将方程变形,使得方程右边为0。

2. 令$x=y-\frac{b}{3a}$,将原方程转化为以$y$为变量的形式。

3. 将变量分离,得到两个方程。

4. 解两个方程,得到$y$的值。

5. 将$y$的值代入$x=y-\frac{b}{3a}$,求得$x$的值。

注意:分离变量法只能得到方程的实数根。

---方法二:高斯消元法高斯消元法是解一元三次方程的另一种常用方法。

它的基本思想是通过变量替换和高斯消元的操作,将方程化为一个二次方程和一个一次方程,从而求得解。

具体步骤如下:1. 将方程变形,使得方程右边为0。

2. 令$u=x-\frac{b}{3a}$,将原方程转化为以$u$为变量的形式。

3. 减去方程两边的$d$,得到$u^3+pu+q=0$的形式。

4. 利用高斯消元法求解$u^3+pu+q=0$,得到$u$的值。

5. 将$u$的值代入$x=u-\frac{b}{3a}$,求得$x$的值。

注意:高斯消元法可以得到方程的实数根和复数根。

---方法三:牛顿迭代法牛顿迭代法是一种数值解法,可以用来解一元三次方程。

它的基本思想是通过迭代逼近的方式,不断改进初始值,从而求得解。

具体步骤如下:1. 将方程变形,使得方程右边为0。

2. 选取一个初始值$x_0$。

3. 根据牛顿迭代公式 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$,不断迭代,直到满足精确度要求或达到迭代次数。

4. 得到近似解。

注意:牛顿迭代法可以得到方程的实数根和复数根,但要求初始值选择得当。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元三次方程的方法
解一元三次方程问题是世界数学史上较著名且较为复杂而又有趣味的问题,虚数概念的引进、复数理论的建立,就是起源于解三次方程问题。

一元三次方程应用广泛,如电力工程、水利工程、建筑工程、机械工程、动力工程、数学教学及其他领域等。

那么,以下是我分享给大家的关于解一元三次方程的方法,欢迎大家的参考学习!
解一元三次方程的方法
解法一是意大利学者卡尔丹发表的卡尔丹公式法。

解法二是中国学者范盛金发表的盛金公式法。

这两种方法都可以解答标准型的一元三次方程,但是卡尔丹公式解题方便。

相关内容:
一元三次方程的解法的历史
人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢。

古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了。

在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法。

在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺。

那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样。

数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛?冯塔纳(Niccolo Fontana)。

冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一。

由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思。

后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳。

经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法。

这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲。

但是冯塔纳不愿意将他的这个重要发现公之于世。

当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣。

他几次诚恳地登门请教,希望获得冯塔纳的求根公式。

可是冯塔纳始终守口如瓶,滴水不漏。

虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”。

后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡尔丹诺。

冯塔纳认为卡尔丹诺很难破解他的“咒语”,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密。

卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字。

随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法。

由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔丹诺公式”。

卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页。

这个结果,对于付出
艰辛劳动的冯塔纳当然是不公平的。

但是,冯塔纳坚持不公开他的研究成果,也不能算是正确的做法,起码对于人类科学发展而言,是一种不负责任的态度。

相关文档
最新文档