连续时间LTI系统的频率特性及频域分析

合集下载

信号与系统仿真作业

信号与系统仿真作业

nGDOU-B—11—112广东海洋大学学生实验报告书(学生用表)课程名称课程号学院(系)信息学院专业班级学生姓名学号实验地点04002 实验日期实验一连时间信号的MATLAB表示和连续时间LTI系统的时域分析一、实验目的1.掌握MA TLAB产生常用连续时间信号的编程方法,并熟悉常用连续时间信号的波形和特性;2.运用MATLAB符号求解连续系统的零输入响应和零状态响应;3.运用MATLAB数值求解连续系统的零状态响应;4.运用MATLAB求解连续系统的冲激响应和阶跃响应;5.运用MATLAB卷积积分法求解系统的零状态响应。

二、实验原理1. 连续信号MATLAB实现原理从严格意义上讲,MA TLAB数值计算的方法并不能处理连续时间信号.然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB处理,并且能较好地近似表示连续信号.MATLAB提供了大量生成基本信号的函数.比如常用的指数信号、正余弦信号等都是MATLAB的内部函数。

为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图.三、实验内容1.实例分析与验证根据以上典型信号的MA TLAB函数,分析与验证下列典型信号MA TLAB程序,并实现各信号波形图的显示,连续信号的图形显示使用连续二维图函数plot().(1)正弦信号:用MA TLAB命令产生正弦信号2sin(2/4)ππ+,并会出时间0≤t≤3的波形图。

程序如下:K=2;w=2*pi ;phi=pi/4;t=0:0.01:3;ft=K*sin (w*t+phi );plot(t,ft ),grid on ;axis ([0,3,-2。

2,2.2])title (’正弦信号’)(2) 抽样信号:用MA TLAB 中的sinc(t)函数命令产生抽样信号Sa(t),并会出时间为66t ππ-≤≤的波形图。

连续时间LTI系统分析

连续时间LTI系统分析

连续时间L T I系统分析(总8页) -本页仅作为预览文档封面,使用时请删除本页-实验三 连续时间LTI 系统分析一、实验目的(一)掌握使用Matlab 进行连续系统时域分析的方法1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应(二)掌握使用Matlab 进行连续时间LTI 系统的频率特性及频域分析方法1、学会运用MATLAB 分析连续系统的频率特性2、学会运用MATLAB 进行连续系统的频域分析(三)掌握使用Matlab 进行连续时间LTI 系统s 域分析的方法1、学会运用MATLAB 求拉普拉斯变换(LT )2、学会运用MATLAB 求拉普拉斯反变换(ILT )3、学会在MATLAB 环境下进行连续时间LTI 系统s 域分析二、实验条件装有MATLAB 的电脑三、实验内容(一)熟悉三部分相关内容原理(二)完成作业1、已知某系统的微分方程如下:)(3)()(2)(3)(t e t e t r t r t r +'=+'+''其中,)(t e 为激励,)(t r 为响应。

(1) 用MATLAB 命令求出并画出2)0(,1)0(),()(3='==---r r t u e t e t 时系统的零状态响应和零输入响应(零状态响应分别使用符号法和数值法求解,零输入响应只使用符号法求解);符号法求解零输入响应: >> eq='D2y+3*Dy+2*y=0';>> cond='y(0)=1,Dy(0)=2';>> yzi=dsolve(eq,cond);>> yzi=simplify(yzi)yzi =符号法求解零状态响应:exp(-2*t)*(4*exp(t) - 3)eq1='D2y+3*Dy+2*y=Dx+3*x';eq2='x=exp(-3*t)*heaviside(t)';cond='y=0,Dy=0';yzs=dsolve(eq1,eq2,cond);yzs=simplify(yzs)yzs =(exp(-2*t)*(exp(t) - 1)*(sign(t) + 1))/2图像如下:代码:subplot(211)ezplot(yzi,[0,8]);grid ontitle('ÁãÊäÈëÏìÓ¦')subplot(212)ezplot(yzs,[0,8]);grid ontitle('Áã״̬ÏìÓ¦')数值计算法:t=0::10;sys=tf([1,3],[1,3,2]);f=exp(-3*t).*uCT(t);y=lsim(sys,f,t);plot(t,y),grid on ;axis([0 10 ]);title('ÊýÖµ¼ÆËã·¨µÄÁã״̬ÏìÓ¦')(2)使用MATLAB命令求出并画出系统的冲激响应和阶跃响应(数值法);用卷积积分法求系统的零状态响应并与(1)中结果进行比较;系统的冲激响应和阶跃响应(数值法):代码:t=0::10;sys=tf([1,3],[1,3,2]);h=impulse(sys,t);g=step(sys,t);subplot(211)plot(t,h),grid on;axis([0 10 ]);title('³å¼¤ÏìÓ¦')subplot(212)plot(t,g),grid on;axis([0 10 ]);title('½×Ô¾ÏìÓ¦'卷积积分法求系统的零状态响应:Ctsconv函数的定义:function[f,t]=ctsconv(f1,f2,t1,t2,dt)f=conv(f1,f2);f=f*dt;ts=min(t1)+min(t2);te=max(t1)+max(t2);t=ts:dt:te;subplot(221)plot(t1,f1);grid onaxis([min(t1),max(t1),min(f1)-abs(min(f1)*,max(f1)+abs(max(f1)*])title('f1(t)');xlabel('t')subplot(222)plot(t2,f2);grid onaxis([min(t2),max(t2),min(f2)-abs(min(f2)*,max(f2)+abs(max(f2)*])title('f2(t)');xlabel('t')subplot(212)plot(t,f);grid onaxis([min(t),max(t),min(f)-abs(min(f)*,max(f)+abs(max(f)*])title('f(t)=f1(t)*f2(t)');xlabel('t')求系统的零状态响应代码:dt=;t1=0:dt:10;f1=exp(-3*t1).*uCT(t1);t2=t1;sys=tf([1,3],[1,3,2]);f2=impulse(sys,t2);[t,f]=ctsconv(f1,f2,t1,t2,dt)如图,根据两图相比较,两种方法做出的零状态响应大体相同。

连续时间系统的频域分析-资料

连续时间系统的频域分析-资料
对离散时间LTI系统,也有同样的结论。但对线性 相位系统,当相位特性的斜率是整数时,只引起信号 的时域移位。若相位特性的斜率不是整数,由于离散 时间信号的时移量只能是整数,需要采用其他手段实 现,其含义也不再是原始信号的简单移位。
傅里叶变换形式的系统函数
et ht rt

E H R
若e(t) E(), 或E(j)

7

二维傅里叶变换的模
模相同,相位为零
模为1,相位相同

8

相位相同,模为(g)图的
(g)图
4.2 LTI系统频率响应的模和相位表示
The Magnitude-Phase Representation of the Frequency Response of LTI Systems
• LTI系统对输入信号所起的作用包括两个方面: 1.
求 稳 v2 (t)态 响 应
解:
V 1 ( j) j π ( 0 ) ( 奇函0 ) 数
V 2 (j) H (j)V 1 (j)
偶函数
H () j e j ( ) j π ( 0 ) ( 0 )
所 V 2 ( j ) H ( j 0 ) 以 j π ( 0 ) e j ( 0 ) ( 0 ) e j ( 0 )
这说明:一个信号所携带的全部信息分别包含在 其频谱的模和相位中。
因此,导致信号失真的原因有两种: 1.幅度失真:由于频谱的模改变而引起的失真。 2.相位失真:由于频谱的相位改变引起的失真。
在工程实际中,不同的应用场合,对幅度失真 和相位失真有不同的敏感程度,也会有不同的 技术指标要求。
原图像 傅里叶变换的相位
第四章 连续时间系统频域分析 齐开悦

5------第三章 连续LTI特征函数、傅里叶级数

5------第三章 连续LTI特征函数、傅里叶级数
y( t )
k
y( t ) x( t ) * h( t ) x ( )h( t )d

t
a e
k

sk t
k
a

k
H ( sk )e sk t
2
LTI系统分析的基本方法
将输入信号表示成基本信号的线性组合: 时域法: x(t ) x( ) (t )d

从卷积的角度求输出: y (t ) x(t 3) x(t ) * (t 3) h(t ) (t 3)
s j 2
( 3)e s d


s j 2
e 3 s
s j 2
e j 6
方法二: (第六章)
H(s)
Yzs (s) 3s e X (s)
卷积定理

y (t ) e * h(t ) h( )e s ( t ) d

e e H ( s )
st LTI st
e
st



h( )e s d e st H ( s )
特征函数
特征值 (系统函数,传递函数)
H ( s ) h( )e s d h(t)的拉氏变换
例3-2 考虑输入x(t)和输出y(t)是个延时为3的LTI系统,即y(t)=x(t-3) 1)若输入为x(t)=ej2t,求输出及其特征值H(s)。 解:1)
y (t ) x(t 3) e j 2 ( t 3) e j 6 e j 2t
H ( s ) s j 2 h( )e s d
3
本章主要内容
单击此处编辑母版标题样式
单击此处编辑母版副标题样式

系统的频域分析

系统的频域分析

6 系统的频域分析 p 5
Yzs (jw)= H(jw) F(jw)
Yzs ( jw ) 或 : H ( jw ) H ( jw ) e j (w ) F ( jw )
如果信号不存在傅氏变换时,不可以用频域分析方法。 在本教材中,没有特别提示时,涉及到H(jw) 的求解, 都指满足IR条件的LTI因果系统,即不考虑初始状态的影响, 即满足:
4/RC
w
随着频率的增加,系统的幅度响应|H(jw)|不断减小,说明信号 的频率越高,信号通过该系统的损耗也就越大,即低通。 由于|H(j(1/RC))|=0.707,所以把wc=1/RC称为该系统的3db截频。
6 系统的频域分析 p 13
连续信号通过系统响应的频域分析
在此就是求零状态响应。又称:零状态响应的频域分析法
H ( jw ) FT[h(t )]
1 1 jw 1 jw 2 1 ( jw ) 2 3( jw ) 2
6 系统的频域分析 p 9
例 LTI系统,输入 f(t)=e –t u(t),输出 y(t)= e-tu(t) + e2tu(t) ,求频率响应H(jw)和h(t)。
部分分式展开
1 3( jw ) 3 jw 44 Yzs ( jw ) Fzs ( jw ) H ( jw ) jw ) 22 jw 2 (jw 3 1)((jw )(3 jw 3)
1 -t 5 - 3t - 2t y zs (t ) FT [Yzs ( jw )] [ e 2e - e ]u (t ) 2 2
j wC
由Fourier反变换,得系 统的冲激响应h(t)为:
6 系统的频域分析 p 12
1 -(1 / RC)t h(t ) e u(t ) RC

第五章1-连续LTI系统频域分析

第五章1-连续LTI系统频域分析
第5章 系统的频域分析
连续时间LTI系统的频域分析 离散时间LTI系统的频域分析 信号的幅度调制和解调
时域分析的要点是,以冲激函数为基本信号,
任意输入信号可分解为一系列冲激函数;而系统零 状态响应yzs(t) = x(t)*h(t)。 由单位冲激函数δ (t)所引起的零状态响应称为单位 冲激响应,简称冲激响应,记为h(t)。
解: 利用H(j)与h(t)的关系
H ( j) F[h(t)] 1 1 j 1 j 2

1
( j)2 3( j) 2
只有当连续系统是稳定的LTI系统时,才存在H(j), 且可以由h(t)计算出H(j)。
电路系统的频率响应:
分析电路系统的频率响应,主要有两种方法。
H ( j) Yzs ( j)
( j) 3
X ( j) ( j)2 3( j) 2
在实际应用中, 只有当连续系统是稳定的LTI系统时,
才存在H(j),且频响函数才有意义。
例 已知某LTI系统的冲激响应为
h(t) = (e-t-e-2t) u(t),求系统的频率响应H(j)。
vR (t) RiR (t)
VR ( jw) R IR ( jw)
ZR

VR ( IR(
jw) jw)

R
vL
(t)

L
diL (t) dt
VL ( jw) jwLIL ( jw)
ZL
VL ( jw) IL ( jw)

jwL
iC
(t)

C
d
vC (t) dt
IC ( jw) jwCVC ( jw)
例 已知某LTI系统的动态方程为 y"(t) + 3y'(t) + 2y(t) = x(t),

精选LTI系统的时域频率复频域分析资料

精选LTI系统的时域频率复频域分析资料

k 0
k 0
由于 Y ( j) X ( j)H ( j)
故有:
N
bk ( j )k
H ( j )
k 0 N
7
例:考虑一个因果LTI 系统,其输入x[n]和输出y[n]的关系由
差分方程给出: y[n] 1 y[n 1] x[n]。若x[n] [n 1], 求y[n]。
4
解:
0, n 1
x[n] [n 1] 1, n[n] 0, n 1.
y ''(t)
y '(t)
x(t )
+


y(t)
3 -2
解 由图可知第一个和第二个积分器的输入分别为 y''(t), y'(t),根 据加法器的输入输出关系有
y ''(t) x(t) 3y '(t) 2y(t)
所以系统的微分方程为: y"(t) 3y '(t) 2y(t) x(t)
线性时不变系统的时域、频域 与复频域分析
本章主要内容:
• LTI系统的差分/微分方程描述和框图描述 • LTI系统的频域分析 • LTI系统的复频域分析
1
LTI系统的描述
1.用 h(t)、h[n] 描述系统;
2.用线性常系数微分或差分方程(LCCDE)描述; 3.用方框图描述系统(等价于LCCDE描述); 4.用系统频率响应 H ( jω) 或系统函数 H(s)
一般的线性常系数差分方程可表示为:
N
M
ak y[n k] bk x[n k]
k 0
k 0
一阶系统
a0 y[n] a1y[n 1] b0x[n] b1x[n 1], a1, a0,b1,b0为常数

第三、四章连续时间信号与系统的频域分析内容总结

第三、四章连续时间信号与系统的频域分析内容总结
X

连续时间信号与系统的频域分析总结
8 页
例15、试求信号f(t)=cos(4t+ )的频谱 。 3
解:
X

连续时间信号与系统的频域分析总结
9 页
例16、一因果LTI系统的输入和输出,由下列微分方程表示:(采用傅里叶变
换计算)。 (1)求系统的单位冲激响应 h( t ) ;
d 2 y( t ) dy( t )
X

连续时间信号与系统的频域分析内容总结
2 页
第四章是傅里叶变换在LTI系统分析中的应用。 在第三章信号频域分解、分析基础上,研究不同激励信号 通过系统的响应、信号通过系统无失真条件、理想低通滤波器 模型以及物理可实现条件、希尔伯特变换、抽样定理等主要内 容。
X

连续时间信号与系统的频域分析总结
3) (j
5)
1ห้องสมุดไป่ตู้
j
3
1
j 5
2
j
4
y z s(t ) e 3t (t ) e 5t (t ) 2e 4t (t )
X

连续时间信号与系统的频域分析总结
10 页
例17、如图所示系统,其乘法器的两个输入端分别为:f (t) sin(2t) , s(t) cos(6t)
系统的频率响应为
8
15y( t ) 2 f ( t )
dt 2
dt
(2)若 f ( t ) e4t( t ) ,求该系统的零状态响应 yzs (t) 。
解: (1)
H ( j)
2
11
j2 8 j 15 j 3 j 5
h(t) e 3t(t) e 5t(t)
(2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
实验项目名称:运用Matlab进行连续时间信号卷积运算
(所属课程:信号与系统)
学院:电子信息与电气工程学院
专业: 10电气工程及其自动化
姓名: xx
学号: ************
指导老师: xxx
一、实验目的
1、学会运用MATLAB 分析连续系统的频率特性。

2、掌握相关函数的调用。

二、实验原理
1、一个连续LTI 系统的数学模型通常用常系数线性微分方程描述,即
)()()()()()(01
)(01)(t e b t e b t e b t r a t r a t r a m m n n +'++=+'++ (1) 对上式两边取傅里叶变换,并根据FT 的时域微分性质可得:
)(])([)(])([0101ωωωωωωE b j b j b R a j a j a m m n n +++=+++
101)()()()()(a j a j a b j b j b j E j R j H n n m m ++++++==ωωωωωωω H ( jω )称为系统的频率响应特性,简称系统频率响应或频率特性。

一般H ( jω )是复函数,可表示为:
)()()(ωϕωωj e j H j H =
其中, )(ωj H 称为系统的幅频响应特性,简称为幅频响应或幅频特性;)(ωϕ称为系统的相频响应特性,简称相频响应或相频特性。

H ( jω )描述了系统响应的傅里叶变换与激励的傅里叶变换间的关系。

H ( jω )只与系统本身的特性有关,与激励无关,因此它是表征系统特性的一个重要参数。

MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解,其语句格式为:H=freqs(b,a,w)其中,b 和a 表示H ( jω )的分子和分母多项式的系数向量;w 为系统频率响应的频率范围,其一般形式为w1:p:w2,w1 为频率起始值,w2 为频率终止值,p 为频率取值间隔。

H 返回w 所定义的频率点上系统频率响应的样值。

注意,H 返回的样值可能为包含实部和虚部的复数。

因此,如果想得到系统的幅频特性和相频特性,还需要利用abs 和angle 函数来分别求得。

2、对于正弦激励信号)sin(0ϕω+t A ,当经过系统后,其稳态响应为:)](sin[|)(|00ωϕϕωω++t j H A
三、程序设计实验
1、试用MATLAB 命令求下图所示电路系统的幅频特性和相频特性。

已知 R = 10Ω,L = 2H ,C = 0.1F 。

2、已知系统微分方程和激励信号如下,试用MATLAB 命令求系统的稳态响应。

(1)r ′(t ) +1.5r(t ) = e ′(t ),e(t ) = cos 2t
(2)r ′′(t ) + 2r ′(t ) + 3r(t ) = − e ′(t ) + 2 e (t ), e (t ) = 3 + cos 2t + cos5t
四、实验步骤
按照实验要求设计程序如下所示
1、 w=-20:0.001:20;
Fw=(2*sin(w).*exp(i*w))./w;
plot(w,abs(Fw));
-20-15-10-505101520
00.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
试用MATLAB 命令求下图所示电路系统的幅频特性和相频特性。

已知
R = 10Ω,L = 2H ,C = 0.1F 。

2、w=-6*pi:0.001:6*pi;
b=5;a=[1,1,5];
H=freqs(b,a,w);
subplot(2,1,1);
plot(w,abs(H)),grid on
subplot(2,1,2);
plot(w,angle(H)),grid on
-20
-15-10-50510152000.5
1
1.5
2
2.5
-20-15-10-505101520
-4-2
2
4
(1)r ′(t ) +1.5r(t ) = e ′(t ),e(t ) = cos 2t
3、t=0:0.01:20;
w=2;
H=(j*w)/(j*w+1.5);
f=cos(2*t);
y=abs(H)*cos(w*t+angle(H));
subplot(2,1,1);
plot(t,f);grid on
subplot(2,1,2);
plot(t,y);grid on
02468101214161820
-1-0.5
0.5
1
02468101214161820
-1-0.5
0.5
1
(2)r ′′(t ) + 2r ′(t ) + 3r(t ) = − e ′(t ) + 2 e (t ), e (t ) = 3 + cos 2t + cos5t
4、t=0:0.01:20;
w1=2;w2=5;
H1=(-j*w1+2)/(-[w1]^2+2j*w1+3);
H2=(-j*w2+2)/(-[w2]^2+2j*w2+3);
f=3+cos(2*t)+cos(5*t);
y=abs(H1)*cos(w1*t+angle(H1))+abs(H2)*cos(w2*t+angle(H2));
subplot(2,1,1);
plot(t,f);grid on
subplot(2,1,2);
plot(t,y);grid on
0246810121416182012
3
4
5
02468101214161820
-1-0.5
0.5
1。

相关文档
最新文档