单组分相图
油层物理学 第二章 油气藏流体的物理特性

§2.1 油气藏烃类的相态特征 1、石油的组成
★
烷烃 环烷烃 芳香烃
C5~C16
★
含氧化合物:
★
苯酚、脂肪酸 硫醇、硫醚、噻吩 吡咯、吡啶、喹啉、吲哚 胶质、沥青质
含硫化合物:
★
其它化合物
含氮化合物:
Hale Waihona Puke 高分子杂环化合物:§2.1 油气藏烃类的相态特征 石油的分类
少硫原油 含硫量 含硫原油 >0.5% 少胶原油 胶质沥青质含量 胶质原油 多胶原油 < 8% 8~25% >25% <0.5%
三区:液相区、气相区、气液两相区
乙烷(占96.83%摩尔)-正庚烷的P-T图
三线:泡点线、露点线、气液等条件线 三点:临界点、临界凝析压力点、临界凝析温度点
§2.1 油气藏烃类的相态特征
双组分烃相图 (P-T图)
戌烷和正庚烷(占总重量的52%)的P-V图
§2.1 油气藏烃类的相态特征
双组分烃相图 (P-T图)
1.天然气的化学组成 低分子烃:甲烷(CH4)占绝大部分(70%—80%),乙烷(C2H6)、丙 烷(C3H8)、丁烷(C4H10)和戊烷(C5H12)的含量不多。 非烃类气体:硫化氢(H2S)、硫醇(RSH)、硫醚(RSR)、二氧化碳 (CO2)、一氧化碳(CO)、氮气(N2)及水气(H2O)。
油气藏类型
低收缩原油
液态烃比重
>0.802
原始油气比 (标准米3/米3)
<178
高收缩原油
凝 析 气 湿 干 气 气
0.802—0.739
0.780—0.739 >0.739 /
178—1425
1425—12467 10686—17810 /
物理化学相平衡知识点

物理化学相平衡知识点相平衡一、主要概念组分数,自由度,相图,相点,露点,泡点,共熔点,(连)结线,三相线,步冷(冷却)曲线,低共熔混合物(固相完全不互溶)二、重要定律与公式本章主要要求掌握相律的使用条件和应用,单组分和双组分系统的各类典型相图特征、绘制方法和应用,利用杠杆规则进行有关计算。
1、相律: F = C - P + n, 其中:C=S-R-R’(1) 强度因素T,p可变时n=2(2) 对单组分系统:C=1, F=3-P(3) 对双组分系统:C=2,F=4-P;应用于平面相图时恒温或恒压,F=3-P。
2、相图(1)相图:相态与T,p,x的关系图,通常将有关的相变点联结而成。
(2)实验方法:实验主要是测定系统的相变点。
常用如下四种方法得到。
12对于气液平衡系统,常用方法蒸气压法和沸点法;液固(凝聚)系统,通常用热分析法和溶解度法。
3、单组分系统的典型相图对于单组分系统C =1,F =C -P +2=3-P 。
当相数P =1时,自由度数F =2最大,即为双变量系统,通常绘制蒸气压-温度(p-T )相图,见下图。
pTlBC AOsgC 'pTlBCA Os gFGD单斜硫pT液体硫BCAO正交硫硫蒸气(a) 正常相图 (b) 水的相图(c) 硫的相图图6-1 常见的单组分系统相图4、二组分系统的相图类型:恒压的t -x (y )和恒温的p -x (y )相图。
相态:气液相图和液-固(凝聚系统)相图。
(1)气液相图根据液态的互溶性分为完全互溶(细分为形3成理想混合物、最大正偏差和最大负偏差)、部分互溶(细分为有一低共溶点和有一转变温度的系统)和完全不溶(溶液完全分层)的相图。
可以作恒温下的p -x (压力-组成)图或恒压下的t -x (温度-组成)图,见图5-2和图5-3。
t = 常数液相线气相线g + llgB Apx B (y B )t = 常数g + l液相线气相线g + llgB Apx B (y B )g + lg + lt = 常数液相线气相线lgBApx B (y B )(a) 理想混合物 (b) 最大负偏差的混合物 (c) 最大正偏差的混合物 图6-2 二组分系统恒温下的典型气液p -x 相图p = 常数液相线或泡点线气相线或露点线g + llgBAtx B (y B )p = 常数g + l液相线或泡点线气相线或露点线g + llg BAtx B (y B )g + lp = 常数液相线或泡点线气相线或露点线g + llgBAtx B (y B )(a) 理想或偏差不大的混合物 (b) 具有最高恒沸点(大负偏差) (c) 具有最低恒沸点(大正偏差)B在A液层中的溶解度线A在B液层中的溶解度线最高会溶点l 1 + l 2p = 常数lBAtx B最低会溶点B在A液层中的溶解度线A在B液层中的溶解度线最高会溶点l 1 + l 2p = 常数lBAtx B DCGFOgg + l g + ll 1 + l 2p = 常数lBAtx B (y B )(d) 有最高会溶点的部分互溶系统 (e)有最高和最低会溶点的部分互溶系统 (f) 沸点与会溶点分离4x B (y B )三相线COD ( l 1 +g + l 2)l 1DC GFOgg + lg + l l 1 + l 2p = 常数l 2B Atx B (y B )三相线COD ( g + l 1 + l 2)g + l 1l 1DC GFOgg + l 2l 1 + l 2p = 常数l 2BAtg + B(l )三相线COD [ A(l ) +g + B(l ) ]DCGFOgg + A(l )A(l ) + B( l )p = 常数BAtx B (y B )(g) 液相部分互溶的典型系统 (h)液相有转沸点的部分互溶系统 (i) 液相完全不互溶的系统图6-3 二组分系统恒压下的典型气液相图(2)液-固系统相图: 通常忽略压力的影响而只考虑t -x 图。
相图分析——精选推荐

相图分析物理化学复习总结之相平衡f组分数,⾃由度,相图,相点,露点,泡点,共熔点,(连)结线,三相线,步冷(冷却)曲线,低共熔混合物(固相完全不互溶)本章主要要求掌握相律的使⽤条件和应⽤,单组分和双组分系统的各类典型相图特征、绘制⽅法和应⽤,利⽤杠杆规则进⾏有关计算1、相律: F = C - P + n , 其中:C=S-R-R’U+ }3 Q0 G- D4 L$ \6 e- D) l(1) 强度因素T,p可变时n=2/ n) \+ r' I3 G" P5 [3 q* A) f(2) 对单组分系统:C=1, F=3-P j(3) 对双组分系统:C=2,F=4-P;应⽤于平⾯相图时恒温或恒压,F=3-P。
Y% z2 ]7 h' z5 d- X- 2、相图(1)相图:相态与T,p,x的关系图,通常将有关的相变点联结⽽成。
(2)实验⽅法:实验主要是测定系统的相变点。
常⽤如下四种⽅法得到。
4 Z r! M- J2 u! s( _. ms 对于⽓液平衡系统,常⽤⽅法蒸⽓压法和沸点法;" A+ d4 S0 D/ v! r液固(凝聚)系统,通常⽤热分析法和溶解度法。
$ l( m3 N$ j5 a" ^3、单组分系统的典型相图对于单组分系统C=1,F=C-P+2=3-P。
当相数P=1时,⾃由度数F=2最⼤,即为双变量系统,通常绘制蒸⽓压-温度(p-T)相图,见下图。
(a) 正常相图(b) ⽔的相图(c) 硫的相图图6-1 常见的单组分系统相图/ ]. g/ W. Y' n* ?" ^# _⼆组分系统的相图j类型:恒压的t-x(y)和恒温的p-x(y)相图。
相态:⽓液相图和液-固(凝聚系统)相图。
5 f% ^( `8 E0 e; h; W! y1 |8 SB(1)⽓液相图根据液态的互溶性分为完全互溶(细分为形成理想混合物、最⼤正偏差和最⼤负偏差)、部分互溶(细分为有⼀低共溶点和有⼀转变温度的系统)和完全不溶(溶液完全分层)的相图。
物理化学二氧化碳和硫的相图

轻化工程1101 王哲 学号:201136090119
单组分系统
这里的二氧化碳的相图和硫的相图 都属于单组分系统相图。 而在单组分体系中,组分数C=1, 因此相律为: f =C–φ+2=3-φ 面:φ=1,f= 2;单相区 线:φ=2,f=1;两相平衡 点:φ=3,f=0。 三相平衡
二氧化碳的相图
BOA——固相面 → 固相区 AOC——液相面 → 液相区 BOC——气相面 → 气相区
O
A
C
OB——固体CO2蒸汽压曲线 OC——液体CO2蒸汽压曲线 OA——固体CO2熔点曲线
B
二氧化碳的相图
A
C
O点是三相点,干冰、 液体CO2、固体CO2三 相同时存在,硫的相图
实线为稳定平衡态 虚线为介稳平衡态 如果将斜方硫迅速加热 至ABC区,仍为斜方硫, 但在该温度下久置便会 转变成单斜硫。
感谢您的观看!
A
————→ O
C
↑ ▏
B
硫的相图
硫有四种相:单 斜硫、斜方硫、液态 硫、硫蒸汽 原因:单组分体 系最多只能有三相共 存,而硫却有单斜硫 和斜方硫两种固态, 因此硫的相图存在四 个三相点。
硫的相图
如图: 单相面(4个):OAC、 OAB、ABC、CBT 两相平衡线(6条) 三相点(3个):A、B、 C 亚稳三相点(1个): G
三相点O的温度 是液体CO2再起蒸汽压 力下的凝固点。物质 的熔点和凝固点相同, 在101325Pa下是正常 熔点。因此,CO2无正 常熔点,三相点的温 度就是熔点。
A
C
O
B
二氧化碳的相图
1.如果在图中作一条横 线,由箭头所示可知, 当压强p不变时,随温度 T的升高,CO2由固态变 为液态 2.如果在图中作一条纵 线,由箭头所示可知, 当温度T不变时,随压强 p的增大,CO2由气态变 为液态
清华大学物理化学B-相平衡-2

在293.15 K、101325 Pa下:
83.6%B A
醇层 水层 B
8.5%B
共轭溶液
共轭溶液:两个平衡共存的液层
15 问:分层后继续加B, 两层的组成如何变化?
在一定的压力下,可测得水-异丁醇共轭溶液的组 成与温度的关系:
T/K 293.15 wB (水层) 8.5 wB (醇层) 83.6 333.15 373.15 393.15 406 9.3 70.2
所以两组分系统的相图通常用 指定温度的p-x 或 指定压力的T-x表示。
2
某一压力p下的组成分析:
p x yB p
* B B
p 指定温度T L
pA*
pB*
* y B pB xB p
g A xB (yB) → B
若pB*>pA* 即B为易挥发组分, pB*>p 可得: yB xB 结论:理想溶液中易挥发组分在气相中的含 量大于它在液相中的含量 p. y p x
6.6
77.2
14.0
61.5
37 37
16
最高临界溶解点(最高临界溶解温度Tc)
T/K
L
406 K
B在A中溶 解度曲线 A
L1+L2
B
A在B中溶 解度曲线
wB% 溶解度法绘制相图!
17 思考题:室温下,向A中逐渐加B,如何变化?
特别提醒:所有两相区平衡--统一!
对于指定的温度T1
两相区: 条件自由度 f*=2-2-0=0
(nl ng)xo nl xB ng yB
A
xB x0 yB
n ( ng ( yB xo ) l xo xB)
第三章 烃类流体相态

盐 水
8、逸度
●校正了的压力,它是人们在实现由热力学变量(化学位)向物理测量变量转换的一种概念工具。 它直接将数学上的抽象量与实际的可以测量的普通强度量相联系起来。
F等温化学位 F
fi = φi yiP
o µi − µi = RTℓn( fi fio )
盐 水
F逸度系数 φ i可由状态方程计算(对理想气体混合物其值位1.0)
2、相平衡常数(平衡分配比)
K
i
=
yi xi
= f
(P, T ,
zi
)
定义:平衡时,组分i在气相和液相中的摩尔分数之比。 公式: 计算方法: 收敛压力法 状态方程法
F等温化学位 F
液/xi
3、相平衡计算模型的原理
相平衡
相平衡时,某组分在各相中的化学位相等 组分i的气相逸度应与液相逸度相等
fi = φi yiP
‹#›
P-T相
1
3
的
P Pm C 2
两 相 共 两相共存的最高压力 存 的 最 高 压 力
压 压 的
3
相 压
的 压 的 的
4 5 Tm T
的
气藏类型-相图法: 干气藏: TReseroir> Tm 湿气藏: TReservoir > Tm ,但地面分离条件落在 两相区 凝析气藏: Tc<TReservoir<Tm, ‹#›
第三章 烃类流体相态 (概论)
PHB4 P -T图
气藏类型:
干气藏 湿气藏 凝析气藏
P(MPa)
ห้องสมุดไป่ตู้
35 30 25 20 15 10 5 0 100 200 300 T(K) 400 500 600
重要性:
相图

1 相图的基本知识
根据相图可确定不同 成分的材料在不同温度下 组成相的种类、各相的相 对量、成分及温度变化时 可能发生的变化。 仅在热力学平衡条件 下成立,不能确定结构、 分布状态和具体形貌。
§1 相 律
相律:研究相态变化的规律。 相数(P ),组元数(C ),自由度数(f ) 一、相与相数(P)
• ① ② ③
注意:在材料学中 各微区的成分不完全均匀,存在成分偏聚 同一相的不同晶粒也存在界面 材料中的相,均匀是指成分、结构、及性质要 么宏观上完全相同,要么呈现连续变化没有突 变现象。
基本概念
• 单组元晶体(纯晶体):由一种化合物或金属组成的 晶体。该体系称为单元系 • 从一种相转变为另一种相的过程称为相变(phase transformation)。 若转变前后均为固相,则成为固 态相变(solid phase transformation )。 • 从液相转变为固相的过程称为凝固(solidification)。 若凝固后的产物为晶体称为结晶(crystallization)。 • 相图(phase diagram):表示合金系中合金的状态与 温度、成分之间的关系的图形,又称为平衡图或状 态图。 • 单组元相图(single phase diagram)是表示在热力学平 衡条件下所存在的相与温度,压力之间的对应关系 的图形。
• 整理上式: • 式中: Sm为1mol物质由相变为相的熵变;
•
Vm为1mol物质由相变为相的体积变化.
• 因为是平衡相变,有: • Sm=Lm/T • Lm: 物质的相变潜热; • T: 平衡相变的温度. • 代入(2)式: • dp/dT=Lm/TVm (3) • (3)式称为克拉贝龙方程. • 克拉贝龙方程适用于纯物质任何平衡相变过程,应用范围 很广.
物理化学第5章相律与相图

第五章相律与相图5.1 相平衡相平衡是热力学在化学领域中的重要应用,也是化学热力学的主要内容之一。
在第三章中已经应用热力学原理研究了纯物质系统的两相平衡;在第四章中研究了多组分系统的两相平衡,其结果是用热力学公式表达相平衡的规律。
而本章则是应用热力学原理采用图解的方法来表达相平衡规律,特别是对多相系统的相平衡规律的研究,用图解的方法更显得方便和实用。
研究多相系统的相平衡状态随组成、温度、压力等变量的改变而发生变化,并用图形来表示系统相平衡状态的变化,这种图称为相图,相图形象而直观地表达出相平衡时系统的状态与温度、压力、组成的关系。
相律为多相平衡系统的研究建立了热力学基础,是物理化学中最具有普遍性的规律之一,它讨论平衡系统中相数、独立组分数与描述该平衡系统的变数之间的关系,并揭示了多相平衡系统中外界条件(温度、压力、组成等)对相变的影响。
虽然相律不能直接给出相平衡的具体数据,但它能帮助我们从实验数据正确地画出相图,可以帮助我们正确地阅读和应用相图。
本章首先介绍相律,然后介绍单组分、二组分和三组分系统的最基本的几种相图,其中着重介绍二组分气-液相图和液-固相图,介绍相图的制法和各种相图的意义以及它们和分离提纯方法之间的关系。
应用:a、水泥熟料的烧成过程,系统中有C3S(硅酸三钙)、C2S(硅酸二钙)、C3A(铝酸三钙)、C4AF(铁铝酸四钙)————固相,还有一定的液相,是一个多相的系统。
随着温度升高,这个多相系统中那些相能继续存在?那些相会消失?有没有新的相生成?各相组成如何?各相含量为多少?b、在化工生产中对原料和产品都要求有一定的纯度,因此常常对原料和产品进行分离和提纯。
常用的分离提纯的方法是结晶、蒸馏、萃取和吸收等等,这些过程的理论基础就是相平衡。
相图:根据多相平衡的实验结果,可以绘制成几何图形用来描述这些在平衡状态下的变化关系,这种图相成为相图。
现实意义:水泥、玻璃、陶瓷等形成过程均在多相系统中实现,都是将一定配比的原料经过锻烧而形成的,并且要经历多次相变过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二氧化碳的相图
BOA——固相面 → 固相区 AOC——液相面 → 液相区 BOC——气相面 → 气相区
O
A
C
OB——固体CO2蒸汽压曲线 OC——液体CO2蒸汽压曲线 OA——固体CO2熔点曲线
B
二氧化碳的相图
A
C
O点是三相点,干冰、 液体CO2、固体CO2三 相同时存在,呈平衡 状态。
B
O
二氧化碳的相图
单组分系统的相图
小组成员:冯顺承 王哲 李靖宇 刘永红 吕杰
单组分系统的相图 在研究多相平衡的系统时,整个系统 状态如何随温度、压强、组成等性质的改 变而发生变化,可以应用解析法、表格法、 图形法。更多应用图形法表示系统状态的 变化,而这种图形就是相图。
单组分系统的相图
单组分系统的两相平衡热力学方程 即克劳修斯-克拉贝龙方程
A
————→ O
C
↑ ▏
B
单组分系统的相图
水的相图和前面二氧 化碳的相图几乎是一样 的,因此我们就不再详 细讨论了
硫的相图
硫有四种相:单 斜硫、斜方硫、液态 硫、硫蒸汽 原因:单组分体 系最多只能有三相共 存,而硫却有单斜硫 和斜方硫两种固态, 因此硫的相图存在四 个三相点。
硫的相图
如图: 单相面(4个):OAC、 OAB、ABC、CBT 两相平衡线(6条) 三相点(3个):A、B、 C 亚稳三相点(1个): G
三相点O的温度 是液体CO2再起蒸汽压 力下的凝固点。物质 的熔点和凝固点相同, 在101325Pa下是正常 熔点。因此,CO2无正 常熔点,三相点的温 度就是熔点。
A
C
O
B
二氧化碳的相图
1.如果在图中作一条横 线,由箭头所示可知, 当压强p不变时,随温度 T的升高,CO2由固态变 为液态 2.如果在图中作一条纵 线,由箭头所示可知, 当温度T不变时,随压强 p的增大,CO2由气态变 为液态
In(p2/p1)=ΔvapHm(1/T1-1/T2)/R
单组分系统的相图
二氧化碳的相图、水的相图和硫的 相图都属于单组分系统相图。 而在单组分体系中,组分数C=1, 因此相律为: f =C–φ+2=3-φ 面:φ=1,f= 2;单相区 线:φ=2,f=1;两相平衡 点:φ=3,f=0。 三相平衡
硫的相图
实线为稳定平衡态 虚线为介稳平衡态 如果将斜方硫迅速加热 至ABC区,仍为斜方硫, 但在该温度下久置便会 转变成单斜硫。
感谢您的观看!