双曲线焦点三角形的几何性质
双曲线焦点三角形内切圆的横坐标

双曲线焦点三角形内切圆的横坐标1. 引言在数学几何中,双曲线是一种重要的曲线,其焦点三角形内切圆的横坐标问题也是一个经典而有趣的话题。
在本文中,我们将深入探讨双曲线焦点三角形内切圆的横坐标,并从简单到复杂、由浅入深地解释这一问题,帮助读者更好地理解和掌握相关知识。
2. 基础概念让我们回顾一下双曲线的基本定义和性质。
双曲线是平面上的一种曲线,其定义为所有满足特定条件的点构成的集合。
在直角坐标系中,双曲线的方程通常具有形如$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的标准形式。
焦点三角形是指由双曲线的两焦点和双曲线上的一点组成的三角形。
内切圆是指与三角形的三条边都相切的圆。
我们将重点讨论双曲线的焦点三角形内切圆的横坐标问题,并探究其数学特性。
3. 双曲线焦点三角形内切圆的横坐标求解让我们以一种直观的方法来解决这一问题。
我们需要了解内切圆与焦点三角形的关系。
根据数学知识,焦点三角形的三条边上的垂直角相等,而内切圆的切点处与三角形的边垂直,因此我们可以利用这一性质来求解内切圆的横坐标。
通过构建直角坐标系,我们可以利用双曲线的方程和辅助线的斜率等来推导出内切圆的横坐标的具体表达式。
在推导过程中,我们需要灵活运用数学分析和几何推导的方法,从而找到内切圆横坐标的通用解。
4. 数学推导和分析接下来,我们将进行更深入的数学推导和分析,来解决双曲线焦点三角形内切圆横坐标的问题。
通过引入参数并代入双曲线的方程,我们可以对内切圆横坐标的表达式进行进一步的简化和推导。
我们需要综合运用双曲线的性质、焦点三角形的几何关系以及内切圆的切线性质,来得出内切圆横坐标的最终结果。
在这一过程中,我们需要逐步展开推导,进行严密的数学分析,以确保结果的准确性和可靠性。
5. 结论与展望通过以上的分析与探讨,我们得出了双曲线焦点三角形内切圆横坐标的解析表达式。
在我们可以给出结论,总结一下我们所得的结果,并对相关问题进行进一步的展望。
双曲线焦点三角形内心的性质与应用

设 犉1犇 = 犉1犎 =犿, 犉2犇 = 犉2犈 =狀, 犘犈 = 犘犎 =狆,内切圆的半径为狉,结合双曲线的 定 义 及 圆 的 切 线 长 性 质,可 得 犘犉1 - 犘犉2 =
犉1犇 - 犉2犇 =犿 -狀=2犪. 而 犉1犉2 = 犉1犇 + 犉2犇 =犿 +狀=2犮,可求
得 犿 =犮+犪,狀=犮-犪.
教学
2020年2月 解法探究
参谋
双曲线焦点三角形内心的性质与应用
? 福建省平和第一中学 赖平民
众所周知,圆锥曲线一直是高中数学中的重点和 难点之一,备受关注.圆锥曲线中,往往交汇着代数与 几何,既有“数”又有“形”,既有“动”又有“静”,是各方 面知识融合与交汇的场所,要求有较强的综合能力与 应变能力,是 考 查 数 学 能 力,体 现 选 拔 功 能 的 主 阵 地 之一.下面结合一个双曲线焦点三角形内心的两个性 质加以展现、证明,并结合实际加以巧妙应用.
犉1、犉2 分别为双曲线犆 的左、右焦点,△犘犉1犉2 的内 切圆的圆心为犐,设直线犐犉1,犐犉2 的斜率分别为犽1,
犽2,则犽犽1 2 =
.
分析:结合题目条件中给出的双曲线 犆 的离心
率,直接根据性质2中双曲线的焦点三角形内心的性
一、性质展现
【性质1】已知犘
为双曲线犆:狓犪22
狔2 -犫2
=1(犪
>0,
犫>0)上的任意一点,犉1、犉2 分别为双曲线犆 的左、右
焦点,△犘犉1犉2 的内切圆的圆心为犐,则点犐必在直线
狓=±犪 上.
图1
证明:根据对称性,不失一般性,假定犘 为双曲线 犆 右支上的任意一点,如图1所示,设 △犘犉1犉2 的内切 圆的圆心犐 在对应三边上的投影分别为犇、犈、犎 .
双曲线的简单几何性质总结归纳人教

一.基本概念1 双曲线定义:①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(为常数))这两个定点叫双曲线的焦点.②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 2、双曲线图像中线段的几何特征:⑴实轴长122A A a =,虚轴长2b,焦距122F F c = ⑵顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+⑶顶点到准线的距离:21122 a A K A K a c ==-;21221 a A K A K a c ==+⑷焦点到准线的距离:2211221221 a a F K F K c F K F K c c c==-==+或 ⑸两准线间的距离: 2122a K K c=⑹21F PF ∆中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来,12212cot2PF F F PF S b ∆∠= ⑺离心率:121122121122PF PF A F A F c e PM PM A K A K a ======∈(1,+∞)⑻焦点到渐近线的距离:虚半轴长⑼通径的长是a b 22,焦准距2b c ,焦参数2b a(通径长的一半)其中222b a c +=a PF PF 221=-3 双曲线标准方程的两种形式:①22a x -22b y =1,c =22b a +,焦点是F 1(-c ,0),F 2(c ,0) ②22a y -22bx =1,c =22b a +,焦点是F 1(0,-c )、F 2(0,c ) 4、双曲线的性质:22a x -22by =1(a >0,b >0)⑴范围:|x |≥a ,y ∈R⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线:①若双曲线方程为12222=-b y a x 渐近线方程⇒=-02222b y a x x aby ±=②若渐近线方程为x a b y ±=0=±bya x 双曲线可设为λ=-2222b y a x③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)④特别地当⇔=时b a 离心率2=e 两渐近线互相垂直,分别为y=,此时双曲线为等轴双曲线,可设为λ=-22y x ;y =a b x ,y =-abx ⑸准线:l 1:x =-c a 2,l 2:x =c a 2,两准线之距为2122a K K c=⋅⑹焦半径:21()a PF e x ex a c =+=+,(点P 在双曲线的右支上x a ≥);22()a PF e x ex a c=-=-,(点P 在双曲线的右支上x a ≥);当焦点在y 轴上时,标准方程及相应性质(略)⑺与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x )0(≠λ⑻与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x ⑼双曲线上过焦点的弦,当弦的两端点在双曲线的同一支上时,过焦点且垂直于实轴的弦最短,当弦的两端点在双曲线的两支上时,以实轴长最短。
双曲线的焦点三角形面积的公式推导

双曲线的焦点三角形面积的公式推导双曲线的焦点三角形是数学中的一个经典问题,涉及到双曲线的性质和几何形状,也与三角形的面积计算有关。
在本文中,笔者将以从简到繁的方式,全面评估双曲线的焦点三角形面积公式,逐步推导并加深理解,从而能更深入地探讨这个问题。
让我们简单地了解一下双曲线这个基本概念。
双曲线是一个数学曲线,与椭圆、抛物线一样,属于二次曲线的一种。
它的数学定义是一组满足特定方程的点的集合,形式一般为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$或$\frac{y^2}{b^2}-\frac{x^2}{a^2}=1$。
双曲线的性质非常丰富多样,其焦点三角形面积的公式推导将会涉及到双曲线的几何性质。
现在,让我们来思考一下如何计算双曲线的焦点三角形面积。
在给定双曲线的方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的情况下,我们需要利用双曲线的几何性质和三角形的面积计算方法来推导出公式。
我们知道双曲线有两条渐近线,它们与双曲线相交于两个点,分别称为焦点。
我们可以得到双曲线的焦点坐标$(\pm c,0)$,其中$c=\sqrt{a^2+b^2}$。
我们选择双曲线上的一点$(x,y)$,并连接它与两个焦点,得到一个三角形。
现在,我们要计算这个三角形的面积。
根据三角形面积的计算公式,我们可以得到双曲线的焦点三角形面积公式为$S=\frac{1}{2}ab$。
通过这个公式,我们可以简单地计算出双曲线的焦点三角形的面积,而不需要进行繁琐的几何证明和计算过程。
然而,这只是一个简单的推导过程。
如果我们要更深入地理解双曲线的焦点三角形面积公式,我们需要对双曲线的性质和相关定理进行更深入的研究和探讨。
我们可以结合双曲线的参数方程和极坐标方程来推导公式,或者利用双曲线的曲率和弧长来进行推导,这些都将有助于我们对双曲线的焦点三角形面积更深入地理解。
在总结回顾本文的内容时,我们可以看到,双曲线的焦点三角形面积公式是通过数学推导和几何性质相结合得到的。
双曲线曲线中焦点三角形和内切椭圆的解法技巧总结与赏析

双曲线曲线中焦点三角形和内切椭圆的解法技巧总结与赏析双曲线曲线中焦点三角形和内切椭圆是数学中的重要概念,它们在几何学和代数学中有广泛的应用。
本文将总结和赏析双曲线曲线中焦点三角形和内切椭圆的解法技巧。
焦点三角形焦点三角形是由一个双曲线的焦点和两条切线所构成的三角形。
解决焦点三角形的关键是确定焦点和切线的位置。
以下是解决焦点三角形的一些常用技巧:1. 首先,确定双曲线的焦点位置。
焦点通常位于曲线的中心位置,通过求导或几何构造等方法可以确定。
2. 接下来,确定焦点的切线。
根据双曲线的定义,切线与焦点的连线垂直,可以利用切线的斜率与焦点的斜率求解切线的方程。
3. 最后,通过求解焦点与切线的交点,确定焦点三角形的顶点位置。
根据交点的坐标,可以计算出焦点三角形的各边长度和角度。
内切椭圆内切椭圆指的是一个双曲线内切于椭圆的现象。
解决内切椭圆的关键是找到双曲线与椭圆的切点和切线方程。
以下是解决内切椭圆的一些常用技巧:1. 首先,确定双曲线和椭圆的方程。
通过给定的信息,可以得到双曲线和椭圆的方程,通常是二次方程或高阶方程。
2. 接下来,求解双曲线与椭圆的交点。
将椭圆的方程代入双曲线的方程,解方程组可以得到交点的坐标。
3. 然后,求解切线。
根据双曲线和椭圆的性质,切线与曲线的斜率相等,可以利用切线的斜率和交点的坐标求解切线的方程。
4. 最后,通过计算切线与椭圆的交点,确定内切椭圆的位置和参数。
根据交点的坐标和切线的方程,可以计算出内切椭圆的主轴长度、离心率等参数。
以上是双曲线曲线中焦点三角形和内切椭圆的解法技巧总结与赏析。
通过掌握这些解法技巧,可以更好地理解双曲线和椭圆的性质,并在实际问题中应用它们。
参考文献[1] 张文博.《高等代数学教程》. 高等教育出版社, 2008.[2] 朱再保, 等.《解析几何与线性代数》. 高等教育出版社, 2007.。
双曲线的简单几何性质(基础知识+基本题型)(含解析)2021-2022学年高二数学上学期

3.2.2双曲线的简单几何性质(基础知识+基本题型)知识点一 双曲线的性质根据双曲线的标准方程22221(0,0)x y a b a b-=>>研究它的几何性质.1.范围,x a y R ≥∈,即,x a x a y R ≥≤-∈或.双曲线位于两条直线x a =±的外侧.讨论双曲线的范围就是确定方程中变量,x y 的范围,由不等式222211x y a b =+≥,得||x a ≥,由222211y x b a--≥-,得y R ∈. 提示双曲线在直线x a =与x a =-之间没有图象,当x 无限增大时,y 也无限增大,所以双曲线是无限伸展的,不像椭圆那样是封闭的.2.对称性双曲线的图象关于x 轴、y 轴成轴对称,关于原点成中心对称,我们把x 轴、y 轴叫做双曲线的对称轴,原点(0,0)O 叫做双曲线的对称中心,简称中心. 提示(1)把双曲线标准方程中的x 换成x -,方程并没有发生变化,说明当点(,)P x y 在双曲线上时,它关于y 轴的对称点1(,)P x y -也在双曲线上,所以双曲线的图象关于y 轴成轴对称.(2)同理,把双曲线标准方程中的y 换成y -,可以说明双曲线的图象关于关于x 轴成轴对称;把双曲线标准方程中的x 换成x -,y 换成y -,可以说明双曲线的图象关于原点成中心对称. (3)如果曲线具有三种对称性的其中两种,那么它就具有另一种对称性.(4)对于任意一个双曲线而言,对称轴是两个焦点的连线所在直线及其垂直平分线,且双曲线的中心是双曲线的对称中心.3.顶点与实轴、虚轴如图所示.(1)双曲线和其对称轴的交点叫做双曲线的顶点,双曲线的顶点为1(,0)A a -,2(,0)A a . (2)线段12A A 叫做双曲线的实轴,线段12B B 叫做双曲线的虚轴.(3)实轴长122A A a =,虚轴长122B B b =,,a b 分别为双曲线的半实轴长和半虚轴长.拓展双曲线中,,a b c 的几何意义及特征三角形:(1)当双曲线焦点在x 轴上时,a 是半实轴长,b 是半虚轴长,且222c a b =+,所以以,,a b c 为三边长可构成直角三角形,如图2.3-10所示,其中22Rt OA B ∆称为双曲线的特征三角形,双曲线的焦点永远在实轴上.(2)当双曲线的焦点在y 轴上时,可得类似的结论.4.渐近线(1)渐近线画法:经过点1(,0)A a -,2(,0)A a 作y 轴的平行线x a =±,经过点1(0,)B b -,2(0,)B b 作x轴的平行线y b =±,四条直线围成一个矩形,矩形 两条对角线,这两条对角线所在的直线即为双曲线的渐近线.双曲线22221x y a b-=的各支向外延伸时,与这两条直线逐渐接近.(2)渐近线方程:by x a =±.拓展(1)双曲线22221x y a b -=的渐近线方程为b y x a =±,双曲线22221y x a b -=的渐近线方程为ay x b=±,两者容易混淆,可先将双曲线方程中的“1”换成“0”,再因式分解即可得渐近线方程,这样就不容易记错了.(2)双曲线与它的渐近线无限接近,但永远不相交.(3)与双曲线22221x y a b -=共渐近线的双曲线方程可设为2222(0)x y a b λλ-=≠;与双曲线22221x y a b-=共焦点的双曲线方程可设为2222221()x y b a a b λλλ-=-<<-+.5.离心率(1)定义:双曲线的焦距与实轴长的比叫做双曲线的离心率,定义式c e e a =⇒(2)范围:1e >.由等式222c a b =+,得b a ==e 越大,b a 也越大,即渐近线b y xa=±的斜率的绝对值越大,这时双曲线的形状就越陡,由此可知,双曲线的离心率越大,它的开口就越开阔. 提示因为c e a =,c ,所以e =,b a222(1)b a e =-,在,,,a b c e 四个参数中,只要知道其中两个,就可以求出另两个,关键要熟悉它们之间的关系. 知识点二 等轴双曲线与共轭双曲线1.实轴和虚轴等长的双曲线叫等轴双曲线,等轴双曲线有如下性质:(1)方程形式为22(0)x y λλ-=≠;(2)渐近线方程为y x =±,它们互相垂直,并平分双曲线实轴和虚轴所成的角;(3.2. 以双曲线的虚轴为实轴,实轴为虚轴的双曲线,与原双曲线是一对共轭双曲线.例如,双曲线22221(0,0)x y a b a b -=>>与22221(0,0)y x a b b a -=>>是一对共轭双曲线,其性质如下: (1)双曲线与它的共轭双曲线有相同的渐近线; (2)双曲线与它的共轭双曲线有相同的焦距. 知识点三 直线与双曲线的位置关系 1. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线.(2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴;②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一个点.2. 当直线与双曲线相交时,先联立直线方程与双曲线方程可求得两个交点的坐标,从而根据距离公式求出弦长,再结合双曲线的定义,还可以求解焦点三角形的周长等.3. 当直线与双曲线相交时,涉及中点问题,可首先设出直线与双曲线两交点的坐标,然后分别代入双曲线方程,最后作差,即得中点坐标与该直线的斜率的关系式.考点一由方程求双曲线的几何性质例 1 求双曲线22494y x-=-的半实轴长、半虚轴长、焦点坐标、离心率、渐近线方程,并画出该双曲线的草图.解:将双曲线化为221 419x y-=,可知半实轴长4293a=,半虚轴长1b=,于是有2241319c a b=+=+=,所以焦点坐标为13(,离心率为13cea==渐近线方程为by xa=±,即32y x=±.为画出双曲线的草图,首先在平面直角坐标系中画出渐近线32y x =±,且顶点坐标为2(,0)3±,然后算出双曲线在第一象限内一点的坐标,如取1y=,算出230.94x=≈.由题意,知点(0.94,1)±在双曲线上,将三点(0.94,1)-,2(,0)3,(0.94,1)依次连成光滑曲线并让它逐步接近渐近线,画出第一、第四象限内双曲线的一支,最后由对称性可画出双曲线位于第二、三象限内的另一支,得双曲线的草图如图所示.已知双曲线的方程讨论其几何性质时,需先看所给方程是否为标准方程,若不是,需先把方程化为标准方程,这样便于直观写出,a b的值,进而求出c的值及双曲线的焦点坐标、顶点坐标、离心率与渐近线方程.考点二由双曲线的几何性质求标准方程例2求满足下列条件的双曲线的标准方程:(1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为12y x=±,且经过点(2,3)A- .解:(1)由题意,知双曲线的焦点在y 轴上,且13c =,由于135c a =,所以5a =,12b =. 故所求双曲线的标准方程为22125144y x -=.(2)因为双曲线的渐近线方程为12y x =±,若焦点在x 轴上,设所求双曲线标准方程为22221(0,0)x y a b a b -=>>,则12b a =.(Ⅰ)因为点(2,3)A -在双曲线上,所以22491a b -=. (Ⅱ) 联立(Ⅰ)(Ⅱ),无解.若焦点在y 轴上,设所求双曲线标准方程为22221(0,0)y x a b a b -=>>,则12a b =.(Ⅲ)因为点(2,3)A -在双曲线上,所以22941a b -=. (Ⅳ) 联立(Ⅲ)(Ⅳ),解得228,32a b ==. 故所求双曲线的标准方程为221832y x -=.当双曲线的焦点不明确时,方程可能有两种形式,此时应分类讨论.为了避免讨论,也可设双曲线方程为221(0)mx ny mn -=>,从而直接求得.若已知双曲线的渐近线方程为by x a =±,则可设方程为2222(0)x y a b λλ-=≠,避免讨论焦点的位置. 考点三 双曲线的离心率1.求离心率的值例3 已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的两个焦点,PQ 是经过1F 且垂直与x 轴的双曲线的弦,如果0290PF Q ∠=,求双曲线的离心率.解:设1(,0)F c ,将x c =代入双曲线方程,得22221c y a b -=,所以2b y a =±.由22PF QF =,0290PF Q ∠=,知112PF F F =,所以22b c a =,22b ac =,所以2220c ac a --=.即2210e e --=,解得1e =+1e =.故所求双曲线的离心率为1求双曲线离心率的常用方法(1)依据条件求出,a c ,计算c e a=; (2)依据条件建立关于,,a b c 的关系式,一种方法是消去b 转化为关于e 的方程求解;另一种方法是消去c 转化为含b a 的方程,求出ba后利用221b e a =+求解.例4 设双曲线22221(0,0)x y a b a b-=>>的焦距长为2c ,直线l 过点(,0)A a ,(0,)B b 两点,已知原点到直线l的距离为34c ,则双曲线的离心率为 . 解析:如图所示,在△OAB 中,OA a =,OB b =,34OE c =,22AB a b c =+=.因为AB OE OA OB ⋅=⋅, 所以3c ab =223)a b ab +=,两边同除以2a 233()0b b a a -=, 解得3ba=3b a =所以212c b e a a ⎛⎫==+ ⎪⎝⎭.答案:2223)a b ab +=,此方程可称为关于,a b 的齐次方程,转化为以ba为变量的一元二次方程是求解的关键.2.求离心率的范围例5 双曲线22221(1,0)x y a b a b-=>>的焦距为2c ,直线l 过点(,0)a ,(0,)b 两点,且点(1,0)到直线l 的距离与点(1,0)-到直线l 的距离之和45s c ≥,求双曲线的离心率e 的取值范围.解:由题意,知直线l 的方程为1x ya b +=,即0bx ay ab +-=. 因为点(1,0)到直线l 的距离122d a b =+,点(1,0)-到直线l 的距离222d a b =+,所以122abs d d c=+=. 由45s c ≥,得2ab c 45c ≥,即252c .于是得22e ,即22425250e e -+≤.解得2554e ≤≤.因为1e >,所以e的取值范围是. 求双曲线离心率的范围时,要根据题意挖掘题中隐含的不等关系,构造不等式,从而求出双曲线的离心率的取值范围.例6 双曲线222:1(0)x C y a a-=>与直线:1l x y +=相交于两个不同的点,A B ,则双曲线的离心率e 的取值范围是 .解:由22211x y a x y ⎧-=⎪⎨⎪+=⎩,消去y ,得到2222(1)220a x a x a -+-=,由题意知,24221048(1)0a a a a ⎧-≠⎪⎨+->⎪⎩,解得(0,1)(1,2)a ∈.所以c e a ===,所以(2,)e ∈+∞.答案:(2,)+∞ .利用一元二次方程根的判别式构建不等关系是一种常用的方法,另外也可利用基本不等式构建不等关系,线性规划中的区域符号也可构建不等关系. 考点四 直线与双曲线的位置关系例7 已知双曲线22:1C x y -=及直线:1l y kx =-.若直线l 与双曲线C 有两个不同的交点,求实数则k 的取值范围.解:由2211x y y kx ⎧-=⎪⎨=-⎪⎩,消去y ,得到22(1)220k x kx -+-=,由题意,知2221048(1)0k k k ⎧-≠⎪⎨+->⎪⎩,解得k <,且1k ≠±. 故实数k 的取值范围是(1)(1,1)(1,2)--.直线与双曲线交点问题,常利用直线方程与双曲线方程构成的方程组求解.。
双曲线焦点三角形内心的性质及其应用

! #&
Copyright©博看网. All Rights Reserved.
复习
!"!!年!月 上半月!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!解法探究
备考
E 分别为 2(4#4!!2'4#4! 的内心!则 2D4!E 的
形状为)!!*!
C!锐角三角形 !!!! D!直角三角形
质!转化坐标关系式为半径关系式通过例!的结论
的应用并 结 合 直 线 与 渐 近 线 的 关 系 建 立 不 等 式综
合双曲线的离心率取值范围来确定即可!
解析设 2(4#4!!2'4#4! 的内切圆半径分别 为N#!N!!根据双曲线焦点三角形内心的性质#和性质 !!结合 %D $, %E 可知N# $,N!!由例!可知!直线
$ !
!
在
2=4!D
中!<:6 3=4!D
$
) * <:6%"G"$!
N# $ =4!
&在 2=4!E 中!<:63=4!E
$<:6$! $
N! =4!
!结合N#FN! $,F#!可得N# $,N!!
) * 则有,<:6$! $<:6%"G"$!
# $<:6$!
!解得<:6$!
$
!<:6$ 槡,,!所以直线.的斜率为<:6$$#"<:6!! $! $槡,!故选
并结合二倍角的正切公式来分析与求解! 解析设 点 D!E 分 别 为
2(4#4!!2'4#4! 的 内 心! 如图! 所 示!根 据 双 曲 线 焦 点 三角形的内心性质#和性质!! 可得 DE 1& 轴!且 3D4!E 为直角!设直线. 的倾斜角为
椭圆与双曲线焦点三角形面积的两个性质

2
槡
2 2 2 b + c t a n θ = . 2 b t a n θ 由圆锥曲线统一定义知
r c s a, r c s a, e c e c θ+ θ- 1= 2= 2 2 2 2 2 2 ) 则r r c( a= b+ c t 1+ - t a nθ a n θ, 1 2= rr 所以 R= 1 2 2 b t a n θ b t a n θ) 由三角形内心坐标公式知I( a, . 1+s e c θ
s s i n i n α α 故t = a n α= 2 c o s α 槡 1-s i n α =
c s c i n θ = s i n θ. 2 2 2 2 b bc as cs o s i nθ- i nθ θ+ 槡
2 2
r 1+ e 由 ① 知t a n α= b 1- e
槡
④
槡 (
b- cs i nθ = 2 b s i n θ
2
2
2
)
2
最后分母用均值不等式得
2 8 1+ e e时取等 当r = 1- R S≤ r. . e b 1+ e 性质 1 证毕 .
数学通报 2 0 1 7年 第5 6卷 第4期 t a n θ 得r= b 1+s e c θ ( r R 1+s e c r ⑤ 与 ⑥ 式相乘得r θ) 1 2 =2 由 ⑥ 两边平方整理得 2 2 2 2 ( 2+2 = r b t s e c t a n a n θ+ θ) θ, ⑥ ⑦
(
)
槡Байду номын сангаас
槡
b c- a s s c) e c e c θ( a θ+ , x- a n θ= y- t 2 t 2 b a n θ
2 2 2 c t b a n θ- ) , 故令 x=0 知 W ( 0, 2 b t a n θ 2 2 2 2 ) ( c t b a n θ- 2 得 R = WF2 = c + 2 2 4 bt a nθ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线焦点三角形的几
何性质
Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】
双曲线焦点三角形的几个性质
在椭圆中,焦点三角形中蕴含着很多性质,这些性质都可以类比到双曲线焦点三角形中:设若双曲线方程为122
22=-b
y a x ,21,F F 分别为它的左右焦点,P 为双曲线上任意一点,则有:
性质1、若θ=∠21PF F 则2cot 221θb S PF F =∆特别地,当 9021=∠PF F 时,有221b S PF F =∆
性质2、焦点三角形21F PF 在P ∠处的内角平分线,过2F 作平分线的垂线,设垂足为Q ,则Q 点的轨迹是?
性质3、以21,r r 为直径做一个圆与大圆(以21A A 为直径的圆)相切。
性质4、双曲线焦点三角形的内切圆与21,F F 相切于实轴顶点;且当P 点在双曲线左支时,切点为左顶点,且当P 点在双曲线右支时,切点为右顶点。
证明:设双曲线122
22=-b
y a x 的焦点三角形的内切圆且三边21F F ,1PF ,2PF 于点A,B,C ,双曲线的两个顶点为21,A A
所以A 点在双曲线上,又因为A 在21F F 上,A 是双曲线与x 轴的交点即点21,A A 性质5、在双曲线中A ,B 在双曲线上且关于原点对称,P 为椭圆上任意一点,则22b
a k k PB PA = 性质6、P 点在x=c 上移动的过程当中,张角APB ∠的取值范围(A ,B 为两顶点)。
]arctan ,0[b
a 性质7、双曲线离心率为e ,其焦点三角形21F PF 的旁心为A ,线段PA 的延长线交21F F 的延长线于点B ,则e AP BA =|
||| 证明:由角平分线性质得e a c P F P F B F B F P F B F P F B F AP BA ==--===22||||||||||||||||||||21212211 性质8、双曲线的焦点三角形21F PF 中,βα=∠=∠1221,F PF F PF
当点P 在双曲线右支上时,有1
12cot 2tan +-=
e e βα 当点P 在双曲线左支上时,有112tan 2cot +-=e e βα。