6年级奥数不定方程

合集下载

六年级奥数第28讲:不定方程

六年级奥数第28讲:不定方程

简单的不定方程所谓有定方程,是指未知数的个数多于方程个数的方程(组)。

解不定方程的方法是:(1)根据整除知识,缩小未知数的取值范围,然后试算求解。

(2)分析末位数字,缩小未知数的取值范围,寻求方程的整数解。

(3)求出一个未知数用另一个未知数表示的式子,然后试算求解。

(4)直接根据方程确定未知数的取值范围,通过试算求解。

例1、马小富在甲公司打工,几个月后又在乙公司兼职。

甲公每月付给他薪金470元,乙公司每月付给他薪金350元。

年终,马小富从两家公司共获薪金7 620元。

问他在甲公司打工多少个月,在乙公司兼职多少个月。

做一做:有A、B、C三种商品若干,价值共300元,其中A商品单价为16元,B商品单价为158元,C商品单价为19元。

那么,全部C商品至少价值多少元?最多价值多少元?例2、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都损耗1毫米铜管,那么,只有当锯得的38毫米铜管和90毫米的铜管各为多少段时,所损耗的铜管才能最少?做一做:一个同学把他生日的月份乘以31,日期乘以12,然后加起来的和是170,你知道他出生于何月何日吗?例3、某单位的职工到效外植树,其中的男职工,也有女职工,并有31的职工各带一个孩子参加,男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们共种了216棵树,那么其中女职工有多少人?做一做:一群猴子采摘水蜜桃。

猴王不在的时候,一只大猴子1小时可采摘15千克,一只小猴子1小时可采摘11千克;猴王在场监督的时候,大猴子的51和小猴子的51必须停止采摘,去伺候猴王,有一天采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共摘3 382千克水密桃。

问:在这个猴群中,共有大猴子多少只?例4、小明用5天时间看完一本200页的故事书。

已知第二天看的页数比第一天多,第三天看的页数是第一天、第二天看的页数之和,第四天看的页数是第五天至少看了多少页?做一做:有一堆围棋子,白子颗数是黑子颗数的3倍。

六年级奥数不定方程

六年级奥数不定方程

六年级奥数不定方程Prepared on 21 November 2021第六讲不定方程【知识要点】1、许多数学家需要用方程或方程组来求解。

要想获得未知数的唯一解,能独立列出的方程个数必须与未知数的个数相等。

如果方程个数少于未知数的个数,则称之为不定方程或不定方程组,以为此时未知数一般有无数多个解,解是不确定的。

但如果结合具体问题,增加一些对解的限制条件,如只求自然数解等,这样的不定方程的解就只有有限个或唯一一个了。

必须注意,限制条件中,有些是明显的,有些则是隐藏的。

2、求不定方程的自然数解或正整数解,关键是充分利用整除特征,尝试找出第一解;对于其他的所有解,可通过解的规律,逐一罗列出来,并不困难。

【例题精讲】例1:求下列方程的整数解(x>0,y>0)。

(1)5x+10y=14;(2)11x+3y=89.【思路点拨】5和10有公因数5,而14没有公因数5,所以原方程无整数解;y=29-3211x,11x-2能被3整除且x<9。

模仿练习:(1)求满足方程5x+3y=40的自然数解。

(2)设A 和B 都是自然数,且满足11A +7B =7757,求A+B 的值。

例2:某单位职工到郊外植树,其中31的职工各带了一个孩子参加,男职工每人种13棵树,女职工每人种10棵,每个孩子种6棵树,他们共种了216棵树,那么其中有女职工多少人【思路点拨】设有女职工x 人,男职工y 人,那么有孩子3y x +人,这个条件说明3|x+y 。

模仿练习:某小学共有大、中、小宿舍12间,能住80人。

每间大宿舍能住8人,每间中宿舍能住7人,每间小宿舍能住5人。

问中、小宿舍共有多少间例3:有四个自然数A 、B 、C 、D ,它们的和不超过除以B 商5余5;A 除以C 商6余6;A 除以D 商7余7,这四个自然数的和是多少【思路点拨】A=5B+5=6C+6=7D+7,A 一定是5,6,7的公倍数。

模仿练习:有三张扑克牌,牌的数字各不相同,并且都小于10,把三张牌洗好后,分别发给甲、乙、丙三人,每人记下自己牌的数字,再重新洗牌、发牌、记数。

六年级奥数专题培优讲义不定方程及解析全国通用

六年级奥数专题培优讲义不定方程及解析全国通用

六年级奥数专题培优讲义——不定方程及解析知识点梳理:在列方程组解答应用题时,有两个未知数,就需要有两个方程。

有三个未知数,就需要有三个方程。

当未知数的个数多于方程的个数时,这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。

不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足轻重的地位。

而在小学阶段打下扎实的基础,无疑很重要。

不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。

不过,我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。

这种情况也不排除它的取值不止一种。

不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。

如果考虑到题中以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整数的分拆有很大关系)。

解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确求解。

【例1】★求方程2725=+y x 的正整数解。

【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==15,63,111y x y x y x【小试牛刀】求方程4x +10y =34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得 2x +5y =17,5y 的个位是0或5两种情况,2x 是偶数,要想和为17,5y 的个位只能是5,y 为奇数即可;2x 典型例题的个位为2,所以x 的取值为1、6、11、16……x =1时,17-2x =15,y =3,x =6时,17-2x = 5,y =1,x =11时,17-2x =17 -22,无解所以方程有两组整数解为:16,31x x y y ==⎧⎧⎨⎨==⎩⎩ 【例2】★ 设A ,B 都是正整数,并且满足3317311=+B A ,求B A +的值。

高斯小学奥数六年级上册含答案第07讲 不定方程

高斯小学奥数六年级上册含答案第07讲 不定方程
「分析」采购员要买多少个大盒,多少个小盒?大盒个数与小盒个数之间有什么联系?
练习2、点心店里卖大、小两种蛋糕.一个大蛋糕恰好够7个人吃,一个小蛋糕恰好够4个人吃,现在有100个人要吃蛋糕,应该准备大、小蛋糕各多少个才不浪费?如果每个大蛋糕10元,每个小蛋糕7元,那么至少要花多少钱?
前面的两道例题只要求方程的解是自然数即可,但有的问题除了要求“解必须是自然数”外,还会有一些其它的约束.下面我们就来看几道这样例题.
例3.甲、乙两个小队去植树.甲小队有一人植树12棵,其余每人植树13棵;乙小队有一人植树8棵,其余每人植树10棵.已知两小队植树棵数相等,且每小队植树的棵数都是四百多棵.问:甲、乙两小队共有多少人?
「分析」不妨设甲小队有 人,乙小队有 人.由“两小队植树棵数相等”,你能列出一个关于 与 的不定方程吗?所列出来的不定方程又该如何求解?
5.甲、乙、丙三个班向希望工程捐赠图书.已知甲班有1人捐6册,有2人各捐7册,其余都各捐11册;乙班有1人捐6册,3人各捐8册,其余各捐10册;丙班有2人各捐4册,6人各捐7册,其余各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101册,且每个班捐赠的册数都在400与600之间.各班各有多少人?48,49,41
例题3.答案:76
详解:设甲、乙两小队分别有 人和 人.则两队植树棵数分别为 棵和 棵.由分析得: .将 0、1、2、……代入方程验证 是否是自然数,可以求出方程的 值最小的一组自然数解 ,此时每队的植树棵数均为38棵.
方程的所有其他的自然数解都可以由进行若干次的“ 值增加13且同时 值增加10”得到(也就是方程的其他所有自然数解是 , , ,……),每次“ 值增加13且同时 值增加10”意味着每队植树棵数增加130棵,38棵要变为四百多棵,意味着要增加3次,符合要求的自然数解是 .所以甲队有33人,乙队有43人,两队共有 人.

六年级奥数第30讲解不定方程(教师版)

六年级奥数第30讲解不定方程(教师版)

六年级奥数第30讲解不定方程〈教师版〉教学目标⒈熟练掌握不定方程的解题技巧;⒉能够根据题意找到等量关系设未知数解方程;3.学会解不定方程的经典例题。

知识梳理历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。

运用不定方程解应用题步骤⒈根据题目叙述找到等量关系列出方程⒉根据解不定方程方法解方程3、找到符合条件的解考点一:不定方程与数论例⒈把2001拆成两个正整数的和,一个是11的倍数〈要尽量小〉,一个是13的倍数〈要尽量大〉,求这两个数.【解析】这是一道整数分拆的常规题.可设拆成的两个数分别为11x 和13y ,则有:11132001x y +=,要让x 取最小值,y 取最大值.可把式子变形为:2001111315312132122153131313x x x x y x -⨯+-++===-+,可见12213x +是整数,满足这一条件的x 最小为7,且当7x =时,148y =.则拆成的两个数分别是71177⨯=和148131924⨯=.考点二:不定方程与应用题例⒈有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶.问:大、小油桶各几个?【解析】设有大油桶x 个,小油桶y 个.由题意得:8544x y +=可知844x ≤,所以012345x =、、、、、.由于x 、y 必须为整数,所以相应的将x 的所有可能值代入方程,可得3x =时,4y =这一组整数解.所以大油桶有3个,小油桶有4个.例⒉某次聚餐,每一位男宾付130元,每一位女宾付100元,每带一个孩子付60元,现在有13的成人各带一个孩子,总共收了2160元,问:这个活动共有多少人参加〈成人和孩子〉?【解析】设参加的男宾有x 人,女宾有y 人,则由题意得方程:()11301006021603x y x y +++⨯=,即1501202160x y +=,化简得5472x y +=.这个方程有四组解:413x y =⎧⎨=⎩,88x y =⎧⎨=⎩,123x y =⎧⎨=⎩和018x y =⎧⎨=⎩,但是由于有13的成人带着孩子,所以x y +能被3整除,典例分析检验可知只有后两组满足.所以,这个活动共有()1123123203++⨯+=人或11818243+⨯=人参加.例3、甲、乙两人生产一种产品,这种产品由一个A 配件与一个B 配件组成.甲每天生产300个A 配件,或生产150个B 配件;乙每天生产120个A 配件,或生产48个B 配件.为了在10天内生产出更多的产品,二人决定合作生产,这样他们最多能生产出多少套产品?【解析】假设甲、乙分别有x 天和y 天在生产A 配件,则他们生产B 配件所用的时间分别为(10)x -天和(10)y -天,那么10天内共生产了A 配件(300120)x y +个,共生产了B 配件150(10)48(10)198015048x y x y ⨯-+⨯-=--个.要将它们配成套,A 配件与B 配件的数量应相等,即300120198015048x y x y +=--,得到7528330x y +=,则3302875y x -=.此时生产的产品的套数为330283001203001201320875y x y y y -+=⨯+=+,要使生产的产品最多,就要使得y 最大,而y 最大为10,所以最多能生产出132********+⨯=套产品.例⒋有一项工程,甲单独做需要36天完成,乙单独做需要30天完成,丙单独做需要48天完成,现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天,那么丙休息了 天.【解析】设完成这项工程用了a 天,其间丙休息了b 天.根据题意可知:1111136304848a b ⎛⎫++-= ⎪⎝⎭,591172048a b -=,化简得5915720a b -=.由上式,因为15b 与720都是15的倍数,所以59a 必须是15的倍数,所以a 是15的倍数,在a b > 的条件下,只有15a =,11b =一组解,即丙休息了11天.例5、实验小学的五年级学生租车去野外开展“走向大自然,热爱大自然”活动,所有的学生和老师共306人恰好坐满了5辆大巴车和3辆中巴车,已知每辆中巴车的载客人数在20人到25人之间,求每辆大巴车的载客人数.【解析】设每辆大巴车和中巴车的载客人数分别为x 人和y 人,那么有:53306x y +=.由于知道中巴车的载客人数,也就是知道了y 的取值范围,所以应该从y 入手.显然3y 被5除所得的余数与306被5除所得的余数相等,从个位数上来考虑,3y 的个位数字只能为1或6,那么当y 的个位数是2或7时成立.由于y 的值在20与25之间,所以满足条件的22y =,继而求得48x =,所以大巴车的载客人数为48人.例6、公鸡1只值钱5,母鸡一只值钱3,小鸡三只值钱1,今有钱100,买鸡100只,问公鸡、母鸡、小鸡各买几只?【解析】设买公鸡、母鸡、小鸡各x 、y 、z 只,根据题意,得方程组 1001531003x y z x y z ++=⎧⎪⎨++=⎪⎩①②由⒉3⨯-⒈,得148200x y +=,即:2001472584x y x -==-,因为x 、y 为正整数,所以不难得出x 应为4的倍数,故x 只能为4、8、12,从而相应y 的值分别为18、11、4,相应z 的值分别为78、81、84.所以,方程组的特殊解为41878x y z =⎧⎪=⎨⎪=⎩,81181x y z =⎧⎪=⎨⎪=⎩,12484x y z =⎧⎪=⎨⎪=⎩,所以公鸡、母鸡、小鸡应分别买4只、18只、78只或8只、11只、81只或12只、4只、84只.考点三:不定方程与生活中的应用题例⒈某地用电收费的标准是:若每月用电不超过50度,则每度收5角;若超过50度,则超出部分按每度8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?【解析】3元3角即33角,因为33既不是5的倍数又不是8的倍数,所以甲、乙两用户用电的情况一定是一个超过了50度,另一个则没有超过.由于甲用户用电更多,所以甲用户用电超过50度,乙用户用电不足50度.设这个月甲用电()50x +度,乙用电()50y -度.因为甲比乙多交33角电费,所以有8533x y +=.容易看出1x =,5y =,可知甲用电51度,乙用电45度.例⒉马小富在甲公司打工,几个月后又在乙公司兼职,甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终,马小富从两家公司共获薪金7620元.他在甲公司打工 个月,在乙公司兼职 个月.【解析】设马小富在甲公司打工a 月,在乙公司兼职b 月〈a b >,a 、b 都是不大于12的自然数〉,则有4703507620a b +=,化简得4735762a b +=.若b 为偶数,则35b 的末位数字为0,从而47a 的末位数字必为2,这时6a =.但6a =时,48035b =不是整数,不合题意,所以b 必为奇数.b 为奇数时,35b 的末位数字为5,从而47a 的末位数字为7,1a =或11a =.但1a =时容易看出a b <,与a b >矛盾.所以,11a =,代入得()7624711357b =-⨯÷=.于是马小富在甲公司打工11个月,在乙公司兼职7个月.例3、小明、小红和小军三人参加一次数学竞赛,一共有100道题,每个人各解出其中的60道题,有些题三人都解出来了,我们称之为“容易题”;有些题只有两人解出来,我们称之为“中等题”;有些题只有一人解出来,我们称之为“难题”.已知每个题都至少被他们中的一人解出,则难题比容易题多 道. 【解析】设容易题、中等题和难题分别有x 道、y 道、z 道,则100(1)32180(2)x y z x y z ++=⎧⎨++=⎩,由(1)2(2)⨯-得222(32)200180x y z x y z ++-++=-,即20z x -=,所以难题比容易题多20道.例⒋某男孩在2003年2月16日说:“我活过的月数以及我活过的年数之差,到今天为止正好就是111.”请问:他是在哪一天出生的?【解析】设男孩的年龄为x 个年和y 个月,即12x y +个月,由此有方程式:12111x y x +-=,也就是1111101x y +=⨯+,得到11011y x -=+,由于012y <≤而且111y -是整数,所以,1y =,10x =,从2003年2月16日那天退回10年又1个月就是他的生日,为1993年1月16日.➢ 课堂狙击⒈甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数,两人共搬了300块砖.问:甲、乙二人谁搬的砖多?多几块?【解析】设甲搬的是18x 块,乙搬的是23y 块.那么1823300x y +=.观察发现18x 和300都是6的倍数,所以y 也是6的倍数.由于3002313y <÷≈,所以y 只能为6或12. 6y =时18162x =,得到9x =;12y =时1824x =,此时x 不是整数,矛盾.所以甲搬了162块,乙搬了138块,甲比乙搬得多,多24块.实战演练2、单位的职工到郊外植树,其中有男职工,也有女职工,并且有13的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子都种6棵树,他们一共种了216棵树,那么其中有多少名男职工?【解析】因为有13的职工各带一个孩子参加,则职工总人数是3的倍数.设男职工有x 人,女职工有y 人.则职工总人数是()x y +人,孩子是3x y +人.得到方程:()131036216x y x y +++÷⨯=,化简得:5472x y +=.因为男职工与女职工的人数都是整数,所以当3y =时,12x =;当8y =时,8x =;当13y =,4x =.其中只有31215+=是3的倍数,符合题意,所以其中有12名男职工.3、14个大、中、小号钢珠共重100克,大号钢珠每个重12克,中号钢珠每个重8克,小号钢珠每个重5克.问:大、中、小号钢珠各有多少个?【解析】设大、中、小号钢珠分别有x 个,y 个和z 个,则:14(1)1285100(2)x y z x y z ++=⎧⎨++=⋅⎩(2)(1)5-⨯,得7330x y +=.可见7x 是3的倍数,又是7的倍数,且小于30,所以只能为21,故3x =,代入得3y =,8z =.所以大、中、小号钢珠分别有3个、3个和8个.⒋某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣16件或裤子20件;乙车间每天能生产上衣18件或裤子24件.现在要上衣和裤子配套,两车间合作21天,最多能生产多少套衣服?【解析】假设甲、乙两个车间用于生产上衣的时间分别为x 天和y 天,则他们用于生产裤子的天数分别为(21)x -天和(21)y -天,那么总共生产了上衣(1618)x y +件,生产了裤子20(21)24(21)9242024x y x y ⨯-+⨯-=--件.根据题意,裤子和上衣的件数相等,所以16189242024x y x y +=--,即67154x y +=,即15476y x -=.那么共生产了15472216181618410633y x y y y -+=⨯+=-套衣服.要使生产的衣服最多,就要使得y 最小,则x 应最大,而x 最大为21,此时4y =.故最多可以生产出22410440833-⨯=套衣服.5、每辆大汽车能容纳54人,每辆小汽车能容纳36人.现有378人,要使每个人都上车且每辆车都装满,需要大、小汽车各几辆?【解析】设需要大、小汽车分别为x辆、y辆,则有:5436378x y+=,可化为3221x y+=.可以看出y是3的倍数,又不超过10,所以y可以为0、3、6或9,将0y=、3、6、9分别代入可知有四组解:19xy=⎧⎨=⎩;或36xy=⎧⎨=⎩;或53xy=⎧⎨=⎩;或7xy=⎧⎨=⎩即需大汽车1辆,小汽车9辆;或大汽车3辆,小汽车6辆;或大汽车5辆,小汽车3辆;或大汽车7辆.6、某区对用电的收费标准规定如下:每月每户用电不超过10度的部分,按每度0.45元收费;超过10度而不超过20度的部分,按每度0.80元收费;超过20度的部分按每度1.50元收费.某月甲用户比乙用户多交电费7.10元,乙用户比丙用户多交3.75元,那么甲、乙、丙三用户共交电费多少元?〈用电都按整度数收费〉【解析】由于丙交的电费最少,而且是求甲、乙电费的关键,先分析一下他的用电度数.因为乙用户比丙用户多交3.75元,所以二者中必有一个用电度数小于10度〈否则差中不会出现0.05元〉,丙用电少,所以丙用电度数小于10度,乙用电度数大于10度,但是不会超过20度〈否则甲、乙用电均超过20度,其电费差应为1.50的整数倍,而不会是7.10元〉.设丙用电〈10x-〉度,乙用电〈10y+〉度,由题意得:0.450.8 3.75x y+=91675x y+=97516x y=-75169yx-=所以y是3的倍数,又,x y均为整数,且都大于0小于10所以3y=,7516339x-⨯==所以丙用电1037-=度,交电费0.457 3.15⨯=元;乙交电费3.15 3.75 6.90+=元,甲交电费6.907.1014.00+=元,三户共交电费3.15 6.9014.0024.05++=元.7、甲、乙、丙、丁、戊五人接受了满分为10分〈成绩都是整数〉的测验.已知:甲得了4分,乙得了最高分,丙的成绩与甲、丁的平均分相等,丁的成绩刚好等于五人的平均分,戊比丙多2分.求乙、丙、丁、戊的成绩.【解析】法一:方程法. 设丁的分数为x 分,乙的分数为y 分,那么丙的分数为42x +分,戊的分数为48222x x +++=分,根据“丁的成绩刚好等于五人的平均分”,有485422x x x x y ++=++++,所以310x y =+.因为10x y <≤,所以310101020x y =++=≤,31010x y x =+>+,得到2053x <≤,故6x =,代入得8y =.所以丁得6分,丙得5分,戊得7分,乙得8分.法二:推理法.因为丁为五人的平均分,所以丁不是成绩最低的;丙的成绩与甲、丁的平均分相等,所以丙在甲与丁之间;又因为戊和乙都比丙的成绩高,所以乙、丙、丁、戊都不是最低分,那么甲的成绩是最低的.因为甲是4分,所以丁可能是6分或8分〈由丙的成绩与甲、丁的平均分相等知丁的得分是偶数〉,经检验丁得8分时与题意不符,所以丁得6分,则丙得5分,戊得7分,乙得8分.➢ 课后反击⒈某人打靶,8发共打了53环,全部命中在10环、7环和5环上.问:他命中10环、7环和5环各几发?【解析】假设命中10环x 发,7环y 发,5环z 发,则8(1)107553(2)x y z x y z ++=⎧⎨++=⋅⎩由⑵可知7y 除以5的余数为3,所以4y =、9……如果y 为9,则76353y =>,所以y 只能为4,代入原方程组可解得1x =,3z =.所以他命中10环1发,7环4发,5环3发.⒉小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面.在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【解析】早晨见面小花狗和波斯猫共叫3声,晚上见面共叫5声.设在这15天内早晨见面x 次,晚上见面y 次.根据题意有:3561x y +=〈15x ≤,15y ≤〉.可以凑出,当2x =时,11y =;当7x =时,8y =;当12x =时,5y =.因为小花狗共叫了()2x y + 声,那么()x y +越大,小花狗就叫得越多,从而波斯猫叫得越少,所以当12x =,5y =时波斯猫叫得最少,共叫了1123527⨯+⨯=〈声〉.3、小伟听说小峰养了一些兔和鸡,就问小峰:“你养了几只兔和鸡?”小峰说:“我养的兔比鸡多,鸡兔共24条腿.”那么小峰养了多少兔和鸡?【解析】这是一道鸡兔同笼问题,但由于已知鸡兔腿的总数,而不是鸡兔腿数的差,所以用不定方程求解.设小峰养了x 只兔子和y 只鸡,由题意得:4224x y +=即:212x y +=,122y x =- 这是一个不定方程,其可能整数解如下表所示:x 0 12 3 4 5 6 y 12 10 8 6 4 20 由题意x y >,且x ,y 均不为0,所以5x =,2y =,也就是兔有5只,鸡有2只.⒋有两小堆砖头,如果从第一堆中取出100块放到第二堆中去,那么第二堆将比第一堆多一倍.如果相反,从第二堆中取出若干块放到第一堆中去,那么第一堆将是第二堆的6倍.问:第一堆中的砖头最少有多少块?【解析】设第一堆砖有x 块,则根据第一个条件可得第二堆砖有()2300x -块.再设从第二堆中取出y 块放在第一堆后,第一堆将是第二堆的6倍,可列方程:()62300x y x y +=⨯--,化简得7180011y x +=,那么()77718001116311y x y +=+÷=+. 因为x 是整数,7与11互质,所以()1y +应是11的倍数,y 最小是10,推知x 最小是()7101163163717011⨯++=+=,所以,第一堆中的砖头最少有170块.5、某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,原计划一等奖每人发给6支,二等奖每人发给3支,三等奖每人发给2支,后来改为一等奖每人发13支,二等奖每人发4支,三等奖每人发1支.那么获二等奖的有 人.【解析】法一:根据“后来改为一等奖每人发13支”,可以确定获一等奖的人数小于3.否则仅一等奖就要发不少于39支铅笔,已超过35支,这是不可能的.分别考虑一等奖有2人或者1人的情况:⒈获一等奖有2人时,改变后这2人共多得()136214-⨯=支,那么得二等奖和三等奖的共少得了14支铅笔.由于改变后二等奖多得1支,三等奖少得1支,所以三等奖应比二等奖多14114÷=人,这样他们少得的铅笔数正好是一等奖多得的.但此时三等奖至少14人,他们的铅笔总数至少为1321414035⨯+⨯=>,所以这种情况不可能发生.⒉获一等奖有1人时,类似前面情况的讨论,可以确定获三等奖的人数比二等奖多()()136217-÷-=人,所以获二等奖的有()()351371413--⨯÷+=〈人〉.经检验,获一等奖1人,获二等奖3人,获三等奖10人符合题目要求,所以有3人获二等奖.法二:设获一、二、三等奖的人数分别有x 人、y 人、z 人,则有方程组:63235(1)13435(2)x y z x y z ++=⎧⎨++=⎩由(2)2(1)⨯-将z 消元,则有20535x y +=,即47x y +=,显然该方程的正整数解只有13x y =⎧⎨=⎩,继而可得到10z =.所以获二等奖的有3人. 6、蓝天小学举行“迎春”环保知识大赛,一共有100名男、女选手参加初赛,经过初赛、复赛,最后确定了参加决赛的人选.已知参加决赛的男选手的人数,占初赛的男选手人数的20%;参加决赛的女选手的人数,占初赛的女选手人数的12.5%,而且比参加初赛的男选手的人数多.参加决赛的男、女选手各有多少人?【解析】由于参加决赛的男选手的人数,占初赛的男选手人数的20%;参加决赛的女选手的人数,占初赛时女选手人数的12.5%,所以参加初赛的男选手人数应是5的倍数,参加初赛的女选手的人数应是8的倍数.设参加初赛的男生为5x 人,参加初赛的女生为8y 人.根据题意可列方程:58100x y +=.解得125x y =⎧⎨=⎩,或410x y =⎧⎨=⎩. 又因为参加决赛的女选手的人数,比参加决赛的男选手的人数多,也就是y 要比x 大,所以第一组解不合适,只有4x =,10y =满足.故参加决赛的男选手为4人,女选手为10人.7、甲、乙两人各有一袋糖,每袋糖都不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的3倍.甲、乙两人共有多少粒糖?【解析】设甲、乙原有糖分别为x 粒、y 粒,甲给乙的数量为z 粒,则依题意有:2()3()x z y z x z y z -=+⎧⎨+=-⎩,且2020x y ≤⎧⎨≤⎩.整理得230(1)340(2)x y z x y z --=⎧⎨-+=⎩由⑴得23x y z =+,代入⑵得70z y -=,即7y z =.因20y ≤,故1z =或2z =.若2z =,则14y =,214323420x =⨯+⨯=>,不合题意.因而1z =,对应方程组有唯一解17x =,7y =,1z =.则甲、乙共有糖17724+=粒.⒈〈资优博雅杯〉用十进制表示的某些自然数,恰等于它的各位数字之和的16倍,则满足条件的所有自然数之和为___________________.【解析】若是四位数abcd ,则()161636<1000a b c d ⨯+++⨯≤,矛盾,四位以上的自然数也不可能。

六年级上册奥数第八讲不定方程

六年级上册奥数第八讲不定方程

第八讲不定方程一个方程中有两个未知数,未知数的个数多于方程的个数,这样的方程叫做不定方程。

古希腊的数学家丢番图曾写过关于不定方程的书《算术》,所以不定方程又叫丢番图方程,不定方程往往有无数解,但如果有限制条件,例如求自然数解,往往会使解的个数变成有限。

例题精讲例1、一个工人将99颗弹子装入两种盒子中,每个大盒子装12颗,小盒子装5颗,恰好装完,已知盒子数大于10, 问这两种盒子各有多少?例2、甲级铅笔7块钱一支,乙级铅笔3块钱一支。

问张明用60元恰好买两种铅笔共多少支?例3、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1亳米铜管,那么,只有当锯得的38毫米的铜管和90毫米的铜管各为多少段时,所损耗的铜管才能最少?例4、小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分,小明其套了10次,每次都套中了,每个小玩具都至少被套中一次。

小明套10次共得了61分。

问:小鸡至多被套中多少次?例5、学校里共有12间宿舍,可以住80人,大宿舍住8人,中宿舍住7人,小宿舍住5人,问中宿舍和小宿舍共有多少间?例6、某地水费,不超过10度时,每度0. 45元;超过10度时,每度0.80元。

张家比李家多交水费3.30元,如果两家的用水量都是整数度,问张家、李家各交水费多少元?例7、将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管(加工损耗忽略不计),问剩余部分铝管最少是多少厘米?例8、某种考试已举行24次,共出了426道题。

每次出的题目,有25题,或者16题,或者20题,那么,其中考25题的有多少次?同步训练1、一个布袋中装有红、黄、蓝三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字的和等于21,问小明摸出的球中红球最多不超过多少个?2、篮、排、足球放在一堆共25个,其中篮球个数是足球个数的7倍,求其中排球的个数。

小学六年级奥数 第八章 不定方程

小学六年级奥数 第八章 不定方程

第八章不定方程知识要点如果方程(组)中未知数的个数多于方程的个数,此方程(组)称为不定方程(组)。

如x+y=10,1512x ay a-=⎧⎨+=⎩,。

不定方程(组)的解是不确定的。

一般地,如果没有给不定方程的制约条件,那么它就有无限多个解。

小学阶段主要涉及整系数不定方程的整数解。

关于参数方程,就是有时题中给的条件过少,就设一个未知数参与运算,这个参数不影响结果。

例1 (第五届“希望杯”邀请赛试题)一个两位数的中间加上一个0,得到的三位数比原两位数的8倍小1,原来的两位数是。

点拨根据题意,可由原来的两位数和变化后的三位数之间的数量关系列出方程。

解设原来的两位数是ab=10a+b,则新数是0a b=100a+b。

依题意得 100a+b+1=8(10a+b)即 20a+1=7b所以 a=71 20 b-因为a,b是整数,且1≤a≤9,0≤b≤9,所以 a=1,b=3即原来的两位数是13。

说明如果方程存在的解不止一个,则要逐一解出,并检验,千万不要漏掉或出现与题意相矛盾的解。

例2 (“迎春杯”邀请赛试题)某工厂为优秀职工发奖金,一等奖每人1800元,二等奖每人1200元,三等奖每人800元。

每种奖都有人领,共有15名优秀职工领取奖金的总数为16000元,获一、二、三等奖的职工各有多少人?点拨根据题意,一、二、三等奖人数之和等于15这一等量关系显而易见,而15名职工领取奖金的总和为16000元这一等量关系也给出,可列出方程。

解设一、二、三等奖依次有x人、y人、z人,则有1800x+1200y+800z=16000即 9x+6y+4z=80又x+y+z=15,将z=15-x-y代入上式,得9x+6y+60-4x-4y=80整理得 5x+2y=20又x,y,z是正整数,解得 x=2,y=5,z=15-x-y=8。

答:获一等奖的有2人,二等奖的有5人,三等奖的有8人。

例3 100头驴驮100袋物品,一头大驴驮3袋,一头中驴驮2袋,两头小驴驮1袋。

小学六年级奥数第40讲 不定方程(含答案分析)

小学六年级奥数第40讲 不定方程(含答案分析)

第40讲不定方程一、知识要点当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。

如5x-3y =9就是不定方程。

这种方程的解是不确定的。

如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。

如5x-3y=9的解有:x=2.4 x=2.7 x=3.06 x=3.6y=1 y=1.5 y=2.1 y=3如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。

因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。

解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。

解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。

对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。

解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。

二、精讲精练【例题1】求3x+4y=23的自然数解。

先将原方程变形,y=23-3x4。

可列表试验求解:所以方程3x+4y=23的自然数解为X=1 x=5 Y=5 y=2 练习11、求3x+2y=25的自然数解。

2、求4x+5y=37的自然数解。

3、求5x-3y=16的最小自然数解。

【例题2】求下列方程组的正整数解。

5x+7y+3z=253x-y-6z=2这是一个三元一次不定方程组。

解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。

5x+7y+3z=25 ①3x-y-6z=2 ②由①×2+②,得13x+13y=52X+y=4 ③把③式变形,得y=4-x。

因为x、y、z都是正整数,所以x只能取1、2、3.当x=1时,y=3当x=2时,y=2当x=3时,y=1把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。

x=2,y=2时,z也无正整数解。

x=3时,y=1时,z=1.所以,原方程组的正整数解为 x=1y=1z=1求下面方程组的自然数解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例4】某人的生日月份数乘以31,生日的日期数乘以12,相加后得347,求此人的生日.
【分析】本题的隐含条件是:月份的取值[1,12],日期的取值[1,31].
【解答】设此人生日的月份数为x ,日期数y.根据题意可列方程31x+12y=347.
〈方法一〉〈方法二〉
特解:
答:此人的生日为5月16日.
【点评】求出通解后,要利用隐含条件求出符合题意的解.其中方法二是利用了同余的知识.
【实践】已知有一个三位数,如果它本身增加3,那么新的三位数的各位数字和就减少到原来的 ,求一切这样三位数的和.
【例5】(新加坡数学竞赛题)设正整数m,n满足 ,则m的最大值为.
【分析】把m用含有n的代数式表示,用分离整系数法,再结合整除的知识,求出m的最大值.
【解答】∵ ,∴ ,
由题意可得,n≠8,∴ ,
∵m,n为正整数,∴当n=9时,m有最大值为75.
【点评】此题是求最值的问题,利用分离整系数法是一种典型的常用方法.
【实践】(北京市数学竞赛题)有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能3个连续的正整数的和,那么这8个连续的正整数中最大数的最小值是.
【例6】我国古代数学家张建丘所著《算经》中的“百钱买百鸡”问题:鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,百钱买百鸡,问鸡翁,鸡母,鸡雏各几何?
由题意可知 解得 相应地
答:需要大客1车辆,小客车9辆;或需要大客车3辆,小客车6辆;或需要大客车5辆,小客车3辆;也可以只要大客车7辆,不要小客车.
【点评】一般来说实际问题通常取正整数解或者非负整数解.
【实践】某次考试共需做20道小题,对1道得8分,错一道扣5分,不做不得分.某生共得13分,他没做的题目有几道?
根据定理2, 是原方程的所有整数解.
(2)∵(5,10)=5,但5不能整除13,
∴根据定理1,原方程的无整数解.
【点评】先判断方程是否有整数解,多于系数不大的题目优先选用观察法寻找特解.求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.
【实践】求下列不定方程的整数解(1) ;(2) .
【实践】如果1只兔可换2只鸡,2只兔可换3只鸭,5只兔可换7只鹅.某人用20只兔换得鸡、鸭、鹅共30只.问:其中的鸡、鸭、鹅各多少只?答案:(2,21,7)、(4,12,14)、(6,3,21)
【本讲重点】
求一次不定方程(组)的整数解
【知识梳理】
不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是往往有无穷多个解,不能唯一确定.
重要定理:
设a、b、c、d为整数,则不定方程 有:
定理1若 且d不能整除c,则不定方程 没有整数解;
定理2若 是不定方程 且的一组整数解(称为特解),则 (t为整数)是方程的全部整数解(称为通解).(其中 ,且d能整除c).
【分析】分析:用x,y,z来表示鸡翁,鸡母,鸡雏的只数,则可列方程组:
如何解这个不定方程组翁,鸡母,鸡雏的只数分别为x,y,z.
(2)×3-(1)得:14x+8y=200,即7x+4y=100.
〈方法一〉
〈方法二〉
〈方法三〉
【点评】充分挖掘题目的隐含条件,进而求整数解.
【例2】求方程 的所有正整数解.
【分析】此方程的系数较大,不易用观察法得出特解.根据方程用y来表示x,再将含y的代数式分离出整系数部分,然后对分数系数部分进行讨论,赋予y不同的整数,寻找一个使分数系数部分成为正整数的y0,然后再求x0,写出通解,再解不等式组确定方程的正整数解.
【解答】∵(7,19)=1,根据定理2,原方程有整数解.
1.理解不定方程(组)的含义
2.掌握一次不定方程(组)的定理和相关解题方法
重点、难点
重点:不定方程定理的理解
难点:解不定方程方法与技巧的灵活运用
考点及考试要求
不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出现.
教学内容
【写在前面】
不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出现.对于不定方程(组),我们往往只求整数解,甚至是只求正整数解,加上条件限制后,解就可确定.有时还可以解决计数、求最值等方面的问题.二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常要转化为二元一次不定方程问题加以解决.
定理3若 是不定方程 , 的特解,则 是方程 的一个特解.(其中 ,且d能整除c).
求整系数不定方程 的正整数解,通常有以下步骤:
(1)判断有无整数解;
(2)求出一个特解;
(3)写出通解;
(4)有整数t同时要满足的条件(不等式组),代入命题(2)中的表达式,写出不定方程的正整数解.
解不定方程(组),需要依据方程(组)的特点,并灵活运用以下知识和方法:
龍腾学科教师辅导讲义
讲义编号LTJYsxsrl005
学员编号:LTJY001年级:六年级课时数:3
学员姓名:王窈瑾辅导科目:数学学科教师:孙仁龙
学科组长签名及日期
2015.01.14
教务长签名及日期
课题
一次不定方程(组)的整数解问题
授课时间:2015.01.15
备课时间:2015.01.02
教学目标
由原方程可得 ,
由此可观察出一组特解为x0=25,y0=2.
∴方程的通解为 .
其中 ∴ ∴ ∴
代入通解可得原方程的正整数解为
【点评】根据定理2解这类方程,若未知数的系数较大不容易观察出一组整数解时,可用一个未知数去表示另一个未知数,再利用整数的知识,这是解二元一次不定方程基本的方法,称为分离整系数法.这样就容易找出一组整数解来.
【实践】求方程 的正整数解.
【例3】大客车能容纳54人,小客车能容纳36人,现有378人要乘车,问需要大、小客车各几辆才能使每个人都能上车且各车都正好坐满.
【分析】本题是不定方程的应用,根据题意列出方程并求出非负整数解即可.
【解答】设需要大客车x辆,小客车y辆,根据题意可列方程 ,即 .
又(3,2)=1,根据定理2,原方程有整数解.易知 是一个特解,通解为
(1)分离整系数法;(2)穷举法;(3)因式分解法;(4)配方法;
(5)整数的整除性;(6)奇偶分析;(7)不等式分析;(8)乘法公式.
【学法指导】
【例1】求下列不定方程的整数解(1) ;(2) .
【分析】根据定理1、定理2确定方程的整数解.
【解答】(1)原方程变形为: ,观察得到 是 的一组整数解(特解),
相关文档
最新文档