奥数五年级定义新运算加逻辑推理27页PPT
小学奥数专题2 新定义运算

小学奥数专题二:定义新运算
一、定义
1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。
注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新
定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。
(2)我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符
号,如:*Δ、▴、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
2、一般的解题步骤是:
一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。
二典题
例1、对于任意数a,b,定义运算“*”: a*b=a×b-a-b。
求12*4的值。
例2、假设a ★ b = ( a + b )÷ b 。
求 8 ★ 5 。
例3、如果a◎b=a×b-(a+b)。
求6◎(9◎2)。
例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。
求6Δ5。
例5 A,B表示两个数,定义A△B表示(A+B)÷2,
求(1)(3△17) △29; (2)[(1△9) △9] △6。
例6、规定a▲b=5a+0.5ab-3b。
求(8▲5)▲X=264中的未知数。
完整版小学五年级奥数第一讲定义新运算及作业

五年级奥数第一讲定义新运算第一讲定义新运算一、a、 b 是自然数,规定a※b=(a+b) ÷2, 求: 3※( 4※ 6)的值。
二、对于任意两个自然数a、b,定义一种新运算“ * ”:a*b=ab+a ÷ b,求 75*5= ?, 12*4= ?三、定义运算符“◎” :a◎b=3a+4b-5,求6◎ 9=?9◎ 6=?四、定义两种运算“○+”和“○× ”,对于任意两个整数a、 b 规定:a○+b=a+b-1 ,a○×b=a× b-1 ,那么 8○× [ ( 6○+ 10)○+( 5○×3)]等于多少?第1页共4页五、定运算“ ○+”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?六、a、b 是自然数,定a⊙b= ab-a-b-10,求8⊙ 8=?七、假如1*2=1+2,2*3=2+3+4,3*4=3+4+5+6,⋯⋯,依据此算 3*7= ?八、定运算a@b=( a+b)÷ 2,且 3@(x@2) =2,求 x=?九、定a△ b=ab+2a,a▽ b=2b-a,求(8△3)▽(9△ 5)的。
第2页共4页第二讲定义新运算作业十、定义新运算“ * ”:a*b=3a+4b-2,求( 1)10*11;(2)11*10 。
十一、定义新运算“△”:a△b= a ÷b×3,求( 1)24△6;(2)36△9。
十二、○○规定 a + b,表示自然数 a 到 b 的各个数之和,比方: 3 +10=3+4+5+6+7+8+9+10=52,求 1○+ 200 的值。
十三、定义新运算“○×”,a○×b=10a+20b,求( 3○×7)+( 4○× 8)。
十四、定义新运算“△”:a△b=6a+3b+7,那么 5△6 和 6△5 哪个大?大的比小的大多少?十五、规定 a*b= ( a+b)÷ 2,求 [ ( 1*9 ) *9]*3的值。
(完整版)定义新运算(小学数学五年级奥数)

定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+ 2=8, 6X2=12等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个对应法则应该是对应任意两个数。
通过这个法则都有一个唯一确定的数与它们对应。
这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。
解决定义新运算这类题的关键:是抓住定义的本质借用“ +、一、X、十”四则运算进行的,解答时要弄活新运算与四则运算的关系。
特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。
例1:设a、b都表示数,规定:aAb =3X a— 2X b。
试计算:(1) 3A2; (2) 2A3。
练习1:1. 设a b都表示数,规定:a。
b=5X a— 2X b。
试计算3042. 设a b都表示数,规定:a*b=3x a+ 2X b。
试计算:5*6例2:对于两个数a与b,规定b=3a+ 2a,试计算( 3^5)练习2:1.对于两个数a与b,规定:aOb=a+3b,试计算405062.对于两个数A与B,规定:A△ B=2X A — B,试计算5A6A7例3:对于两个数a, b,规定:a金b=ax b+ a+ b,试计算:9 ®练习3:1.对于两个数a, b,规定:a$b=ax b— ( a+ b),试计算:6 ® 7.2..对于两个数A与B,规定:A GB=A X B-2,试计算:8 99例4:如果2、3=2 + 3 + 4, 5A4=5+ 6+ 7+ 8,那么按此规律计算:(1) 3A5;(2) 8A3。
练习4:1.如果4A2=4X 5, 2A3=2X 3X 4,那么按此规律计算:5A4。
2.如果24=24- (2+ 4), 3V6=36- (3 + 6), 6V3=63- (6+ 3),那么按此规律计算:7V2.例5:对于两个数a与b,规定aDb=a(a+1)+(a+2)+・・・(a+b— 1)。
(完整版)小学五年级奥数第一讲__定义新运算及作业

第一讲定义新运算一、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。
二、对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?三、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?四、定义两种运算“○+”和“○×”,对于任意两个整数a、b规定:a○+b=a+b-1,a○×b=a×b-1,那么8○× [(6○+10)○+(5○×3)]等于多少?五、定义运算“○+”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?六、a、b是自然数,规定a⊙b= ab-a-b-10,求8⊙8=?七、如果1*2=1+2,2*3=2+3+4,3*4=3+4+5+6,……,请按照此规则计算3*7=?八、规定运算a@b=(a+b)÷2,且3@(x@2)=2,求x=?九、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。
第二讲定义新运算作业十、定义新运算“*”:a*b=3a+4b-2,求(1)10*11;(2)11*10。
十一、定义新运算“△”:a△b= a÷b×3,求(1)24△6;(2)36△9。
十二、规定a○+b,表示自然数a到b的各个数之和,例如:3 ○+10=3+4+5+6+7+8+9+10=52,求1○+200的值。
十三、定义新运算“○×”,a○×b=10a+20b,求(3○×7)+(4○×8)。
十四、定义新运算“△”:a△b=6a+3b+7,那么5△6和6△5哪个大?大的比小的大多少?十五、规定a*b=(a+b)÷2,求[(1*9)*9]*3的值。
十六、规定a☆b=3a-2b,如果x☆(4☆1)=7,求x的值。
十七、规定X○+Y=(X+Y)÷4求:(1)2○+(3○+5),(2)如果X○+16=10,求X的值。
五数奥数新定义运算

第一讲定义新运算一、学习目标1. 了解新运算的定义并学会按新运算的要求进行计算。
2. 学习观察、比较、判断和推理的数学方法。
二、内容提要与方法点拨1.要熟练掌握四则运算的法则及运算定律。
2. 定义新运算是指用某种特定的符号表示特定意义的运算。
解答这类题目时,首先要弄清新定义的运算的特定含义,也就是弄清它所表示的通常意义下是什么运算,然后转化为通常意义下的四则运算来进行解答。
在没有特别说明的情况下,一些基本的四则运算法则如从左往右计算、有括号时先算括号里面的等在新定义的运算中也是适用的。
但是,在新定义的运算中,不一定都适合交换律或结合律。
三、例题选讲例1如果a▽b表示a×b+a-b,试计算:(7▽4)▽5。
解:式子a▽b表示两个数的积加上第一个数后再减去第二个数。
在式子(7▽4)▽5中,要先算小括号里面的。
(7▽4)=7×4+7-4=31而31▽5=31×5+31-5=181,所以,(7▽4)▽5=181。
例2规定a☆b表示a的4倍减去b的3倍,即a☆b=4a-3b,试计算:(1)5☆6 ;(2)6☆5。
解:(1)根据a☆b=4a-3b,所以,5☆6=4×5-3×6=2(2)6☆5=6×4-5×3=9注意:a☆b表示a的4倍减去b的3倍,而b☆a表示b的4倍减去a的3倍,这里a≠b,所以a☆b≠b☆a。
因此,本例定义的新运算是不满足交换律的,计算中不能把前后两个数交换。
例3 对于两个数x、y,规定x#y表示3x+2y,试计算:(1)(5#7)#8 ;(2)5#(7#8)。
解:(1)根据x#y=3x+2y,得(5#7)#8=(3×5+2×7)#8=29#8=3×29+2×8=103(2)5#(7#8)=5#(3×7+2×8)=5#37=3×5+2×37=89注意:本例定义的运算是不满足结合律的。
五年级奥数逻辑推理ppt课件

此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
23
21
B只打了一盘,与A打了就
1-1.五位同学一起打乒乓球,两人之间最多只能不能打与一D打盘。,矛盾 打完后,A说:“我打了四盘。”B说:“我打了一盘。” C说:“我打了三盘。”D说:“我打了四盘。”E说: “我打了三盘。” 你能肯定其中有人说错了吗?为什么?
1-2.A、B、C三个人各爱好篮球、排球和足球中的一项, 并分别在一小、二小和三小中的一所小学上学,已知 ① A不在一小;② B不在二小; ③ 爱好足球的不在三小; ④ 爱好篮球的在一小; ⑤ 爱好篮球的不列是表B法B。三。小A二,小排,球足;球; 问:三人各爱好什么运动?各上哪所小学? C一小,篮球。
5
例题二
• 卢刚、丁飞和陈俞一位是工程师,一位是医生,一位是飞行员。现在 只知道:
• 卢刚和医生不同岁; • 医生比丁飞年龄小; • 陈俞比飞行员年龄大。 • 请问:谁是工程师,谁是医生,谁是飞行员?
×
×
√
√
×
×
×
√
×
6
欢乐加油站
1、淘气、笑笑、欢欢三人各戴着黄、 白红三种颜色的帽子,但不知道谁 戴着什么颜色的帽子,只知道淘气 不戴黄、红两种颜色的帽子,欢欢 不戴红帽子,你能猜出每人各戴什 么颜色的帽子吗?
第三个人说:“第二个人是说自己是老实国人,我是 老实国人。” 根据他们的回答,你能判断谁是老实国人吗?
15
2、小光的电脑开机密码是一个五位数,它由五个不同的 数字组成.小伟说:“它是73152.”小华说:“它是 15937.”小丽说:“它是38179.”小光说:“谁说的某一位 上的数字与我的密码上的同一位数字相同,就算谁猜对了 这位数字.现在你们每人都猜对了位置不相邻的两个数 字.”这个密码是多少?
奥数第三讲新定义运算
4. 定义新的运算 a ⊖ b = a × b + a + b .求(1⊖2)⊖3.
5. 有一个数学运算符号“⊗”,使下列算式成立:2⊗4=10,5⊗3=18,3⊗5=14, 9⊗7=34.求 7⊗3=?
a +1 .求 2∇(3∇ 4) 的值. b
6. 定义新运算为 a∇b =
7. 对于数 x, y 规定运算“○”为 x ○ y = (a + 4) × (b − 3) .求 7○(8○9)的值. 8. 设 a F b 表示 a 的 3 倍减去 b 的 2 倍,即 a F b = 3a − 2b ,已知 x F(4F1)=7. 求x. 9. 定义两种运算“ ⊕ ”、“ ⊗ ”,对于任意两个整数 a, b , a ⊕ b = a + b − 1 ,
11. x, y 表 示 两 个 数 , 规 定 新 运 算 “※” 及 “ ○ ” 如 下 : x ※ y = 5 x + 4 y , x ○
y = 6 xy .求(3※4)○5 的值.
12. 设 a, b 分别表示两个数,如果 a F b 表示 5)]的结果是什么?
a−b ,照这样的规则,3F[6F(8F 3
名精 师点
名师精点教育
五年级奥数班
数学金牌精编(谢老师)
第三讲: 第三讲:新定义运算
名师精讲 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混 合)运算。 基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除 的运算,然后按照基本运算过程、规律进行运算。
【名师精点:典型例题】 名师精点:典型例题】
13. 规定 x ∗ y =
Ax + y ,且 5F6=6F5,求(3F2)×(1F10)的值. xy
五年级奥数第五讲定义新运算
定义新运算例1.a、b是自然数,规定a※b=(a+b)÷2,求:(1)5※7;(2)3※(4※6)的值。
练1.对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?例2.定义运算“a○+b”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?练2.定义新运算“△”:a△b=6a+3b+7,那么5△6和6△5哪个大?大的比小的大多少?例3.规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。
练3 y x ,表示两个数,规定新运算“*”及“△”如下:x *y x y 56+=,x △xy y 3=.求(2*3)△4的值.例4.定义一种运算“*”,它的意义是a ∗b=a+a a+aaa+…+(a ,b 都是非0自然数).(1)求:2∗3,3∗2;(2)求:23∗3,340∗2(3)求:5678×(5677∗2) - 5677×(5678∗2).练4.若a*b=a+(a+1)+(a+2)+(a+3)+…+(a+b-1),那么3*4*5=?例5.规定“口”的运算法则如下,对于任何整数a ,b ,有:求:(1口2)+(2口3)+(3口4)+ (4口5)+(5口6)+(6口7)+(7口8)十(8口9)+(9口10).练5.规定“⊕”的运算法则如下,对于任何整数P,Q,有:求:(1⊕2)+(2⊕3)+(3⊕4)+(4⊕5)+(5⊕6)作业1. 设b a ,表示两个不同的数,规定b a b a ⨯-⨯=∆34.求2)34(∆∆.2. 定义新的运算a ⊖b a b a b ++⨯=.求(1⊖2)⊖3.3. 定义两种运算“⊕”、“⊗”,对于任意两个整数b a ,,1-+=⊕b a b a ,1-⨯=⊗b a b a .计算)]53()86[(4⊕⊕⊕⊗的值.4. y x ,表示两个数,规定新运算“※”及“○”如下:x ※y x y 45+=,x ○xy y 6=.求(3※4)○5的值.5.对于任意自然数x和y,定义运算如下:若x和y同奇同偶,则x×y=(x+y)÷2若x和y奇偶性不同,则x×y=(x+y+1)÷2求(1994×1995)+(1995×1996)+(1996×1997)+……+(1999×2000)。
最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】
小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
奥数新定义运算
奥数定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四那么运算是数学中最根本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。
这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。
一、定义1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。
注意:〔1〕解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四那么运算,然后进展计算。
〔2〕我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。
〔3〕新定义的算式中,有括号的,要先算括号里面的。
2、一般的解题步骤是:一是认真审题,深刻理解新定义的容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。
二、初步例题诠释例1、对于任意数a,b,定义运算“*〞:a*b=a×b-a-b。
求12*4的值。
分析与解:根据题目定义的运算要求,直接代入后用四那么运算即可。
12*4=12×4-12-4=48-12-4=32例2、假设a ★b = ( a + b )÷b 。
求8 ★5 。
分析与解:该题的新运算被定义为: a ★b等于两数之和除以后一个数的商。
这里要先算括号里面的和,再算后面的商。
这里a代表数字8,b代表数字5。
8 ★5 = 〔8 + 5〕÷5 = 2.6例3、如果a◎b=a×b-(a+b)。
求6◎〔9◎2〕。
分析与解:根据定义,要先算括号里面的。
这里的符号“◎〞就是一种新的运算符号。
6◎〔9◎2〕=6◎[9×2-〔9+2〕]=6◎7=6×7-〔6+7〕=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。