广东高考数学(理)一轮题库:7.4-基本不等式(含答案)
广州市天河高考一轮《基本不等式》复习检测试题含答案

基本不等式例1:求证)(2222222c b a a c c b b a ++≥+++++。
分析:此问题的关键是“灵活运用重要基本不等式ab b a 222≥+,并能由)(2c b a ++这一特征,思索如何将ab b a 222≥+进行变形,进行创造”。
证明:∵ab b a 222≥+,两边同加22b a +得222)()(2b a b a +≥+,即2)(222b a b a +≥+;∴)(222122b a b a b a +≥+≥+,同理可得:)(2222c b c b +≥+,)(2222a c a c +≥+, 三式相加即得)(2222222c b a a c c b b a ++≥+++++。
例2:若正数a 、b 满足3++=b a ab ,则ab 的取值范围是 。
解:∵+∈R b a ,,∴323+≥++=ab b a ab ,令ab y =,得0322≥--y y , ∴3≥y ,或1-≤y (舍去),∴92≥=ab y ,∴ab 的取值范围是[).,9+∞。
说明:本题的常见错误有二。
一是没有舍去1-≤y ;二是忘了还原,得出[)+∞∈,3ab 。
前者和后者的问题根源都是对ab 的理解,前者忽视了.0≥ab 后者错误地将2y 视为ab 。
因此,解题过程中若用换元法,一定要对所设“元”的取值范围有所了解,并注意还原之。
例3:已知R c b a ∈,,,求证.222ca bc ab c b a ++≥++ 证明:∵ab b a 222≥+,bc c b 222≥+,ca a c 222≥+,三式相加,得)(2)(2222ca bc ab c b a ++≥++,即.222ca bc ab c b a ++≥++ 说明:这是一个重要的不等式,要熟练掌握。
例4:已知c b a 、、是互不相等的正数,求证:abc b a c c a b c b a 6)()()(222222>+++++。
2024年高考数学 高三大一轮复习专题04 基本不等式

专题04 基本不等式【知识精讲】一、基本不等式12a b+≤(1)基本不等式成立的条件:0,0a b >>. (2)等号成立的条件,当且仅当a b =时取等号. 2.算术平均数与几何平均数设0,0a b >>,则a 、b 的算术平均数为2a b+,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 3.利用基本不等式求最值问题(1)如果积xy 是定值P ,那么当且仅当x y =时,x +y 有最小值是简记:积定和最小)(2)如果和x +y 是定值P ,那么当且仅当x y =时,xy 有最大值是24P .(简记:和定积最大) 4.常用结论(1)222(,)a b ab a b +≥∈R (2)2(,)b aa b a b+≥同号 (3)2()(,)2a b ab a b +≤∈R (4)222()(,)22a b a b a b ++≤∈R(5)2222()()(,)a b a b a b +≥+∈R(6)222()(,)24a b a b ab a b ++≥≥∈R(7)222(0,0)1122a b a b ab a b a b++≥≥≥>>+ 二、常见求最值模型 模型一:)0,0(2>>≥+n m mn x nmx ,当且仅当mn x =时等号成立; 模型二:)0,0(2)(>>+≥+−+−=−+n m ma mn ma ax na x m a x n mx ,当且仅当mna x =−时等号成立;模型三:)0,0(2112>>+≤++=++c a bac xc b ax c bx ax x ,当且仅当acx =时等号成立; 模型四:)0,0,0(4)21)()(22mnx n m m n mx n mx m m mx n mx mx n x <<>>=−+⋅≤−=−(,当且仅当mnx 2=时等号成立. 【题型精讲】题型一 利用基本不等式求最值【例1-1】对勾函数 求下列函数的最值(1)已知54x <,则函数1445y x x =+−的最大值为___________.【答案】3 【解析】 【分析】由于5,4504x x <−< ,需要构造函数,才能运用基本不等式.【详解】因为54x <,所以450x −<,540x −>,()1144554545y x x x x =+=−++−−()()11545254535454x x x x ⎡⎤=−−++≤−−⋅=⎢⎥−−⎣⎦当且仅当15454x x−=−,即1x =时,等号成立.故当1x =时,y 取最大值,即max 3y =.故答案为:3.(2)已知54x >,则函数1445y x x =+−的最小值为___________.【答案】3 【解析】 【分析】由于5,4504x x >−> ,需要构造函数,才能运用基本不等式.【详解】因为54x >,所以450x −>,()1144554545y x x x x =+=−++−−()14555745x x ⎡⎤=−++≥=⎢⎥−⎣⎦当且仅当14545x x −=−,即32x =时,等号成立.故当32x =时,y 取最小值,即min7y=.故答案为:3.(3)已知2x ≥,则函数1445y x x =+−的最小值为___________. 【答案】325 【例1-2】最值定理(1)已知01x <<,则(43)x x −取得最大值时x 的值为________.【答案】 23【解析】 【分析】(1)积的形式转化为和的形式,利用基本不等式求最值,并要检验等号成立的条件; 【详解】解:(1)2113(43)4(43)3(43)3323x x x x x x +−⎡⎤−=⨯−≤⨯=⎢⎥⎣⎦, 当且仅当343x x =−,即23x =时,取等号. 故答案为:23.(2)若x ,y 为实数,且26x y +=,则39x y +的最小值为( )A .18B .27C .54D .90【答案】C 【解析】 【分析】利用基本不等式可得答案. 【详解】由题意可得2393322754x y x y +=+≥=⨯=, 当且仅当233x y =时,即2x y =等号成立. 故选:C .【例1-3】“1”的妙用 (1)若正实数,a b 满足32a b +=,则11a b+的最小值为___________.【答案】22 【解析】 【分析】用“1”的代换凑配出定值后用基本不等式求得最小值. 【详解】1111113(3)2()22222b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当3b a a b =时,即a b ==时,11a b +的最小值为2.故答案为:2.(2)已知0x >,0y >,且22x y +=,则433x y x y++的最小值为__________.【答案】3【解析】 【分析】将目标式中4代换成24x y +,展开由基本不等式可得. 【详解】 因为22x y +=所以432434333333x y x y x y y x x y x y x y ++++=+=++≥+= 当且仅当4322yx x y x y ⎧=⎪⎨⎪+=⎩,即3x y ==时,取等号,所以433x y x y ++的最小值为3故答案为:3【例1-4】分离常数法 当2x >−时,函数2462++=+x x y x 的最小值为___________.【答案】【解析】 【分析】将函数解析式变形为()222y x x =+++,利用基本不等式可求得结果. 【详解】因为2x >−,则20x +>,则()()22224622222x x x y x x x x ++++===+++++≥=当且仅当2x 时,等号成立,所以,当2x >−时,函数2462++=+x xy x 的最小值为故答案为:【例1-5】换元法 已知正数x ,y 满足21133x y x y+=++,则x y +的最小值( )AB .34+CD .38+ 【答案】A 【解析】 【分析】利用换元法和基本不等式即可求解. 【详解】令3x y m +=,3x y n +=,则211m n+=, 即()()()334m n x y x y x y +=+++=+,∴21121344424444m n m n m n x y m n n m +⎛⎫⎛⎫+==++=+++≥ ⎪⎪⎝⎭⎝⎭33244=+=,当且仅当244m n n m=,即2m =1n =时,等号成立, 故选:A.【例1-6】消元法 已知正实数a ,b 满足220ab a +−=,则4a b +的最小值是( )A.2 B .2 C .2 D .6【答案】B 【解析】 【分析】根据220ab a +−=变形得22a b =+,进而转化为a b b b +=++842, 用凑配方式得出()b b ++−+8222,再利用基本不等式即可求解. 【详解】由220ab a +−=,得22a b =+,所以()a b b b b b b +=+=++−⋅=+++888422222222,当且仅当,a b b b ==+++28222,即a b ==22取等号. 故选:B.【例1-7】一元二次不等式法 已知x ,y R ∈,2291x xy y −+=,则3x y +的最大值为________.【解析】 【分析】由229123x y xy x y +=+⋅⋅,可推出15xy ,而222(3)6917x y x xy y xy +=++=+,代入所得结论即可. 【详解】解:2291x xy y −+=,22916x y xy xy ∴+=+,即15xy ,当且仅当3x y =,即15x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,222112(3)69171755x y x xy y xy ∴+=++=+≤+⨯=,∴3x y +≤3x y ∴+【例1-8】拆项法,,a b c 是不同时为0的实数,则2222ab bca b c +++的最大值为( )A .12 B .14CD【答案】A 【解析】 【分析】对原式变形,两次利用基本不等式,求解即可. 【详解】因为a ,b 均为正实数,则2222222ab bc a c a c a b c b b ++=≤++++12==≤=, 当且仅当222a c b b +=,且a c =取等,即a b c ==取等号,即则2222ab bc a b c +++的最大值为12,故选:A .【练习1-1】(1)已知1x >−,求函数27101x x y x ++=+的值域;(2)已知0x >,0y >,且280x y xy +−=,求:x y +的最小值. 【答案】(1)[)9,+∞;(2)18. 【解析】 【分析】(1)设1t x =+,得到0t >,且1x t =−,化简2710451x x y t x t ++==+++,结合基本不等式(对勾函数法),即可求解;(2)由280x y xy +−=,得到821x y +=,化简()822810x yx y x y x y y x ⎛⎫+=++=++ ⎪⎝⎭,结合基本不等式(“1”的妙用),即可求解. 【详解】(1)设1t x =+,因为1x >−,可得0t >,且1x t =−,故22710(1)7(1)10451x x t t y t x t t ++−+−+===+++,因为44t t+≥,可得459t t ++≥,当且仅当2t =时,即1x =时,等号成立.所以函数2710(1)1x x y x x ++=>−+的值域为[)9,+∞.(2)由280x y xy +−=,可得28x y xy +=,即821x y +=,则()82x y x y x y ⎛⎫+=++ ⎪⎝⎭281010218x y y x =++≥+=. 当且仅当28x y y x=,即12x =且6y =时,等号成立, 所以x y +的最小值为18.【练习1-2】已知正实数a ,b 满足26a b +=,则212a b ++的最小值为( )A .45B .43C .98D .94【答案】C 【解析】 【分析】利用乘1法即得. 【详解】 ∵26a b +=,∴()214114122222822a b a b a b a b ⎛⎫+=+=+++ ⎪+++⎝⎭()(42121941582288b a b a +⎡⎤=+++≥⨯+=⎢⎥+⎣⎦, 当且仅当()42222b ab a+=+,即23b =,83a =时,取等号. 故选:C.【练习1-3】已知对任意正实数x ,y ,恒有()2222x y a x xy y +−+≤,则实数a 的最小值是___________. 【答案】2 【解析】 【分析】证明220x xy y −+>,由()2222x y a x xy y +−+≤,即2222x y a x xy y +−+≤,22222211x y xy x xy y x y +=−+−+结合基本不等式求出2222max x y x xy y ⎛⎫+ ⎪−+⎝⎭,即可得出答案. 【详解】解:因为0,0x y >>,则()2220x xy y x y xy −+=−+>, 则()2222x y a x xy y +−+≤,即2222x y a x xy y +−+≤, 又22222211x y xy x xy y x y +=−+−+, 因为222x y xy +≥,所以22112xy x y −≥+,所以22121xy x y ≤−+, 即22222x y x xy y+≤−+,当且仅当x y =时,取等号, 所以2222max2x y x xy y ⎛⎫+= ⎪−+⎝⎭, 所以2a ≥,即实数a 的最小值是2.故答案为:2.【练习1-4】已知正数a ,b 满足426a b ab ++=,则4a b +的最小值为( )A .1BC .4D .5【答案】C 【解析】 【分析】由基本不等式得出关于4a b +的不等式,解之可得. 【详解】由已知2146(4)2()22a b a b ab +−+=≤⋅,当且仅当4a b =时等号成立, 所以2(4)8(4)480a b a b +++−≥,(44)(412)0a b a b +−++≥, 又0,0a b >>,所以44a b +≥,即4a b +的最小值是4,此时12,2a b ==. 故选:C .【练习1-5】设0a >,0b >,若221a b +=2ab −的最大值为( )A .3+B .C .1D .2+【答案】D 【解析】 【分析】法一:设c b =−,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()14a b +=进而根据三角换元得5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可. 【详解】解:法一:(基本不等式)设c b =−2ab −=)a b ac −=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()14a b +=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩, 由于0a >,0b >,故cos 02sin 0θθθ⎧>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ−=≤当且仅当4πθ=时取等号.故选:D.题型二 求数、式的范围【例2-1】若正数a ,b 满足ab =a +b +3,则 (1)ab 的取值范围是__ ; (2)a +b 的取值范围是__ __. 【答案】(1)_[9,+∞) (2)[6,+∞) [解析] (1)∵ab =a +b +3≥2ab +3,令t =ab >0,∴t 2-2t -3≥0,∴(t -3)(t +1)≥0. ∴t ≥3即ab ≥3,∴ab ≥9,当且仅当a =b =3时取等号. (2)∵ab =a +b +3,∴a +b +3≤(a +b 2)2.今t =a +b >0,∴t 2-4t -12≥0,∴(t -6)(t +2)≥0. ∴t ≥6即a +b ≥6,当且仅当a =b =3时取等号. 【例2-2】已知0m >,0xy >,当2x y +=时,不等式24mx y+≥恒成立,则m 的取值范围是 。
高考理科数学(人教版)一轮复习讲义:第七章 第三节 基本不等式 Word版含答案

第三节基本不等式1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 注:(1)此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.(2)连续使用基本不等式时,牢记等号要同时成立.[小题查验基础]一、判断题(对的打“√”,错的打“×”) (1)当a ≥0,b ≥0时,a +b2≥ab .( ) (2)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( ) (3)x >0且y >0是x y +yx ≥2的充要条件.( ) (4)函数f (x )=cos x +4cos x,x ∈⎝⎛⎭⎫0,π2的最小值等于4.( ) 答案:(1)√ (2)× (3)× (4)×二、选填题1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82答案:C2.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<b C .a <ab <b <a +b2D.ab <a <a +b2<b 解析:选B 因为0<a <b ,所以a -ab =a (a -b )<0,故a <ab ;b -a +b 2=b -a2>0,故b >a +b 2;由基本不等式知a +b 2>ab ,综上所述,a <ab <a +b2<b ,故选B. 3.函数f (x )=x +1x 的值域为( )A .[-2,2]B .[2,+∞)C .(-∞,-2]∪[2,+∞)D .R 解析:选C 当x >0时,x +1x ≥2 x ·1x =2.当x <0时,-x >0. -x +1-x ≥2(-x )·1(-x )=2.所以x +1x≤-2.所以f (x )=x +1x 的值域为(-∞,-2]∪[2,+∞).4.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________. 答案:2 2 5.若x >1,则x +4x -1的最小值为________. 解析:x +4x -1=x -1+4x -1+1≥4+1=5. 当且仅当x -1=4x -1,即x =3时等号成立. 答案:5考点一 利用基本不等式求最值[全析考法过关](一) 拼凑法——利用基本不等式求最值[例1] (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)函数y =x 2+2x -1(x >1)的最小值为________.[解析] (1)x (4-3x )=13·(3x )(4-3x )≤13·⎣⎡⎦⎤3x +(4-3x )22=43,当且仅当3x =4-3x ,即x =23时,取等号.故所求x 的值为23.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x,即x=1时,取等号.故f (x )=4x -2+14x -5的最大值为1. (3)y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2. 当且仅当x -1=3x -1,即x =3+1时,取等号. [答案] (1)23 (2)1 (3)23+2[解题技法]通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.(二) 常数代换法——利用基本不等式求最值[例2] 已知a >0,b >0,a +b =1,则1a +1b 的最小值为________. [解析] 因为a +b =1,所以1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+⎝⎛⎭⎫b a +a b ≥2+2 b a ·a b =2+2=4.当且仅当a =b =12时,取等号.[答案] 4 [变式发散]1.(变条件)将条件“a +b =1”改为“a +2b =3”,则1a +1b 的最小值为________.解析:因为a +2b =3,所以13a +23b =1.所以1a +1b =⎝⎛⎭⎫1a +1b ⎝⎛⎭⎫13a +23b =13+23+a 3b +2b3a≥1+2 a 3b ·2b 3a=1+223.当且仅当a =2b 时,取等号.答案:1+2232.(变设问)保持本例条件不变,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________. 解析:⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫1+a +b a ⎝⎛⎭⎫1+a +b b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号. 答案:9[解题技法]通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. (三) 消元法——利用基本不等式求最值[例3] 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. [解析] 法一(换元消元法):由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0.令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 法二(代入消元法):由x +3y +xy =9,得x =9-3y 1+y,所以x +3y =9-3y 1+y +3y =9-3y +3y (1+y )1+y=9+3y 21+y =3(1+y )2-6(1+y )+121+y =3(1+y )+121+y-6≥23(1+y )·121+y-6=12-6=6.即x +3y 的最小值为6. [答案] 6 [解题技法]通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.(四) 利用两次基本不等式求最值 [例4] 已知a >b >0,那么a 2+1b (a -b )的最小值为________.[解析] 由a >b >0,得a -b >0, ∴b (a -b )≤⎝⎛⎭⎫b +a -b 22=a24. ∴a 2+1b (a -b )≥a 2+4a 2≥2a 2·4a2=4, 当且仅当b =a -b 且a 2=4a 2,即a =2,b =22时取等号.∴a 2+1b (a -b )的最小值为4.[答案] 4 [解题技法]两次利用基本不等式求最值的注意点当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性.[过关训练]1.(2019·常州调研)若实数x 满足x >-4,则函数f (x )=x +9x +4的最小值为________.解析:∵x >-4,∴x +4>0, ∴f (x )=x +9x +4=x +4+9x +4-4≥2(x +4)·9x +4-4=2,当且仅当x +4=9x +4,即x =-1时取等号. 故函数f (x )=x +9x +4的最小值为2. 答案:22.若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是________. 解析:因为正数x ,y 满足x 2+6xy -1=0, 所以y =1-x 26x.由⎩⎪⎨⎪⎧x >0,y >0,即⎩⎪⎨⎪⎧x >0,1-x 26x>0解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x≥22x 3·13x =223, 当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223.答案:223考点二 利用基本不等式解决实际问题[师生共研过关][典例精析]某厂家拟定在2019年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-km +1(k 为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2019年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2019年的促销费用投入多少万元时,厂家利润最大? [解] (1)由题意知,当m =0时,x =1(万件), 所以1=3-k ⇒k =2,所以x =3-2m +1,每件产品的销售价格为1.5×8+16xx (元), 所以2019年的利润y =1.5x ×8+16xx -8-16x -m=-⎣⎡⎦⎤16m +1+(m +1)+29(m ≥0).(2)因为m ≥0时,16m +1+(m +1)≥216=8, 所以y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元).故该厂家2019年的促销费用投入3万元时,厂家的利润最大为21万元.[解题技法]利用基本不等式解决实际问题的3个注意点(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[过关训练]1.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2. 解析:设一边长为x m ,则另一边长可表示为(10-x )m ,由题知0<x <10,则面积S =x (10-x )≤⎝⎛⎭⎫x +10-x 22=25,当且仅当x =10-x ,即x =5时等号成立,故当矩形的长与宽相等,且都为5 m 时面积取到最大值25 m 2.答案:252.(2019·孝感模拟)经测算,某型号汽车在匀速行驶的过程中每小时耗油量y (L)与速度x (km/h)(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最低?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?解:(1)当x ∈[50,80)时,y =175(x 2-130x +4 900)=175[(x -65)2+675],当x =65时,y 有最小值,为175×675=9,当x ∈[80,120]时,函数y =12-x 60单调递减,故当x =120时,y 有最小值,为10,因为9<10,所以该型号汽车的速度为65 km/h 时,每小时耗油量最低.(2)设总耗油量为l ,由题意可知l =y ·120x ,当x ∈[50,80)时,l =y ·120x =85⎝⎛⎭⎫x +4 900x -130≥85⎝⎛⎭⎫2x ×4 900x -130=16,当且仅当x =4 900x ,即x =70时,l 取得最小值,最小值为16.当x ∈[80,120]时,l =y ·120x =1 440x -2为减函数,故当x =120时,l 取得最小值,最小值为10,因为10<16,所以当速度为120 km/h 时,总耗油量最少.考点三 基本不等式的综合应用[师生共研过关][典例精析](1)已知直线ax +by +c -1=0(b >0,c >0)经过圆C :x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2(2)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________.[解析] (1)把圆x 2+y 2-2y -5=0化成标准方程为x 2+(y -1)2=6,所以圆心为C (0,1). 因为直线ax +by +c -1=0经过圆心C ,所以a ×0+b ×1+c -1=0,即b +c =1.又b >0,c >0, 因此4b +1c =(b +c )⎝⎛⎭⎫4b +1c =4c b +b c +5≥2 4c b ·b c +5=9.当且仅当b =2c ,且b +c =1, 即b =23,c =13时,4b +1c 取得最小值9.(2)由题意a n =a 1+(n -1)d =n ,S n =n (1+n )2, 所以S n +8a n =n (1+n )2+8n =12⎝⎛⎭⎫n +16n +1≥12⎝⎛⎭⎫2 n ·16n +1=92, 当且仅当n =4时取等号. 所以S n +8a n 的最小值是92.[答案] (1)A (2)92[解题技法]利用基本不等式解题的策略(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.[过关训练]1.已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a 的值是( )A.12 B.32 C .1D .2解析:选C 由题意可得a >0, ①当x >0时,f (x )=x +ax +2≥2a +2, 当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax +2≤-2a +2, 当且仅当x =-a 时取等号,所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C.2.已知向量a =(m,1),b =(4-n,2),m >0,n >0,若a ∥b ,则1m +8n 的最小值为________.解析:∵a ∥b ,∴4-n -2m =0,即2m +n =4.∵m >0,n >0,∴1m +8n =14(n +2m )⎝⎛⎭⎫1m +8n =14×⎝⎛⎭⎫10+n m +16m n ≥14×⎝⎛⎭⎫10+2 n m ·16m n =92,当且仅当4m =n =83时取等号.∴1m +8n 的最小值是92.答案:92。
2018版高考数学(理)一轮复习文档:第七章7.4 基本不等式及其应用含解析

(2)函数f(x)=cosx+ ,x∈(0, )的最小值等于4。( × )
(3)“x>0且y>0"是“ + ≥2”的充要条件.( × )
(4)若a>0,则a3+ 的最小值为2 .( × )
(5)不等式a2+b2≥2ab与 ≥ 有相同的成立条件.( × )
(6)两个正数的等差中项不小于它们的等比中项.( √ )
2.已知a〉0,b〉0, + =4,求a+b的最小值.
解 由 + =4,得 + =1。
∴a+b=( + )(a+b)= + + ≥ +2 =1。
当且仅当a=b= 时取等号.
3.将条件改为a+2b=3,求 + 的最小值.
解 ∵a+2b=3,
∴ a+ b=1,
∴ + =( + )( a+ b)= + + +
答案 (1)80 (2)8
解析 (1)设每件产品的平均费用为y元,由题意得
y= + ≥2 =20.
当且仅当 = (x>0),即x=80时“=”成立.
(2)年平均利润为 =-x- +18
=-(x+ )+18,
∵x+ ≥2 =10,
∴ =18-(x+ )≤18-10=8,
当且仅当x= ,即x=5时,取等号.
= + · +4(y- )
≥ +2 =5,
当且仅当y= 时等号成立,∴(3x+4y)min=5。
(2)由2x-3=( )y得x+y=3,
+ = (x+y)( + )
= (1+m+ + )
≥ (1+m+2 )
(当且仅当 = ,即y= x时取等号),
∴ (1+m+2 )=3,
解得m=4。
题型二 基本不等式的实际应用
高三一轮复习基本不等式练习题加答案

基本不等式例1、若x >0,求函数y =x +4x 的最小值,并求此时x 的值;解:当x >0时,x +4x≥2x ·4x =4,当且仅当x =4x,即x 2=4,x =2时取等号. ∴函数y =x +4x (x >0)在x =2时取得最小值4.例2、已知x >2,求x +4x -2的最小值;解:∵x >2,∴x -2>0,∴x +4x -2=x -2+4x -2+2≥2(x -2)·4x -2+2=6,当且仅当x -2=4x -2,即x =4时,等号成立.∴x +4x -2的最小值为6.变式、已知0<x <1,则x (4-3x )取得最大值时x 的值为________. 解析:x (4-3x )=13·(3x )(4-3x )≤13·⎣⎡⎦⎤3x +(4-3x )22=43, 当且仅当3x =4-3x ,即x =23时,取等号.答案:23例3、已知x >0,y >0,且 1x +9y=1,求x +y 的最小值.解:方法一 ∵x >0,y >0,1x +9y =1,∴x +y =)(yx 91+(x +y )=y x +9xy +10≥6+10=16, 当且仅当y x =9x y ,又1x +9y =1,即x =4,y =12时,上式取等号.故当x =4,y =12时,(x +y )min =16.方法二 由1x +9y=1,得(x -1)(y -9)=9(定值).由1x +9y =1可知x >1,y >9,∴x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=16, 当且仅当x -1=y -9=3,即x =4,y =12时上式取等号,故当x =4,y =12时,(x +y )min =16.例4、已知正数x ,y 满足x +2y =3,则y x +1y 的最小值为________.解析:y x +1y =y x +x +2y 3y =y x +x 3y +23≥2y x ×x 3y +23=23+23,当且仅当y x =x3y,即x =3y 时等号成立,所以y x +1y 的最小值为23+23.答案:23+23例5、若实数a ,b 满足ab -4a -b +1=0(a >1),则(a +1)(b +2)的最小值为________. 解析:因为ab -4a -b +1=0,所以b =4a -1a -1.又a >1,所以b >0,所以(a +1)(b +2)=ab +2a +b +2=6a +2b +1=6a +8+6a -1+1=6(a -1)+6a -1+15.因为a -1>0,所以6(a -1)+6a -1+15≥26(a -1)×6a -1+15=27,当且仅当6(a -1)=6a -1(a >1),即a =2时等号成立,故(a +1)(b +2)的最小值为27.答案:27例6、已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2 B .4 C .6D .8解析:已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝⎛⎭⎫1x +ay 的最小值大于或等于9,∵1+a +y x +axy ≥a +2a +1,当且仅当y =ax 时,等号成立,∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4,即正实数a 的最小值为4,故选B. 答案:B作业1:1、设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82解析:∵x >0,y >0,∴x +y 2≥xy ,即xy ≤⎝⎛⎭⎫x +y 22=81,当且仅当x =y =9时,(xy )max =81. 2.下列结论正确的是( )A .当0<x 2≥ B .当2x >时,1x x+的最小值是2 C .当54x <时,14245x x -+-的最小值是5 D .设0x >,0y >,且2x y +=,则14x y +的最小值是92对于选项B ,当2x >时,12x x +≥=,当且仅当1x =时取等号,但2x >,等号取不到,因此1x x+的最小值不是2,故B 错误; 对于选项C ,因为54x <,所以540x ->,则114254324554y x x x x ⎛⎫=-+=--++≤-⨯ ⎪--⎝⎭31=,当且仅当15454x x-=-,即1x =时取等号,故C 错误; 对于选项D ,因为0x >,0y >,则()141141419552222y xx y x y x y x y ⎛⎫⎛⎫⎛⎫+=++=++≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4y x x y =,即24,33x y ==时,等号成立,故D 正确. 故选:D.3.已知0,0x y >>,若3xy =,则x y +的最小值为( )A .3B .2C .D .1由于0,0x y >>,3xy =,所以x y +≥=x y ==.所以x y +的最小值为 故选:C .4.已知正实数x ,y 满足22x y xy +=.则x y +的最小值为( )A .4B C D 32解:由22x y xy +=,得1112x y+=, 因为x ,y 为正实数,所以11133()()122222x y x y x y x y y x +=++=+++≥=,当且仅当2y x x y =,即21,22x y ==时取等号,所以x y +32, 故选:D5.若1()2f x x x =+-(2)x >在x n =处取得最小值,则n =( ) A .52 B .3C .72D .4当且仅当时,等号成立;所以,故选B.6、若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值为( )A .16B .9C .6D .1解析:∵正数a ,b 满足1a +1b =1,∴a +b =ab ,1a =1-1b >0,1b =1-1a>0,∴b >1,a >1,则1a -1+9b -1≥29(a -1)(b -1)=29ab -(a +b )+1=6(当且仅当a =43,b =4时等号成立),∴1a -1+9b -1的最小值为6,故选C. 答案:C7.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( )A .BC .1D .2【答案】D 【解析】 【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值. 【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D.8、已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24 解析:由3a +1b ≥ma +3b,得m ≤(a +3b )⎝⎛⎭⎫3a +1b =9b a +a b +6. 又9b a +ab +6≥29+6=12⎝⎛⎭⎫当且仅当9b a =a b ,即a =3b 时等号成立, ∴m ≤12,∴m 的最大值为12. 答案:B9、已知x >0,则f (x )=12x +3x 的最小值是:解:∵x >0,∴f (x )=12x +3x ≥212x ·3x =12,当且仅当3x =12x,即x =2时取等号, ∴f (x )的最小值为12.10、设0<x <32,则函数y =4x (3-2x )的最大值是:解:∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎡⎦⎤2x +(3-2x )22=92. 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝⎛⎭⎫0,32.∴函数y =4x (3-2x )(0<x <32)的最大值为92. 11、设x >0,y >0,且2x +8y =xy ,则x +y 的最小值 . 解析:方法一 由2x +8y -xy =0,得y (x -8)=2x .∵x >0,y >0,∴x -8>0,y =2x x -8,∴x +y =x +2xx -8=x +(2x -16)+16x -8=(x -8)+16x -8+10≥2(x -8)×16x -8+10=18.当且仅当x -8=16x -8,即x =12时,等号成立.∴x +y 的最小值是18.方法二 由2x +8y -xy =0及x >0,y >0,得8x +2y =1.∴x +y =(x +y ))(yx 28+ =8y x +2xy+10≥2 8y x ·2x y +10=18.当且仅当8y x =2xy,即x =2y =12时等号成立. ∴x +y 的最小值是18. 答案:1812、已知x >0,y >0,且2x +5y =20.则1x +1y 的最小值为 .解析:∵x >0,y >0,∴1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2xy时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. 答案:7+2102013.若x y ∈R 、且满足32x y +=,则327x y +的最小值是____. 【答案】6 【解析】 【分析】本题首先可以根据基本不等式得出327x y +≥,然后代入32x y +=,即可得出结果. 【详解】332733x y x y +=+≥=,因为32x y +=,所以3276x y +≥=, 故答案为:6. 【点睛】本题考查基本不等式求最值,主要考查通过基本不等式求和的最小值,考查幂的运算,考查计算能力,是简单题.14.已知0x >,0y >且32x y xy +=,不等式23x y+的最小值为________. 【答案】4 【解析】 【分析】由题意得231x y+=,则232323x y x y x y ⎛⎫+=+ ⎛⎫+ ⎪⎝⎝⎭⎭⎪,再根据基本不等式即可求出最小值.【详解】解:,0x >,0y >且32x y xy +=,∴231x y+=,∴232323x y x y x y ⎛⎫+=+ ⎛⎫+ ⎪⎝⎝⎭⎭⎪231132y x x y =+++23232y x x y =++24≥+=, 当且仅当2332y xx y=即4,6x y ==时,等号成立, 故答案为:4. 【点睛】本题主要考查基本不等式求最值,考查“1”的代换,属于基础题. 选:B15、设正实数a ,b 满足a +b =1,则的最小值为 8 .解析:正实数a ,b 满足a +b =1, 则=+=++4≥2+4=8,当且仅当=,即a =,b =时等号成立;∴的最小值为8.故答案为:8. 答案:89、已知不等式2x +m +8x -1>0对一切x ∈(1,+∞)恒成立,则实数m 的取值范围是________.解析:不等式2x +m +8x -1>0可化为2(x -1)+8x -1>-m -2, 因为x >1,所以2(x -1)+8x -1≥22(x -1)·8x -1=8,当且仅当x =3时取等号.因为不等式2x +m +8x -1>0对一切x ∈(1,+∞)恒成立,所以-m -2<8.解得m >-10. 答案:(-10,+∞)16.各项均为正数的等比数列{}n a 的前n 项和为n S ,若264a a =,31a =,则2942⎛⎫+ ⎪⎝⎭n nS a 的最小值为______, 【答案】8 【解析】 【分析】根据等比数列的性质可得42a =,由此可求得n a ,n S ,从而表示出2942⎛⎫+ ⎪⎝⎭n nS a ,再根据基本不等式求解即可. 【详解】解:∵264a a =,且0n a >,∴42a =,∴公比432a q a ==, ∴43222n n n a --=⋅=,2222212124n n n S ----==--,∴()2222922422n n n n S a --⎛⎫+ ⎪+⎝⎭=224242n n --=++48≥=, 当且仅当224222n n --==, 即3n =时等号成立,故答案为:8.17.设ABC中,()cos cos cos 0C A A B +=,内角A 、B 、C 对应的对边长分别为a 、b 、c .(1)求角B 的大小;(2)若2248a c +=,求ABC 面积S 的最大值,并求出S 取得最大值时b 的值. 解:(1)∵()cos cos cos cos sin sin C A B A B A B =-+=-+,∴()cos cos cos sin cos cos C A A B A B A B +=π2sin sin 03A B ⎛⎫=-= ⎪⎝⎭, ∵sin 0A >,0πB <<, ∴πsin 03B ⎛⎫-= ⎪⎝⎭,则π3B =; (2)因a ,0c >,2248a c +=,2244a c ac +≥,故2ac ≤,于是,11sin 22222S ac B =≤⋅⋅=, ∴ABC 面积S且当S 取得最大值时,2ac =,2a c =,可得2a =,1c =,由余弦定理,2222cos 3b a c ac B =+-=,即得b =18.已知函数()|2||3|f x x x =++-.(1)解不等式()7≤f x ;(2)若函数()f x 最小值为M ,且23(0,0)a b M a b +=>>,求1123a b+的最小值. (1)当2x <-时,237x x ---+≤,解得32x -≤<-;当23x -≤≤时,237x x +-+≤恒成立;当3x >时,237x x ++-≤,解得34x <≤.故所求不等式的解集为[3,4]-. (2)因为()|2||3|(2)(3)5f x x x x x =++-≥+--=,所以()f x 最小值为M =5,即235(0,0)a b a b +=>>,则1111113214()(23)(11)(22352352355b a a b a b a b a b +=++=+++≥+=, 当且仅当5322b a ==时取等号, 故1123a b +的最小值为45.作业2:一、单选题1.已知,x y 都是正数,且211x y+=,则x y +的最小值等于( )A .6B .C .3+D .4+()212333y x x y x y x y ⎛⎫++=++≥= ⎪⎝⎭,故选C. 2.设()11,,x y R x y a x y +⎛⎫∈++≥ ⎪⎝⎭恒成立,则实数a 的最大值为( ) A .2 B .4C .8D .16由于()11224x y x y x y y x ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当1x y ==时等号成立,而()11,,x y R x y a x y +⎛⎫∈++≥ ⎪⎝⎭恒成立,故4a ≤,也即a 的最大值为4. 故选B.3.已知1x >,1y >,且lg lg 4x y +=,则lg lg x y ⋅的最大值是( )A .4B .2C .1D .14因为1x >,1y >,所以lg 0x >,lg 0>y ;又lg lg 4x y +=,所以2lg lg lg lg 42+⎛⎫⋅≤= ⎪⎝⎭x y x y , 当且仅当lg lg 2==x y ,即100x y ==时,等号成立. 故选:A4.用篱笆围一个面积为2100m 的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是( )A .30B .36C .40D .50设矩形的长为()x m ,则宽为100()m x ,设所用篱笆的长为()y m ,所以有10022y x x=+⋅,根据基本不等式可知:1002240y x x =+⋅≥=,(当且仅当10022x x =⋅时,等号成立,即10x =时,取等号)故本题选C.5、若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( ) A. 2B .2C .2 2D .4解析:由1a +2b =ab 知,a >0,b >0,所以ab =1a +2b≥22ab ,即ab ≥22,当且仅当⎩⎨⎧ 1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.答案:C6.若实数a b 、满足2a b +=,则33a b +的最小值是( )A .18B .C .D .6【答案】D【解析】【分析】直接利用基本不等式求解即可.【详解】∵实数a b 、满足2a b +=,∴336a b +≥==,当且仅当33a b =即1a b ==时取等号,∴33a b +的最小值为6故选:D7.下列不等式恒成立的是( )A .222a b ab +≤B .222a b ab +≥-C .a b +≥-D .a b +≤A.由基本不等式可知222a b ab +≥,故A 不正确;B.2222220a b ab a b ab +≥-⇒++≥,即()20a b +≥恒成立,故B 正确;C.当1,0a b =-=时,不等式不成立,故C 不正确;D.当3,1a b ==时,不等式不成立,故D 不正确.8.已知0,0,22x y x y >>+=,则xy 的最大值为( )A .12B .1C .2D .14【答案】A解:∵x >0,y >0,且2x +y =2,∴xy =12(2x •y )≤12(22x y +)2=12,当且仅当x =12,y =1时取等号, 故则xy 的最大值为12, 故选A9、(3-a )(a +6)(-6≤a ≤3)的最大值为( )A .9 B.92 C .3 D.322解析:选B 因为-6≤a ≤3,所以3-a ≥0,a +6≥0,则由基本不等式可知,(3-a )(a +6)≤(3-a )+(a +6)2=92,当且仅当a =-32时等号成立. 答案:B10.函数2()(0,0)f x ax bx a b =+>>在点(1,(1))f 处的切线斜率为2,则8a b ab+的最小值是( ) A .10B .9C .8D .【答案】B【解析】 对函数求导可得,()'2.f x ax b =+根据导数的几何意义,()'122f a b =+=,即b 1.2a += 8a b ab +=81b a +=(81b a +)·b (2a +)=8a b 2b a +,当且仅当228a b 2a b b a +=⎧⎪⎨=⎪⎩即13 43a b ⎧=⎪⎪⎨⎪=⎪⎩时,取等号.所以8a b ab +的最小值是9. 故选B.点睛,本题主要考查导数的几何意义,求分式的最值结合了重要不等式,“1”的巧用,注意取等条件11.若关于x 的方程()94340x xa ++⋅+=有解,则实数a 的取值范围是( ) A .(,8][0,)-∞-+∞ B .(),4-∞-C .[8,4)--D .(,8]-∞-【答案】D【解析】【分析】 可将9x 看成3x 的平方,等式两边同时除以3x ,可得均值不等式的基本形式,再根据不等式的最值求解即可【详解】由9(4)340x x a ++⋅+=,得443(4)0,(4)3433x x x xa a +++=∴-+=+≥(当且仅当32x =时等号成立),解得8a ≤- 故选D二、填空题12、已知x >0,y >0,且1x +2y=1,则x +y 的最小值是________. 解:∵x >0,y >0,∴x +y =(x +y )⎝⎛⎭⎫1x +2y=3+y x +2x y≥3+22(当且仅当y =2x 时取等号), ∴当x =2+1,y =2+2时,(x +y )min =3+2 2.答案:3+2213.已知x <3,则f (x )=4x -3+x 的最大值是: 解:∵x <3,∴x -3<0,∴f (x )=4x -3+x =4x -3+x -3+3 =-⎣⎡⎦⎤43-x +3-x +3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x ,即x =1时取等号.∴f (x )的最大值为-1.14、已知0x >,0y >2x 与4y 的等比中项,则1x x y+的最小值为__________. 由题得2242,22,21x y x y x y +⋅=∴=∴+=.所以1x x y +=22111x y x y x x y x y ++=++≥+=+.当且仅当21,2x y -==时取等.所以1x x y+的最小值为.故答案为15、已知实数x ,y 满足x 2+y 2-xy =1,则x +y 的最大值为________.解析:因为x 2+y 2-xy =1,所以x 2+y 2=1+xy .所以(x +y )2=1+3xy ≤1+3×⎝⎛⎭⎫x +y 22,即(x +y )2≤4,解得-2≤x +y ≤2.当且仅当x =y =1时右边等号成立.所以x +y 的最大值为2.答案:216、已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________.解析:因为xy +2x +y =4,所以x =4-y y +2.由x =4-y y +2>0,得-2<y <4,又y >0,则0<y <4,所以x +y =4-y y +2+y =6y +2+(y +2)-3≥26-3,当且仅当6y +2=y +2(0<y <4),即y =6-2时取等号.答案:26-317、若不等式x 2-ax +1≥0对一切x ∈(0,1)恒成立,则a 的取值范围是________. 解析:x 2-ax +1≥0,x ∈(0,1]恒成立⇔ax ≤x 2+1,x ∈(0,1]恒成立⇔a ≤x +1x ,x ∈(0,1)恒成立,∵x ∈(0,1),x +1x≥2,当且仅当x =1时,等号成立, ∴a ≤2.答案:(-∞,2]四、解答题17.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知:2sin 6c a b C π⎛⎫-=- ⎪⎝⎭. (1)求B ;(2)若ABC ABC 的周长的最小值.(1)2sin 6c a b C π⎛⎫-=- ⎪⎝⎭ 2sin cos cos sin 66b C C ππ⎛⎫=- ⎪⎝⎭sin cos C b C =-由正弦定理得:sin sin sin sin cos C A B C B C -=- ∵sin sin()sin cos cos sin A B C B C B C =+=+∴①式可化为:sin cos sin sin C B C B C -= ∵(0,)C π∈∴sin 0C ≠cos 1B B += 即1sin 62B π⎛⎫+= ⎪⎝⎭,(0,)B π∈ ∴66B ππ+=或56π∴0B =(舍)或23π(2)11sin 22S ac B ac ==∴4ac =∴4a c +≥=22222cos 312b a c ac B a c ac ac =+-=++≥=∴b ≥a c =等号成立∴4l a b c =++≥+【点睛】本题考查了均值不等式的应用,意在考查学生的计算能力和转化能力,变换112x y+=是解题的关键.19.已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34120a a ⋅=,2522a a +=.(1)求通项n a ;(2)若数列{}n b 是等差数列,且n n S b n c=+,求非零常数c ; (3)在(2)的条件下,求()*1()(36)n n b f n n n b +=∈+⋅N 的最大值. 【答案】(1)24n a n =+;(2)5c =;(3)149【解析】【分析】 (1)利用等差数列的通项公式,由253422a a a a +=+=,34120a a ⋅=,即可求得首项与公差,从而可得数列{}n a 的通项公式;(2)由n a ,可求得n S ,从而得n b ,再利用{}n b 是等差数列由2132b b b =+,即可求得c 的值;(3)由(2)求得n b ,于是1()(36)n n b f n n b +=+⋅,利用基本不等式即可求得最大值. 【详解】(1)由题知253422a a a a +=+=,34120a a ⋅=,所以,4312,10a a ==或4310,12a a ==所以公差2d =或2d =-,又因为0d >所以2d =,又310a =,因此16a =,所以24n a n =+.(2)由(1)知,21(1)52n n n S na d n n -=+=+, 所以25n n S n n b n c n c+==++,12361424,,123b b b c c c ===+++ 由{}n b 是等差数列得,2132b b b =+,即146242213c c c⨯=++++ 解得: 5c =,或0c(其中0c ≠舍去), 此时255n n S n n b n n c n +===++,1(1)1n n b b n n +-=+-=,{}n b 是公差为1等差数列, 所以5c =.(3)由(2)知2+55n b n n n n ==+ 111()36(36)(36)(1)4937n n b n f n n b n n n n+∴===≤+⋅++++ 当且仅当36n n =,即6n =时取得等号,即()f n 的最大值为149. 20.已知x ∈R ,0y >,2x y xy +=.(1)若0x >,求证:1xy ≥;(2)若0x ≠,求2y x x+的最小值.【答案】(1)见解析(2)32【解析】【分析】(1)直接利用均值不等式计算得到答案.(2)变换得到112x y+=,故1112x x x y ⎛⎫=+ ⎪⎝⎭,代入不等式,整理化简利用均值不等式计算得到答案.【详解】(1)因为0x >,0y >,所以x y +≥2x y xy +=,得2xy ≥1≥,1xy ≥,当且仅当1x y ==时,等号成立.(2)由2x y xy +=得112x y+=. 2111223222222x x x y y y x x x x y x x y x x ⎛⎫+=++=++≥+≥ ⎪⎝⎭. 当且仅当22x y y x=,且0x <时,两个等号同时成立. 即当且仅当12x =-且14y =,2y x x +的最小值是32.。
2021-2022年高考数学一轮复习专题7.4基本不等式及其应用测

2021年高考数学一轮复习专题7.4基本不等式及其应用测一、填空题 1.3-aa +6(-6≤a ≤3)的最大值为_______.【解析】因为-6≤a ≤3,所以3-a ≥0,a +6≥0,则由基本不等式可知,3-aa +6≤3-a +a +62=92,当且仅当a =-32时等号成立. 2.若2x+2y=1,则x +y 的取值范围是_______. 【解析】∵1=2x+2y≥22x·2y=22x +y当且仅当2x =2y =12,即x =y =-1时等号成立,∴2x +y≤12,∴2x +y≤14,得x +y ≤-2. 3.若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于_______.4.已知a >-1,b >-2,(a +1)(b +2)=16,则a +b 的最小值是_______. 【解析】 因为a >-1,b >-2,所以a +1>0,b +2>0,又(a +1)(b +2)≤⎝ ⎛⎭⎪⎫a +1+b +222,即16≤⎝⎛⎭⎪⎫a +b +322,整理得a +b ≥5,当且仅当a +1=b +2=4,即a =3,b =2时等号成立5.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是_______.【解析】 ∵不等式x +y 4<m 2-3m 有解,∴x +y 4min <m 2-3m ,∵x >0,y >0,且1x +4y =1,∴x +y 4=⎝ ⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫1x +4y =4x y +y 4x +2≥24x y ·y 4x +2=4,当且仅当4x y =y 4x ,即x =2,y =8时取等号,∴⎝ ⎛⎭⎪⎫x +y 4min =4,∴m 2-3m >4,即(m +1)(m -4)>0,解得m <-1或m >4,故实数m 的取值范围是(-∞,-1)∪(4,+∞).6.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当xy z 取得最大值时,2x +1y -2z的最大值为_______. 【解析】xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤14-3=1,当且仅当x =2y 时等号成立,此时z =2y 2,2x+1y -2z=-1y 2+2y=-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时等号成立,故所求的最大值为1.7.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是________.【答案】4【解析】由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4.当且仅当a =b =1时取等号.8.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为________.【答案】2 29.(xx·青岛模拟)已知实数x ,y 均大于零,且x +2y =4,则log 2x +log 2y 的最大值为________. 【答案】1【解析】因为log 2x +log 2y =log 22xy -1≤log 2⎝⎛⎭⎪⎫x +2y 22-1=2-1=1,当且仅当x =2y =2,即x =2,y =1时等号成立,所以log 2x +log 2y 的最大值为1.10.已知不等式2x +m +8x -1>0对一切x ∈(1,+∞)恒成立,则实数m 的取值范围是________. 【答案】(-10,+∞) 【解析】不等式2x +m +8x -1>0可化为2(x -1)+8x -1>-m -2, ∵x >1,∴2(x -1)+8x -1≥22x -1·8x -1=8,当且仅当x =3时取等号. ∵不等式2x +m +8x -1>0对一切x ∈(1,+∞)恒成立, ∴-m -2<8, 解得m >-10. 二、解答题11.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.12.(xx·常州调研)某学校为了支持生物课程基地研究植物的生长规律,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.解:(1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(2)因为8<x <450,所以2x +7 200x≥22x ×7 200x=240,当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,为676 m 2.。
2024年高考数学一轮复习(新高考版)第1章《基本不等式》

教材改编题
设矩形的一边为x m,面积为y m2, 则另一边为12×(20-2x)=(10-x)m, 其中0<x<10, ∴y=x(10-x)≤x+120-x2=25, 当且仅当x=10-x,即x=5时,等号成立, ∴ymax=25, 即矩形场地的最大面积是25 m2.
第
二 部 分
探究核心题型
题型一 利用基本不等式求最值
√A.ab 有最小值14
C.1a+1b有最小值 4
B.8 a+8 b有最大值 8 2
√D.a2+b2
有最小值
2 2
由 1=a+b≥2 ab当且仅当a=b=12时等号成立, 得 ab≤14,故 ab 有最大值14,故 A 错误; ( a+ b)2=a+b+2 ab
=1+2 ab≤1+2 14=2当且仅当a=b=12时等号成立, 则 a+ b≤ 2,则 8 a+8 b有最大值 8 2,故 B 正确; 1a+1b=a+abb=a1b≥4当且仅当a=b=12时等号成立,
因为 x≥0,所以 x+1>0,x+1 1>0, 利用基本不等式得 y=x+x+1 1=x+1+x+1 1-1≥2 当且仅当 x+1=x+1 1,即 x=0 时,等号成立. 所以函数 y=x+x+1 1(x≥0)的最小值为 1.
x+1·x+1 1-1=1,
教材改编题
3.若把总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是 __2_5__ m2.
题型二 基本不等式的常见变形应用
例4 (1)若0<a<b,则下列不等式一定成立的是
a+b A.b> 2 >a> ab
√ a+b
C.b> 2 > ab>a
a+b B.b> ab> 2 >a
(广东专用)高考数学一轮复习第七章7.4基本不等式课件文

思维启迪 解析 答案 思维升华
设数列{an}的公差为 d,数列{bn} 的公比为 q.
因为 an=a1+(n-1)d,bn=b1qn-1,
am+n=nnb--mma,
n-m 所以类比得 bm+n=
dn cm
则可以得到 bm+n=________.
题型分类·深度剖析
题型二
类比推理
【例 2】 已知数列{an}为等差 数列,若 am=a,an=b(n- m≥1,m,n∈N*),则 am+n =nnb- -mma.类比等差数列{an}
f(3),然后归纳猜想一般 基础之上的.
(3)归纳推理所得结论未必正确,有
性结论,并给出证明. 待进一步证明,但对数学结论和科
学的发现很有用.
题型分类·深度剖析
跟踪训练 1 (1)观察下列等式 1=1
2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49
…
照此规律,第五个等式应为__5_+__6_+ ___7_+__8_+__9__+__1_0_+__1_1__+__1_2_+__1_3_= ___8_1_.
方开方运算. 则可以得到 bm+n=________.
题型分类·深度剖析
题型二
类比推理
【例 2】 已知数列{an}为等差 数列,若 am=a,an=b(n- m≥1,m,n∈N*),则 am+n =nnb- -mma.类比等差数列{an}
的上述结论,对于等比数列 {bn}(bn>0,n∈N*),若 bm=c, bn=d(n-m≥2,m,n∈N*),
解析 (1)①②错误,③正确. (2)由平面类比到空间,把矩形类比为长方体,从而得出外接球 半径.
题型分类·深度剖析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲基本不等式一、选择题1.若x>0,则x+4x的最小值为( ).A.2 B.3 C.2 2 D.4解析∵x>0,∴x+4x≥4.答案 D2.已知a>0,b>0,a+b=2,则y=1a+4b的最小值是( ).A.72B.4 C.92D.5解析依题意得1a+4b=12⎝⎛⎭⎪⎫1a+4b(a+b)=12⎣⎢⎡⎦⎥⎤5+⎝⎛⎭⎪⎫ba+4ab≥12⎝⎛⎭⎪⎫5+2ba×4ab=92,当且仅当⎩⎪⎨⎪⎧a+b=2ba=4aba>0,b>0,即a=23,b=43时取等号,即1a+4b的最小值是92.答案 C3.小王从甲地到乙地的时速分别为a和b(a<b),其全程的平均时速为v,则().A.a<v<ab B.v=abC.ab<v<a+b2D.v=a+b2解析设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a .答案 A4.若正实数a ,b 满足a +b =1,则( ). A.1a +1b有最大值4B .ab 有最小值14C.a +b 有最大值 2D .a 2+b 2有最小值22解析 由基本不等式,得ab ≤a 2+b 22=a +b2-2ab2,所以ab ≤14,故B 错;1a +1b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2≤ a +b 2=12,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故D 错. 答案 C5.已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( ).A .(-∞,-2]∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)解析 ∵x >0,y >0且2x +1y =1, ∴x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+4y x +x y≥4+24y x ·x y =8,当且仅当4y x =x y ,即x =4,y =2时取等号,∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4<m <2. 答案 D6.已知两条直线l 1:y =m 和l 2:y =82m +1(m >0),l 1与函数y =|log 2x |的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,ba 的最小值为( ). A .16 2B .8 2C .834D .434解析 如图,作出y =|log 2x |的图象,由图可知A ,C 点的横坐标在区间(0,1)内,B ,D 点的横坐标在区间(1,+∞)内,而且x C -x A 与x B -x D 同号,所以b a =x B -x D x C -x A,根据已知|log 2x A |=m ,即-log 2x A =m ,所以x A =2-m.同理可得x C =2-82m +1,x B =2m,x D =282m +1,所以b a =2m -282m +12-82m +1-2-m=2m -282m +11282m +1-12m =2m -282m +12m -282m +12m ·282m +1=282m +1+m ,由于82m +1+m =82m +1+2m +12-12≥4-12=72,当且仅当82m +1=2m +12,即2m +1=4,即m =32时等号成立,故b a 的最小值为272=8 2.答案 B 二、填空题7.设x ,y 为实数.若4x 2+y 2+xy =1,则2x +y 的最大值是________. 解析 依题意有(2x +y )2=1+3xy =1+32×2x ×y ≤1+32·⎝ ⎛⎭⎪⎫2x +y 22,得58(2x +y )2≤1,即|2x +y |≤2105.当且仅当2x =y =105时,2x +y 取最大值2105. 答案21058.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f (x )=2x的图象交于P ,Q 两点,则线段PQ 长的最小值是________.解析 假设直线与函数f (x )=2x的图象在第一象限内的交点为P ,在第三象限内的交点为Q ,由题意知线段PQ 的长为OP 长的2倍. 假设P 点的坐标为⎝ ⎛⎭⎪⎫x 0,2x 0,则|PQ |=2|OP |=2x 20+4x 20≥4.当且仅当x 20=4x 20,即x 0=2时,取“=”号. 答案 49.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 解析 由a ,b ∈R +,由基本不等式得a +b ≥2ab , 则ab =a +b +3≥2ab +3,即ab -2ab -3≥0⇔(ab -3)(ab +1)≥0⇒ab ≥3, ∴ab ≥9. 答案 [9,+∞)10.已知两正数x ,y 满足x +y =1,则z =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y 的最小值为________。
解析 z =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y =xy +1xy +y x +x y =xy +1xy +(x +y )2-2xy xy =2xy +xy -2,令t =xy ,则0<t =xy ≤⎝ ⎛⎭⎪⎫x +y 22=14.由f (t )=t +2t 在⎝ ⎛⎦⎥⎤0,14上单调递减,故当t =14时f (t )=t +2t 有最小值334,所以当x =y =12时,z 有最小值254. 答案 254 三、解答题11.设a ,b ,c 都是正数,求证:bc a +ac b +abc≥a +b +c . 证明 ∵a ,b ,c 都是正数,∴bc a ,ca b ,abc都是正数. ∴bc a +cab≥2c ,当且仅当a =b 时等号成立,ca b +abc≥2a ,当且仅当b =c 时等号成立, ab c +bca≥2b ,当且仅当a =c 时等号成立. 三式相加,得2(bc a +ca b +abc)≥2(a +b +c ), 即bc a +ca b +abc≥a +b +c . 当且仅当a =b =c 时等号成立. 12.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立. 因此有⎩⎨⎧ 2x +5y =20,2x =5y ,解得⎩⎨⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+2 5y x ·2x y =7+21020,当且仅当5y x =2x y 时,等号成立. 由⎩⎪⎨⎪⎧2x +5y =20,5y x =2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. 13.设f (x )=16xx 2+8(x >0).(1)求f (x )的最大值;(2)证明:对任意实数a ,b ,恒有f (a )<b 2-3b +214. (1)解 f (x )=16x x 2+8=16x +8x ≤162 x ·8x=22,当且仅当x =8x 时,即x =22时,等号成立. 所以f (x )的最大值为2 2. (2)证明 b 2-3b +214=⎝ ⎛⎭⎪⎫b -322+3, 当b =32时,b 2-3b +214有最小值3, 由(1)知,f (a )有最大值22,∴对任意实数a ,b ,恒有f (a )<b 2-3b +214. 14.桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1 800平方米的矩形地块,中间挖出三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周围的基围宽均为2米,如图,设池塘所占的总面积为S 平方米.(1)试用x 表示S ;(2)当x 取何值时,才能使得S 最大?并求出S 的最大值. 解 (1)由图形知,3a +6=x ,∴a =x -63. 则总面积S =⎝ ⎛⎭⎪⎫1 800x -4·a +2a ⎝ ⎛⎭⎪⎫1 800x -6 =a ⎝ ⎛⎭⎪⎫5 400x-16=x -63⎝ ⎛⎭⎪⎫5 400x -16 =1 832-⎝ ⎛⎭⎪⎫10 800x +16x 3,即S =1 832-⎝ ⎛⎭⎪⎫10 800x +16x 3(x >0).(2)由S =1 832-⎝ ⎛⎭⎪⎫10 800x +16x 3,得S ≤1 832-210 800x ·16x3=1 832-2×240=1 352.当且仅当10 800x =16x3,此时,x =45.即当x 为45米时,S 最大,且S 最大值为1 352平方米.。