33 轴对称图形与坐标变化

合集下载

2017-2018学年北师大版八年级数学上册教师用书(pdf版):3.3轴对称与坐标变化

2017-2018学年北师大版八年级数学上册教师用书(pdf版):3.3轴对称与坐标变化

位置如图所示ꎬ线段 M1N1 与 MN 关 于 y 轴 对 称ꎬ 则 点 M
(2) (2n ꎬ3) 、(2n+1 ꎬ0) .
归纳: 先观察给出的点的特点ꎬ再分析各数据之间的关系ꎬ 如和、倍、分等数量关系ꎻ再将对比得出的结论用文字或 数学式子表示出来.
1.如图ꎬ在方格纸中ꎬ有一平行四边形 ABCDꎬ则它关于 x 轴对称的图形的顶点坐标是( 2ꎬ- 1) 、( 4ꎬ- 1) 、( 6ꎬ- 3)
图形变换的运用
【 例 3】 如图所示ꎬ在直角坐标 系中ꎬ第一次将△OAB 变换成 △OA1B1ꎬ 第 二 次 将 △OA1B1 变 换 成 △OA2B2ꎬ 第 三 次 将 △OA2B2 变换成△OA3B3ꎬ已 知 A ( 1ꎬ3)、A1 ( 2ꎬ3)、A2 ( 4ꎬ 3) 、A3( 8ꎬ3) ꎬB( 2ꎬ0) 、B1( 4ꎬ0) 、B2( 8ꎬ0) 、B3( 16ꎬ0) . (1)观察每次变换前后的三角形有何变化ꎬ找出规律ꎬ 按此变换规律再次将△OA3 B3 变换成△OA4 B4 ꎬ则 A4 的 坐标是 ꎬB4 的坐标是 . (2) 若按(1) 找到的规律ꎬ将△OAB 进行了 n 次变换ꎬ 得到△OAn Bn ꎬ推测 An 的坐标是 ꎬBn 的坐标是 . 分析:观察图形分析、对比各点的横坐标和纵坐标ꎬ可 知 An 的横坐标是按 2n 变化的ꎬ 而 Bn 的横坐标是按 2n+1 变化的. 解:(1)(16ꎬ3)、(32ꎬ0)ꎻ
������������
第 3 章 位置与坐标
第 4 课 轴对称与坐标变化
知识目标 重、难点 思维目标
掌握点关于两轴对称的点的坐标特点ꎬ学 习图形的变化与点的坐标变化. 图形坐标变化与图形轴对称之间关系的 探索. 数形结合思想ꎬ发展形象思维能力.

北师大版数学八年级上册3《轴对称与坐标变化》说课稿3

北师大版数学八年级上册3《轴对称与坐标变化》说课稿3

北师大版数学八年级上册3《轴对称与坐标变化》说课稿3一. 教材分析北师大版数学八年级上册3《轴对称与坐标变化》这一节的内容是在学生已经学习了平面直角坐标系、坐标与图形的性质等知识的基础上进行教授的。

本节课主要介绍了轴对称的概念,以及坐标变化中的平移和旋转。

通过本节课的学习,使学生能够理解轴对称的性质,掌握坐标变化的方法,提高学生的空间想象能力和解决问题的能力。

二. 学情分析在进入八年级的学生中,大部分学生对平面直角坐标系和坐标与图形的性质已经有了初步的认识和了解。

但是,对于轴对称的概念,以及坐标变化中的平移和旋转,部分学生可能还存在着一定的困惑。

因此,在教学过程中,需要针对学生的实际情况,进行有针对性的教学。

三. 说教学目标1.知识与技能目标:使学生理解轴对称的概念,掌握坐标变化的方法,提高学生的空间想象能力和解决问题的能力。

2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的动手操作能力和团队协作能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受数学与生活实际的联系。

四. 说教学重难点1.教学重点:轴对称的概念,坐标变化的方法。

2.教学难点:轴对称的性质,坐标变化的计算。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等教学方法,引导学生主动探究,提高学生的学习效果。

2.教学手段:利用多媒体课件、教具模型等教学手段,直观展示轴对称和坐标变化的过程,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过展示一些生活中的对称现象,引导学生思考对称的概念,从而引出轴对称的概念。

2.探究:引导学生通过观察、操作、思考、交流等方式,探索轴对称的性质,以及坐标变化的方法。

3.讲解:对轴对称的性质和坐标变化的计算进行详细的讲解,让学生深刻理解并掌握知识。

4.练习:设计一些具有代表性的练习题,让学生进行练习,巩固所学知识。

5.总结:对本节课的主要内容进行总结,加深学生对知识的理解。

3.3 轴对称与坐标变化(课件)北师大版数学八年级上册

3.3 轴对称与坐标变化(课件)北师大版数学八年级上册

所以根据关于坐标轴对称的点的坐标特征
可得A′(-3,-1),B′(-1,0),C′(-2,1),A″(3,1),
B″(1,0),C″(2,-1).
1-1.如图,在平面直角坐标系中,每个小正方形的边 知1-练 长均为 1.
(1)点 A 在第__四__ 象限, 它的坐标是_(3_,__-__2_)__ ;
(1)若点A,B关于x轴对称,求a,b的值; 解:因为点A,B关于x轴对称, 所以2a+b=2b-1,5+a-a+b=0, 解得a=-3,b=-5.
知2-练
(2)若点A,B关于y轴对称,求(4a+4b)2 025 的值. 解:因为点A,B关于y轴对称, 所以2a+b+2b-1=0,5+a=-a+b,
知1-讲
图示
知1-讲
特别提醒 当原图上所有点的横坐标不变,纵坐标乘
-1后,得到新图形上对应点的坐标,则新图形 与原图形上的每一组对应点都关于 x 轴对称, 所以新图形与原图形关于x轴对称;同理可得新 图形与原图形关于 y 轴对称的变化方式 .
知1-练
例1 [母题 教材P69习题T2 ]△ABC在平面直角坐标系中 的位置如图3-3-1所示,已知A,B,C三点在格点上, 请分别画出与△ABC关于x轴和y轴对称的图形,并 写出对称图形顶点的坐标.
A.1
B.-1
C.32 025
D.0
课堂小结
轴对称与坐标变化
画轴对称图形
对称轴 坐标轴
关键
关于坐标轴对称 坐标 变化
作对称点
关于x 轴对称
关于y 轴对称
称,横不变,纵相反;纵对称,纵不变,横相反. ◆关于坐标轴对称的点的坐标只有符号不同,其绝
对值相同.
知2-练
例2 已知点A(2a+b,5+a),B(2b-1,-a+b). (1)若点A,B关于x轴对称,求a,b的值; (2)若点A,B关于y轴对称,求(4a+4b)2 025 的值.

3.3轴对称与坐标变化(定稿)

3.3轴对称与坐标变化(定稿)
A.4 B.5 C.6 D.7
练习
1).点A在轴上,距离原点4个单位长度,则A点的坐标是

2).点A(1-a,5),B(3 ,b)关于y轴对称,则 a + b = ______。
3). 在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 , 则点P的位置 在________。
4).如图,△AOB是边长为5的等边三角形,则A,B两点的坐标分别
关于y轴对称的两点的坐标, 横坐标 互为相反数, 纵坐标 相同
小试牛刀
1.已知点P(-3,4),则 (1)点P关于x轴对称的点的坐标是 (-3,-4) ;
(2)点P关于y轴对称的点的坐标是 (3,4) ; 2.已知点P(a,b),则
(1)点P关于x轴对称的点的坐标是 (a,-b) ; (2)点P关于y轴对称的点的坐标是 (-a,b) ;
A.- 2 B.2 C.1 D.- 1
5.(1)若 mn = 0,则点 P(m,n)必定在 坐标轴 上. (2)已知点 P( a,b),Q(3,6),且 PQ ∥ x轴, 则b的值为 6 .
6. 已知A、B两点的坐标分别是(-2,3)和(2,3), 则下面四个结论: ①A、B关于x轴对称;②A、B关于y轴对称;③A、B关 于原点对称;④A、B之间的距离为4,其中正确的有 (B ) A.1个 B.2个 C.3个 D.4个
A1(2,6) B1(5,4) C1(2,4) D1(2,0)
探究
如右图所示的平面直角坐标系中, 第一、二象限内各有一面小旗.
(-2,6)
(1)两面小旗之间有怎样的位置关系?
关于y轴成轴对称
对应点 A与A1 的坐标又有什么特点?
纵坐标相等,横坐标互为相反数

北师大版数学八年级上册3《轴对称与坐标变化》教学设计3

北师大版数学八年级上册3《轴对称与坐标变化》教学设计3

北师大版数学八年级上册3《轴对称与坐标变化》教学设计3一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容。

本节课主要介绍了轴对称的性质以及坐标变化中的平移和旋转。

教材通过丰富的实例和图片,引导学生探索轴对称的性质,让学生在实际操作中感受坐标变化带来的几何图形的变换。

教材内容紧密联系实际,有助于激发学生的学习兴趣,提高学生的动手操作能力。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,对图形的变换有一定的了解。

但轴对称和坐标变化的知识较为抽象,学生需要通过实际操作和观察来进一步理解和掌握。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生积极参与,提高学生的动手操作和观察能力。

三. 教学目标1.理解轴对称的性质,能够判断一个图形是否为轴对称图形。

2.掌握坐标变化中的平移和旋转,能够运用坐标变化解决实际问题。

3.培养学生的观察能力、动手操作能力和解决问题的能力。

四. 教学重难点1.轴对称的性质及判断。

2.坐标变化中的平移和旋转的性质及运用。

五. 教学方法1.情境教学法:通过实际例子和图片,引发学生的兴趣,激发学生的学习欲望。

2.动手操作法:让学生亲自动手,进行实际的轴对称和坐标变换操作,提高学生的动手能力。

3.小组合作法:引导学生分组讨论和合作,培养学生的团队意识和沟通能力。

六. 教学准备1.准备相关的图片和实例,用于导入和讲解。

2.准备坐标纸和绘图工具,供学生动手操作。

3.准备练习题和拓展题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)教师通过展示一些实际例子和图片,如剪纸、建筑物的设计等,引导学生思考这些实例中的共同特点。

学生通过观察和思考,发现这些实例都具有轴对称的性质。

教师总结轴对称的定义,并提出本节课的学习目标。

2.呈现(15分钟)教师通过讲解和演示,介绍轴对称的性质,如对称轴的定义、对称点的坐标关系等。

同时,教师引导学生进行实际的坐标变换操作,如平移和旋转,让学生感受坐标变化带来的图形变换。

《轴对称与坐标变化》位置与坐标

《轴对称与坐标变化》位置与坐标

伸缩变换
定义
伸缩变换是改变图形长度的变换。
操作方法
在平面直角坐标系中,伸缩变换可表示为 将x轴、y轴上的点分别乘以一个常数。
特点
伸缩变换不改变图形的形状和方向,只改 变图形的尺寸。
实例
将点(x,y)沿着x轴方向缩小为原来的1/a倍 得到点(ax,y),沿着y轴方向缩小为原来的 1/b倍得到点(x,by)。
挖掘轴对称与坐标变化在其他学科 和实际生活中的应用场景,拓展其 应用范围。
轴对称与坐标变化的应用拓展
物理学
深入研究轴对称与坐标变化在物理学中 的应用,如量子力学、相对论等领域,
推动理论物理的发展。
计算机科学
利用轴对称与坐标变化开发新的算法 和软件,提高计算机性能和智能化水
平。
工程学
将轴对称与坐标变化应用于机械设计 、建筑设计等领域,提高设计效率和 精度。
艺术作品中的实例分析
总结词
艺术作品中也常常利用轴对称和坐标变化来创造出美 丽和动人的艺术效果。
详细描述
在艺术作品中,轴对称和坐标变化也被广泛地应用。例 如,在绘画中,艺术家可以利用轴对称来创造出平衡和 和谐的艺术造型。同时,通过坐标的变化,艺术家可以 表现出不同的色彩和明暗变化,创造出更加丰富和动人 的艺术效果。在雕塑中,轴对称和坐标变化也被广泛应 用,例如人体雕塑中的人体结构就是典型的轴对称结构 ,而通过坐标的变化则可以表现出不同的人体形态和表 情。
性质
轴对称图形的对应线段相等,对应角相等,图形的形状和大小完全相同。
坐标变化的定义与性质
定义
在平面直角坐标系中,当图形的位置发生变化时,相应的坐 标也发生变化,这种变化称为坐标变化。
性质
坐标变化具有连续性和规律性,可以通过平移、旋转、缩放 等变换实现。

北师大版八年级数学上册3.3轴对称和坐标变化课件(共18张PPT)

北师大版八年级数学上册3.3轴对称和坐标变化课件(共18张PPT)
累 ,但 这 是 一 种人生 体验,战 胜自 我 ,锻 炼 意 志 的最佳 良机。 心里虽 有说不 出的酸 甜苦辣 ,在烈日 酷暑下
1、两面小旗之间有怎样的位置关系?
关于y轴对称
2、对应点A与A1的坐标有什么特点?
纵坐标相同,横坐标互为相反数
3、其它对应的点也有这个特点吗?
同样具有
( 2,6)
4、在这个坐标系里面画 出小旗ABCD关于x轴的对 称图形,它的各个“顶 点”的坐标与原来的点 的坐标有什么关系?
所得图形与原图关于x轴对称;
纵坐标不变,横坐标乘以-1,即横反纵同时,
所得图形与原图关于y轴对称。
关于x轴对称的点 (x,y)
横坐标相同,纵坐标互为相反数 ( x , - y ) 横同纵反
关于y轴对称的点 (x,y)
纵坐标相同,横坐标互为相反数 ( - x , y ) 横反纵同
温馨小贴士:关于哪个轴对称,哪个坐标相等。
横坐标相同,纵坐标互为相反数
图形轴对称
点的坐标特点
1、关于x轴对称的两点,它们的横坐标 相同 , 纵坐标 互为相反数 ;
2、关于y轴对称的两点,它们的横坐标 互为相反数 , 纵坐标 相同 。
1.点 A(-2,-3)关 于 x 轴 对 称 的 点 的 坐 标 是(-2,3) 。
2.点 P(-5,6)与 点 Q 关 于 y 轴 对 称,则 点 Q 的 坐 标 为(5,6)。
C.关于 y轴对称 D.不能构成对称关系
4.点(m,- 1)和点(2,n)关于 x轴对称,则 mn等
于( B )
A.- 2 B.2 C.1
D.- 1
7. 已知A、B两点的坐标分别是(-2,3)和(2,3),
则下面四个结论:

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。

本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。

二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。

但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。

三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。

2.能够运用坐标变化规律,解决实际问题。

3.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。

2.教学难点:如何运用坐标变化规律解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。

六. 教学准备1.准备相关的多媒体教学课件和教学素材。

2.准备坐标纸、剪刀、胶水等实验材料。

3.设计好课堂练习题和课后作业。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。

引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。

引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。

3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。

要求学生用自己的语言描述坐标变化规律。

4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。

教师巡回指导,解答学生的疑问。

5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辅导材料
与手段
导学案(PPT)
教学环节
生生互动
师生互动
复习回顾
承上启下
请写出右边两面小旗各个点的坐标。
讨论新知
尝试发现
1、探究在上图所示的平面直角坐标系中,第一、二象限内的两面小旗。
(1)两面小旗之间有怎样的位置关系?对应点A与A1的坐标又有什么特点?
(2)在这个坐标系里画出小旗ABCD关于x轴的对称图形,它的各个“顶点”的坐标与原来的点的坐标有什么关系?
教师反思
探索未知
寻求真理
复习本单元内容,自己列出知识点,进一步掌握本单元知识,并加以应用。
问题导学
天星乡中心学校2014-2015学年度八年级数学高效课堂导学案
班级姓名主备朱丽清执教教导处审批
3.3轴对称与坐标变化
目标
1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变化之间的关系。
2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结。
重难点
图形坐标变化与图形轴对称之间的关系.
2、点B(- 2,1)关于y轴对称的点的坐标是。
3、点(4,3)与点(4,- 3)的关系是().
A.关于原点对称B.关于x轴对称
C.关于y轴对称D.不能构成对称关系
4、点(m,- 1)和点(2,n)关于x轴对称,则mn等于( )
A.- 2 B.2 C.1 D.- 1
5.(1)若mn = 0,则点P(m,n)必定在上.
(3)横、纵坐标分别互为相反数,所得图形与原图形关
于成中心对称。
归纳总结
巩固提升
1、已知点P(-3,4),则
(1)点P关于x轴对称的点的坐标是
(2)点P关于y轴对称的点的坐标是
2、已知点P(a,b),则
(1)点P关于x轴对称的点的坐标是
(2)点P关于y轴对称的点的坐标是
拓展应用Байду номын сангаас
发现新知
1、点A(2,- 3)关于x轴对称的点的坐标是。
结论一:
2、自学例题1并完成以下两个问题
(1)将各坐标的纵坐标都乘以-1,横坐标保持不变,则图形怎么变化?
(2)将各坐标的纵坐标与横坐标都乘以-1,图形会变成什么样?
3、图形的点的坐标变化与图形的变化有怎样的关系?
(1)横坐标保持不变,纵坐标互为相反数,所得图形与原图形关于成轴对称。
(2)纵坐标保持不变,横坐标互为相反数,所得图形与原图形关于成轴对称。
(2)已知点P(a,b),Q(3,6),且PQ∥x轴,则b的值为。
6、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:
①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( )
A.1个B.2个C.3个D.4个
课堂反思
自我评价
学生反思
相关文档
最新文档