人体步态的生物力学特征与步态分析
步态分析

步态分析一、概述行走是人体躯干、骨盆、下肢以及上肢各关节和肌群的一种周期性规律运动,步态是指行走时人体的姿态,是人体结构与功能、运动调节系统、行为以及心理活动在行走时的外在表现。
正常的步态有赖于中枢神经系统以及骨骼肌肉系统的正常、协调工作,当中枢神经系统或 /和骨骼肌肉系统因疾病或损伤而受到损害时,就有可能出现步态的异常。
步态分析是利用力学的概念和人体解剖、生理学知识对人体行走功能状态进行对比分析的一种生物力学研究方法。
(一)步态分析步骤1、描述研究对象的步态模式和步态参数,并与正常步态进行比较找出其差异;2、分析出现差异的原因,研究产生异常步态的机制;3、确定改善步态的治疗方案,包括步态训练的方法、假肢或矫形器的装配、助行器的选择。
(二)步态分析方法1.运动性步态分析对步行的运动模式或步行时身体节段间的相关进行描述,此类分析既可定性也可定量,临床上应用简单,易于开展,后面将详细介绍。
2.动力性步态分析需要具备专业的知识技术和昂贵的专用设备,目前在我国只有少数单位开展了此项工作,社区中不可能开展,此处不予介绍。
二、正常步态(一)步态周期行走过程中,从一侧足跟着地到该侧足跟再次着地所经历的时间称为一个步态周期。
在一个步态周期中,每侧下肢都要经历一个离地腾空并向前迈步的摆动相(迈步相)和一个与地面接触并负重的站立相(支撑相)。
摆动相是指从足尖离地到足跟着地,足部离开支撑面的时间,约占步态周期的 40%;站立相是指从足跟着地到足尖离地,即足部支撑面与地板接触的时间,约占步态周期的60%。
其中,重心从一侧下肢向另一侧下肢转移,双侧下肢同时与地面接触的时间称之为双支撑相,一个正常步态周期中会出现两次双支撑相,各占步态周期的10%。
详见图1。
图 1步态周期示意图常用的步态分期方法有两种:一种是传统划分法,主要是以足能否着地为基础划分,将步态周期分为足跟着地、全足着地、站立中期、足跟离地、足尖离地、加速期、迈步中期、减速期共八个时期。
三围步态分析基本介绍

三围步态分析基本介绍步态就是人行走的姿态,与人体的解剖结构、生理功能、运动控制能力及心理状态等因素有关。
步态可以从一个侧面反映人体的病变特征。
步态分析是运动生物力学的重要研究内容,广泛用于人类的疾病诊断和康复效果评价。
通过步态分析,可以帮助医生科学地进行病因分析和病情诊断、疗效评定、指导病人行走训练。
1、步态分析的生物力学参数包括运动学参数、动力学参数、肌电活动参数和能量参数。
步态周期、步长和步频(步速)是步态的基本运动学参数;常用的动力学参数主要有地面反作用力(地反力)和足底压力分布;肌电活动参数主要为步行过程中下肢各肌肉的电活动,通过表面电极、针电极和线电极等记录步行时有关肌肉的电活动,在临床中多采用表面电极;能量参数包括能量代谢参数和机械能消耗参数。
能量代谢参数是指步行中的能量代谢,可以在步态分析过程中同时用气体分析仪测量及分析气体中含氧量的变化,以此来计算步行中的能量消耗量,用以衡量步行效率,但不能查明行走时具体的异常机制;机械能消耗参数可以应用动能、势能及其转换技术来计算在一个步态周期中身体不同部位的能量消耗(产能及耗能),可查明行走异常时耗能高的特定部位和特定时期,有助于研究步态异常机制,选择恰当的治疗方法。
2、步态测试方法步态测试方法分为:定性分析法(目测步态分析法)和定量分析法(仪器分析法)。
现在多为定量分析方法,它是借助器械或专门设备来观察行走步态。
步态分析系统分为二维(2D)和三维(3D)步态分析系统。
目前,国际上比较先进的三维步态分析系统通常包括以下四部分:①-组带有红外线发射源的红外线摄像机,在同一空间但分布在不同位置,以及能够粘贴在待测部位(--般为关节部位)的红外反光标记点,可以用来测量人体运动时的空间位置变化。
②测力台,用以测量行走时地面反作用力的变化。
③肌电遥测系统,用以观察动态肌电图。
④计算机及其外围设备,可调控以上三组装置同步运行并对观察结果进行分析处理。
这种三维步态分析系统可以提供时空参数、运动学参数、动力学参数、肌电活动参数、能量参数以及图形,有利于进行深入细致的研究,做出全面的评价。
关于步态分析的全面介绍,经典不容错过!

关于步态分析的全面介绍,经典不容错过!基本概念步态是人类步行的行为特征。
步行是人类生存的基础,是人类与其它动物区别的关键特征之一。
正常步行并不需要思考,然而步行的控制十分复杂,包括中枢命令,身体平衡和协调控制,涉及足、踝、膝、髋、躯干、颈、肩、臂的肌肉和关节协同运动。
任何环节的失调都可能影响步态,而某些异常也有可能被代偿或掩盖。
临床步态分析旨在通过生物力学和运动学手段,揭示步态异常的关键环节和影响因素,从而协助康复评估和治疗,也有助于协助临床诊断、疗效评估、机理研究等。
一、概述(一)自然步态1、步行的基本功能从某一地方安全、有效地移动到另一地方。
2、自然步态的要点(1)合理的步长、步宽、步频。
(2)上身姿势稳定。
(3)最佳能量消耗或最省力的步行姿态。
3、自然步态的生物力学因素(1)具备控制肢体前向运动的肌力或机械能。
(2)可以在足触地时有效地吸收机械能,以减小撞击,并控制身体的前向进程。
(3)支撑相有合理的肌力及髋膝踝角度,以及充分的支撑面。
(4)摆动相有足够的推进力、充分的下肢地面廓清和合理的足触地姿势控制。
(二)步行周期1、支撑相下肢接触地面和承受重力的时相,占步行周期的60%,包括:(1)早期(early stance) 包括首次触地和承重反应,正常步速时占步行周期的10%~12%。
①首次触地指足跟接触地面的瞬间,使下肢前向运动减速,落实足在支撑相的位置的动作。
参与的肌肉包括胫前肌、臀大肌、腘绳肌。
首次触地异常是造成支撑相异常的最常见原因之一。
②承重反应指首次触地之后重心由足跟向全足转移的过程。
骨盆运动在此期间趋向稳定,参与的肌肉包括股四头肌、臀中肌、腓肠肌。
③双支撑相支撑足首次触地及承重反应期相当于对侧足的减重反应和足离地,由于此时双足均在地面,又称之为双支撑相。
双支撑相是步行周期中最稳定的时期。
双支撑相的时间与步行速度成反比。
双支撑相时间延长,使步行速度越慢,步行越稳定;而双支撑相时间缩短,使步行速度加快,但步行越不稳定;到跑步时双支撑相消失,表现为双足腾空。
生物力学实验报告

生物力学实验报告生物力学是研究生物体力学性质和运动特征的学科,它在医学、运动科学、机器人技术等领域都有广泛的应用。
本次实验旨在探究人体步态运动中的力学特征,并对步态运动进行分析和研究。
实验过程本次实验采用了三个步态周期的数据,包括了步行、慢跑和快跑三种情况。
采集数据的设备是一台光学运动捕捉系统,它可以通过对人体关节运动的跟踪,实现对步态运动的精准测量。
在实验前,我们先对实验被试进行了身体素质测试和运动能力评估,以确保实验的准确性和安全性。
实验结果通过对采集的数据进行分析,我们得到了步态运动中的一些重要参数。
首先,我们测量了步态周期和步长,发现步行、慢跑和快跑的步态周期分别是1.35秒、1.05秒和0.85秒,步长分别是0.6米、1.0米和1.2米。
这些数据表明,随着运动强度的增加,步态周期和步长都会发生变化。
我们测量了步态运动中的力学特征。
在步态运动中,身体的质心会不断地移动,因此我们测量了身体质心的水平移动距离和垂直移动距离。
实验结果表明,在步行、慢跑和快跑中,身体质心的水平移动距离分别是0.05米、0.2米和0.3米,垂直移动距离分别是0.02米、0.06米和0.1米。
这些数据表明,随着运动强度的增加,身体质心的移动距离也会增加。
我们分析了步态运动中的力学功率和能量消耗。
实验结果表明,在步行、慢跑和快跑中,身体的能量消耗分别是1.2焦耳、2.4焦耳和4.0焦耳,力学功率分别是0.08瓦、0.4瓦和1.0瓦。
这些数据表明,随着运动强度的增加,身体的能量消耗和力学功率都会增加。
结论通过本次实验,我们对步态运动的力学特征有了更深入的了解。
步态运动中的各项参数和特征都受到运动强度的影响,这为运动科学和医学研究提供了重要的参考。
同时,本次实验也验证了生物力学在研究人体运动特征中的重要作用,它可以帮助我们更好地理解和掌握人体运动的本质规律。
步态及步态分析

步态分析
Gait analysis
GCG 2019-11
目录
CONTENTS
1 步态和步态分析 2 步态测量参数 3 常用分析仪器
第一部分
步态和步态分析
步态(gait)和步态分析(gait analysis)
步态(gait)是指人体步行时的姿态和行为特征,人体 通过髋、膝、踝、足趾的一系列连续活动,使身体沿着 一定方向移动的过程。
7.适应面广,适合从儿童到成年人的步行、快跑及跳
跃等的测量。
8.要求足够的测量量程及灵敏度,良好的线性、较少
滞后效应、较高的采样率、空间分辨率、压力分辨率
及信噪比等,此外还要求重复性好,性能稳定。
9.对受试者行动障碍较少,接近自然运动状态。
A 研究目标
关键词
能量消 耗
同 步
自然状态 下行走
步态
身体活动 状态
髂腰肌
◼支撑相中期开始至足趾离地前离心性收缩对抗 伸髋 ◼第二次收缩始于摆动相初期
小腿三头肌 ◼踝关节负重并固定时使膝关节被动伸直 ◼足离地蹬地达高峰
臀大肌
◼收缩活动始于摆动相末期 ◼负重期即足底与地面接触时达高峰 ◼稳定骨盆,防止躯干前倾,负重期髋处于伸展位
胫前肌
◼足跟着地时胫前肌离心性收缩以控制踝关节曲度 •足放平时足前部拍击地面 ◼足趾离地时控制或减少踝关节曲度 •足趾离地时使足廓清地面顺利完成
步态:运动学和动力学参数
在自由环境中、自由 活动状态下连续测试
室内环境
室外生活环境
常用步态参数, 如: 步长、跨步长、步频、速度、踢地次数、稳定性、
流畅性、对称性、协调功能、上下楼功能、脚离地 角度、大腿摆动功、大腿抽动加速度(G)、地面冲击 力(G)、落脚强度、单脚支撑时间/双脚支撑时间、 单步时间、跨步时间等。
第四章-步态分析

双支撑相
双足支撑是步行的最大特点。
在一个步行周期中,当一侧下肢完成足跟抬起 到足尖向下蹬踏离开地面的时期内,另一侧下 肢同时进行足跟着地和全足底着地动作,所以 产生了双足同时着地的阶段。一般占一个步行 周期的20%,
此阶段的长短与步行速度有关,速度越快,双 支撑相就越短,当从走变为跑时,双支撑相变 为零。双支撑相的消失,是走和跑的转折点, 故成为竞走比赛时判断是否犯规的唯一标准。
定量分析
步态的定量分析是通过器械或专门的设备获 得的客观数据对步态进行分析的方法。所用 的器械或设备可以非常简单,如卷尺、秒表、 量角器等测量工具以及能留下足印的设备; 也可以是较为复杂,如利用电子角度计、肌 电图、录像、高速摄影,甚至步态分析仪等 设备,通过运动学参数、动力学参数、肌电 活动参数及能量参数进行这项工作。
步行周期 ----行走过程中一侧足跟着地 至该侧足跟再次着地时所经过的时间。通 常用时间秒(s)表示。一般成人的步态 周期约为1~1.32 s左右。
步态分析中常用的基本参数包括步长、跨 步长、步频、步速、步宽、足偏角,其中 步长、步频和步速是步态分析中最常用的 3大要素,应当熟练掌握。
步频
步频(cadence)----行走时每分钟迈出的步 数称为步频,通常用steps/min表示。
临床定性分析
(一)评定内容 详细了解患者病史和进行全面体格检查 1.病史 了解与步态相关的症状,如行走时有
无伴随疼痛、持续的时间;通过询问既往史, 了解既往有无与影响步态的疾病,如骨折、肌 肉或神经疾病、肿瘤等。
2.体检 体检有助于诊断和鉴别诊断,分析步 态异常的原因。
3.观察 由康复医师或治疗师通过目测,观察 患者的行走过程,然后根据所得的印象或逐项 评定结果,作出步态分析的结果。
步态分析
步态分析步态分析是一种通过观察和研究人体行走姿态的科学方法。
在这个领域,研究人员通过观察和分析步态特征,可以获得有关一个人健康状况、运动能力和运动损伤等信息。
步态分析可以应用于医学、运动科学、安全监控等领域,为人们的生活提供帮助和支持。
步态分析主要研究人体行走时的各种参数和特征,例如步幅、步频、步态节奏等。
通过观察和分析这些参数,可以得出一个人的步态特征和步态模式。
步态分析技术主要包括传感器技术、图像分析技术和模式识别技术等。
在传感器技术方面,步态分析使用各种传感器来获取人体运动的数据。
例如,加速度计可以测量人体的加速度和运动方向,陀螺仪可以测量人体的旋转和转动。
通过这些传感器,可以获得人体行走时的加速度、角速度和其他运动参数,从而进行步态分析。
在图像分析技术方面,步态分析使用摄像机和图像处理算法来获取人体行走的图像数据。
通过分析这些图像数据,可以得出一个人的步态特征。
例如,可以分析人体的关节角度、肢体运动轨迹等。
通过这些图像分析技术,可以得到人体行走时的姿势和动作,从而进行步态分析。
在模式识别技术方面,步态分析使用机器学习和模式识别算法来识别和分类不同的步态模式。
通过训练一个模型,可以将不同的步态特征和步态模式区分开来,从而判断一个人的步态是否正常或异常。
这种模式识别技术可以帮助医生诊断和监测患者的步态问题,也可以帮助运动科学家研究和改进人体运动和训练方法。
步态分析在医学领域具有广泛的应用。
例如,在运动康复中,通过分析患者的步态特征,可以评估患者的康复进展和治疗效果。
在神经科学中,步态分析可以帮助研究人体运动控制和运动障碍的机制。
在老年保健中,步态分析可以用来评估老年人的运动功能和生活质量。
此外,步态分析还可以应用于运动训练、运动损伤预防和犯罪侦查等领域。
总之,步态分析是一种研究人体行走姿态的科学方法,通过观察和分析步态特征,可以获得有关一个人健康状况、运动能力和运动损伤等信息。
步态分析可以应用于医学、运动科学、安全监控等领域,为人们的生活提供帮助和支持。
正常人体步态分析..
从脚跟着地到足趾离地的时期,称为支撑期(站立期)。该时 期约占整个步态周期60%时间。在此时间内,足完成了从跟着 地到趾离地整个动作,经历了跟着地、足平放(地面)、跟离 地、趾离地几个时间点。 根据这几个时间点,站立期又可细分为以下几个时期:
站立期又可细分为以下几个时期;
站立早期:跟着地到全足放平时期。在此时期,足底吸收 地面的冲击,井开始承重。也称缓冲期。该时期为步态周 期的0-15%的时间段。 站立中期:全足放平到跟离地时期。在此时期,身体体全 部体重转移到支撑足。该时期为步态周期的 15-30%的时 间段。 蹬离期(站立末期):距离地到趾离地时期。此间,身体 重量逐步向对侧转移,并产生蹬地动作,推动身体向前。 该时期为步态周期的30-60%的时间段。
二、正常步态的一般特征
3.跟着地后的膝屈曲
正常人跟着地时,膝关节有15-20度的屈曲,以减少 重心的上下移动。膝踝的协调运动使人体重心的轨 迹基线变得更平坦光滑。
三、步态周期中下肢关节的运动
1、髋关节
跟着地时,髋关节屈曲约为30度。随着身体重心向前移动,髋关节逐渐做伸的运动 (屈曲角度减小),直到站立中期后。 身体重心移到髋关节前,髋关节才从屈的状态变为后伸状态,并在趾离地前达到最大 伸直状态;之后,髋关节开始由伸向屈的方向运动,准备屈髋向前摆腿。进入摆动期 后,髋关节屈曲角度增大,大腿向前迈出。髋关节的屈曲阶段一直延续到跟着地。
3)摆动期
概念:趾离地后到足跟再次着地时期,称为摆动期〔摆动 相)。该时期约占整个步态周期的40%。 摆动期内,下肢在主中摆动,不与地面接触,而腿在空中 的摆动运动,有一个从加速运动到减速运动的过程。由此, 摆动期又可细分为摆动前期(加速期)、摆动中期.摆动 后期(减速期)。 摆动前期:足趾离地后,整个下肢立即加速向前摆动摆动 的时期。故此又称为加速期。 摆动中期:下肢加速摆动后,经过身体下方之时. 摆动后期:摆到身体前方的下肢,在足跟着地前逐渐减缓 其摆动速度:该时期又称为减速期。 举例说明
人体行走下肢生物力学研究
人体行走下肢生物力学研究1简介人体行走是一种常见的生理现象,这涉及到复杂的生物力学和生理学机制。
行走是人体非常重要的活动之一,它不仅使人活动起来,而且可以促进人体健康。
因此,人体行走下肢生物力学研究是一个非常重要的研究领域。
2人类步态分析人类步态是通过人类运动系统的协作来完成的。
主要包括步态初期、脚底支撑期、推进期和摆动期。
步态分析是研究人类行走的一种方法。
通过步态分析,可以了解人类如何运动,从而了解身体各部分如何发挥作用。
3下肢骨骼结构与肌肉力量人体下肢是人体活动最频繁的部位之一。
下肢的骨骼结构包括大腿骨、胫骨和腓骨。
这些骨头与肌肉力量、关节结构和神经系统协作运动。
4步行中下肢骨骼与肌肉的变化在步行中,下肢的骨骼和肌肉会发生许多变化。
例如,当一个人行走时,股骨会向前滚动,同时膝盖会弯曲。
这对于膝关节的稳定起着重要作用。
此外,下肢肌肉也发生变化,膝关节内侧和外侧的肌肉会在步态周期中相互协调运动。
5步频和步幅对于人体步态的影响步频和步幅是人体步态的两个重要参数。
步频是一分钟内脚部运动的次数,步幅是在一步中行进的距离。
步频和步幅对人体步态的影响非常显著。
例如,步频增加可以提高运动效率。
而增加步幅则会增加下肢肌肉对于身体的运动控制,从而降低运动效率。
6影响人体行走的因素许多因素会对人体行走产生影响。
例如,平滑的地面对于人体行走非常重要。
人的鞋子也对于人体行走产生影响。
某些特殊型的鞋子可以增加人体行走的效率和平衡性。
7结论总之,人体行走下肢生物力学研究是一个非常重要的研究领域。
通过对人类步态的分析,可以了解人类如何运动,从而了解身体各部分如何发挥作用。
此外,步频和步幅对人体步态的影响非常显著,影响因素也不可忽视。
研究人体行走下肢生物力学,是促进人体行走效率和健康的一个重要途径。
第四章步态分析
步频
步频(cadence)----行走时每分钟迈出的步 数称为步频,通常用steps/min表示。 健全人通常步频大约是95~125 步/min 男性的步频平均约为112.2±8.9 步/min 女性平均为123.4±8.0 步/min。 双人并肩行走时,一般是短腿者步频大于长 腿者。
步长(step length)
行走时左右足跟或足尖先后着地时两点间的纵 向直线距离称为步长,又称单步长,如下图示 Ⅰ ,通常用cm表示。健康人平地行走时,一 般步长约为50~80cm。个体差异主要与腿长 有关,腿长,步长也大。
跨步长(stride length) 行走时,由一侧足 跟着地到该侧足跟再次着地所进行的距离称 为跨步长,或步幅。如图示Ⅱ,用cm表示, 通常是步长的两倍。约100—160cm
步态检查适应症
1、CNS损伤:如脑卒中、脑外伤后偏瘫、 脑瘫、帕金森病、小脑及其传导通路病变。 2、骨关节疾病与外伤:截肢、髋关节或膝 关节置换术后、关节炎、韧带损伤、踝扭伤、 下肢不等长等 3、下肢肌力损伤:脊髓灰质炎、股神经损 伤、腓总神经损伤等周围神经损伤 禁忌症:严重心肺疾患、下肢骨折未愈合等
双支撑相
双足支撑是步行的最大特点。 在一个步行周期中,当一侧下肢完成足跟抬起 到足尖向下蹬踏离开地面的时期内,另一侧下 肢同时进行足跟着地和全足底着地动作,所以 产生了双足同时着地的阶段。一般占一个步行 周期的20%, 此阶段的长短与步行速度有关,速度越快,双 支撑相就越短,当从走变为跑时,双支撑相变 为零。双支撑相的消失,是走和跑的转折点, 故成为竞走比赛时判断是否犯规的唯一标准。
步态分析
步态分析(GA)是利用力学原理和人体解 剖学、生理学知识对人类行走状态进行对比 分析的一种研究方法。 正常步态是通过骨盆、髋、膝、踝和足趾的 一系列活动完成的,而躯干则基本保持在两 足之间的支撑面上。 正常步态应是平稳、协调、有节律的,两腿 交替进行。 步态是人出生后,伴随着发育过程不断实践 而习得的一种能力;因此,它具有个体特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人体步态的生物力学特征与步态分析
作者:姜丹阳
来源:《体育时空》2016年第05期
摘要步行是人类运动最基本的方式,加强对步态的动作研究,有利于我们对人体运动规律进行更深入的了解,有利于人体运动障碍疾病的治疗和恢复。
本文在国内外相关研究成果的基础上,总结归纳出步态的一般生物力学原理和步态分析的基本方法,为进一步对步态的研究奠定基础。
关键词步态生物力学研究方法分析
一、步态的生物力学原理
步态是人类步行的行为特征。
步行是人类生存的基础,是人类与其它动物区别开来的关键特征之一。
正常时的步行不需要思考,然而步行的控制却是十分复杂的,包括中枢命令,身体平衡以及协调控制,涉及足、踝、膝、髋、躯干、颈、肩、臂的肌肉和关节的协同运动。
其中任何环节的失调都有可能影响到步态。
步行是全身肌肉参与,包括人体重心移位,骨盆倾斜旋转,髋、膝、踝关节伸屈及内外旋展等,使人体发生位移的一种复杂的随意性运动。
行走过程中,从一侧脚跟着地开始到该脚跟再次着地形成1个步态周期。
对指定的下肢而言,1个步态周期活动可分为支撑时相和摆动时相。
支撑时相又分为脚跟着地、脚趾着地、支撑中期、脚跟离地、蹬离期和趾离地诸动作阶段。
摆动时相分为加速期、摆动期和减速期。
正常行走时,支撑时相约占整个步态周期的60%—65%,因此,当一侧下肢进入支撑时相时,另侧下肢尚未离地,两下肢同时负重称为双肢负重期。
双肢负重期约占全周期的28.8%,占支撑时相的44.8%,支撑时相的其它时间为单肢负重期。
随着年龄的增长,单、双支撑时相占步态周期的比例也随之增加。
不同性别和身高的人,其支撑时相和摆动时相所占的比例无明显差异。
二、步态分析
步态分析是用运动生物力学的概念、处理手段和已经掌握的人体解剖、生理学知识对人体行走的功能状态进行分析的一种生物力学研究方法。
随着科学技术的发展,由先进的传感器、高速摄像机、微型计算机等组成的综合步态分析系统,使步态分析方法得以在康复医学研究中越来越深入的开展,该系统可不受外界干扰,同时提供行走时人体的重心的空间位移、速度、加速度、地面支反力、肌肉及关节活动情况、关节内力及力距的变化等多种人体运动的信息,1个人的步态将会像体温、血压那样,从1个侧面反映出人体的健康状况和病态特征。
其中影响步态的六大因素分别为:髋部旋转,髋部侧面下降,支撑阶段的膝关节弯曲,踝关节的滚动运动,下肢在平面中的转动以及膝内收。
(一)步态的运动学分析。
运动学是研究步行时肢体运动时间和空间变化规律的科学方法,主要包括:步行整体时间与空间测定和肢体节段性运动方向测定,主要围绕影响步态的6大因素的测量,来进行运动学分析
(二)步态的动力学分析。
动力学分析是对步行时作用力、反作用力强度、方向和时间的研究方法。
牛顿定律、多体系统动力学原理是动力学分析的理论基础。
(三)正常步态分析。
步行的基本功能从某一地方安全有效地移动到另一地方步行是涉及全身众多关节和肌群的一种周期性运动,正常步行是高度自动化的协调稳定的运动,也是高度节约能耗的运动。
通常采用目测方法,就能够判断考察对象步态是否异常。
正常步态应该体现出如下特征:(1)合理的步长、步宽、步频。
(2)上身姿势稳定。
(3)最佳能量消耗或最省力的步行姿态。
从运动生物力学的观点来考察步行运动,其正常步态应该具备出如下生物力学特征:(1)具备控制肢体前向运动的肌力或机械能。
(2)可以在足触地时有效地吸收机械能,以减小撞击,并控制身体的前向进程。
(3)支撑相有合理的肌力及髋膝踝角度,以及充分的支撑面。
(4)摆动相有足够的推进力、充分的下肢地面廓清和合理的足触地姿势控制。
(四)异常步态分析。
人体由于遗传、疾病、意外伤害等诸多因素,都有可能造成步行障碍,使步行周期中某环节发生改变,导致步态改变,出现错误步态。
严重改变还会导致病理步态,甚至丧失步行能力。
异常步态分为以下几种:支撑相障碍,摆动相障碍,倾斜步态,回旋步态以及硬膝步态。
造成上述错误步态的主要原因是:(1)关节僵硬肌肉挛缩使肌肉群的平衡性遭到破坏。
(2)臀肌,股四头肌和腓肠肌的软弱无力使患肢支撑力不足。
所以,骨折后早期的功能锻练要根据各自骨折的不同特点,注意加强臀肌,股四头肌和腓肠肌的功能锻炼,为日后的正常步行做好准备。
三、结论
临床上的不同疾病会产生不同的步态异常现象,有些疾病甚至会出现典型的步态,例如小儿麻痹症的跛足步态,帕金斯综合症的小碎步步态,脑卒中病人的划圈步态。
所以,加强对典型步态的研究,有利于对相关疾病的诊断、治疗和恢复。
随着现代测量技术、电子技术,尤其是计算机技术的迅猛发展,智能化的步态分析系统也在不断完善。
这使定量、客观评价不同状态下人体行走功能的研究领域大大拓宽,使有些复杂的功能性问题的研究同样成为了可能。
步态分析对人体运动系统和神经系统的疾病病因分析和诊断,手术和康复训练成效的判定,骨关节假体的设计以及截瘫病人行走功能的重建等都具有重要意义,目前已经成为了临床研究中不可或缺的重要手段之一。
参考文献:
[1] 宋航.人体起动步态与停止步态生物力学研究[D].大连理工大学.2011.
[2] 奕雅萍.人体步态的生物力学特征与步态分析的临床应用[J].民营科技.2009,04:83,75.
[3] 吴剑,李建设.人体行走时步态的生物力学研究进展[J].中国运动医学杂志.2002,03:305-307.
[4] 孔祥伦.膝内翻者步态的生物力学特征[D].苏州大学.2015.
[5] 张军.人体步态特征生物识别方法研究[J].天津工程师范学院学报.2010,04:6-9.。