高中数学程序框图,算法语言
人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图

人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图算法框图是一种图形化的表示方法,用于描述算法的步骤和流程。
它由特定的符号和连接线构成,可以清晰地展示算法的逻辑结构和执行流程。
在人教版高二数学上册中,学生将学习算法框图的基本结构和设计知识点。
以下是相关的基本知识点和注意事项:1.算法框图的基本结构(1) 开始(Start)和结束(End):算法的执行通常从一个开始符号开始,以一个结束符号结束。
(2)输入和输出:算法通常需要获取输入数据并输出结果,在框图中用特殊符号表示。
(3) 过程(Process):算法中的操作步骤可以通过过程符号表示,包括一系列的计算或逻辑操作。
(4) 判断(Decision):算法可能需要进行条件判断,根据不同的条件执行不同的步骤。
判断符号通常有两个或多个出口,分别表示不同的条件结果。
(5) 循环(Loop):算法可能需要进行循环操作,重复执行一些步骤。
循环符号通常有一个判断条件和两个出口。
(6)连接线:算法框图之间通过连接线连接,表示程序的执行流程。
2.算法框图的设计知识点(1)模块化:将算法分解为若干个模块,每个模块完成一个特定的功能。
通过模块化可以提高算法的可读性和可维护性。
(2)层次结构:将算法按照层次结构进行组织,从而使得算法的逻辑结构清晰可见。
(3)合并与分支:合并表示将多个路径上的运行流程合并到一起,分支表示根据不同的条件选择不同的运行路径。
(4)定义变量和赋值操作:算法框图中需要定义和使用变量,通过赋值操作可以对变量进行初始化和修改。
(5)循环操作:循环操作用于重复执行一段程序代码,框图中循环部分需要设置循环条件和循环体。
(6)逻辑判断:算法框图中经常需要进行逻辑判断,根据不同的条件执行不同的代码。
(7)输入和输出:算法框图中需要用特定符号表示输入和输出的部分,以表示算法的输入和输出过程。
3.算法与程序框图的关系算法框图是对算法的图形化描述,用于表示算法的执行流程和逻辑结构。
高三数学基本算法语句与程序框图

第九章算法初步【知识特点】1.本章容是新标新增加的必修容,算法是数学及其应用的重要组成部分,也是计算机科学的重要基础,它与前面的知识有密切联系,并且与实际问题的联系也非常密切。
2.算法的三种基本结构蕴含了比较深刻的思想,成了历年高考的重点,在复习中要熟练掌握算法的逻辑结构和算法语句的格式,正确阅读、理解程序框图和算法语句。
【重点关注】1.算法和程序框图算法和程序框图的核心是程序框图是三种基本逻辑结构,它与其他知识,如函数、方程、不等式、数列等有密切的联系,应用非常广泛。
2.基本算法语句基本算法语句是将程序框图转化为程序语句以实现算法的重要手段,是算法的主体容,高考试题对算法语句的考查一般是填空题,主要形式有两种,一是对一个算法程序中缺少的关键语句进行补充;二是写出一个算法执行后的结果,难度不会太大。
【地位和作用】算法是数学及其应用的重要组成部分,是计算科学的重要基础.随着现代信息技术的飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想也正在成为普通公民的常识,成为现代人应具备的一种基本数学素养.从新课改最近几年各省份的高考信息统计可以看出,命题会呈现出以下特点:1.考查题型以选择、填空题为主,分值约点3%左右,基本属于容易题;2.重点考查程序框图的应用和基本算法语句,如条件结构、循环结构,以及它们相对应的基本算法语句,注重程序框图和基本算法语句的应用及判别;3.预计本章在今后的高考中仍将在程序框图和算法语句处命题,更加注重考查学生的识图能力、分析问题和解决问题的能力。
9.1基本算法语句与程序框图【高考目标导航】一、算法与程序框图(一)考纲点击1.了解算法的含义,了解算法的思想;2.理解程序框图的三种基本逻辑结构:顺序、条件、循环。
(二)热点提示1.本节是高考的热点容,主要考查算法的含义和程序框图的理解和应用;2.本部分在高考题中以选择、填空为主,属于中档题。
高中数学必修三《程序框图与算法的基本逻辑结构》课件

第四步,输出S.
S
p
abc 2
p(p a)(p b)(p c)
上述算法的程序框图如何表示?
输出S 结束
教材5页练习
1、任意给定一个正实数,设计一个算法求以这个数为半
径的圆的面积.
开始
第一步: 给定一个正实数r; 第二步: 计算以r为半径的
输入r
圆的面积S=πr2;
S r2
第三步: 得到圆的面积S.
输入x0,y0,A,B,C
d | Ax0 By0 C | A2 B2
输出d
结束
算法的条件结构:
在某些问题的算法中,有些步骤只有在一定条件下才会被执 行,算法的流程因条件是否成立而变化.在算法的程序框图中,由 若干个在一定条件下才会被执行的步骤组成的逻辑结构,称为条 件结构,用程序框图可以表示为下面两种形式:
---用程序框、流程线及文 字说明来表示算法的图形.
在上述程序框图中, 有4种程序框,2种流程 线,它们分别有何特定的名 称和功能?
开始
输入n
i=2
求n除以i的余数r i的值增加1,仍用i表示
i>n-1或r=0?
是
r=0? 是
输出“n 不是质数”
否
否
输出“n 是质数”
结束
图形符号
名称
功能
终端框
表示一个算法的起始和结束
2a 2a 否则,输出“方程没有实数根”,结束算法。
第四步:判断 0是否成立。若是,则输出x1 x2 p; 否则,计算x1 p q, x2 p q,并输出x1, x2
输出p
开始
输入a,b,c
b2 4ac
0?
是 p b
2a
q 2a
知识讲解_高考总复习:算法与程序框图

高考总复习:算法与程序框图【考纲要求】1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想;(2)理解程序框图的三种基本逻辑结构:顺序、条件、循环。
2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。
【知识网络】【考点梳理】考点一、算法1.算法的概念(1)古代定义:指的是用阿拉伯数字进行算术运算的过程。
(2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
(3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。
2.算法的特征:①指向性:能解决某一个或某一类问题;②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.④构造性:一个问题可以构造多个算法,算法有优劣之分。
3.算法的表示方法:(1) 用自然语言表示算法: 优点是使用日常用语, 通俗易懂;缺点是文字冗长, 容易出现歧义;(2) 用程序框图表示算法:用图框表示各种操作,优点是直观形象, 易于理解。
要点诠释:泛泛地谈算法是没有意义的,算法一定以问题为载体。
考点二:程序框图1. 程序框图的概念:程序框图又称流程图,是最常用的一种表示法,它是描述计算机一步一步完成任务的图表,直观地描述程序执行的控制流程,最便于初学者掌握。
2.程序框图常用符号:连接点用于连接另一页或另一部分的框图注释框框中内容是对某部分流程图做的解释说明3.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框图外,大多数框图符号只有一个进入点和一个退出点。
高中数学算法知识点总结:程序框图

高中数学算法知识点总结:程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
如在示意图中,A 框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。
2、条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。
条件P是否成立而选择执行A框或B框。
无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。
一个判断结构可以有多个判断框。
3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构又称重复结构,循环结构可细分为两类:(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。
高三数学 算法与程序框图

自然语言、数学语言、形式语言、框图。
程序框图 用一些通用图形符号构成一张图来 表示算法,这种图称作程序框图 (简称框图).
四种图框类型 输入、输出框
处理框
判断框
起止框
算法的三种基本逻辑结构和框图表示
顺序结构
条件分支结构
循环结构
A
Yp N
B
A
B
N
p
Y
A
P14练习A
1:
开始
2:
S=0,i=1
N
i 10
0 b 9,0 c 9 .
开始
输入实数 x a.bc
c5
Y
N
x a 0.1b
x a 0.:
x 3
N
x3
Y
y x2 3x 1
输出 y
x x 0.1
结束
P15习题1—1(B)
开始
1:
开始
2:
S=0,i=1
输入分数 b , d ac
N
i 50
x bc ad
加班工作时间工资t、p1、p2 计算t=60-40=20
计算p1=40×8=320
F 9 C 32 5
输出 F
计算p2=20×10=200
计算总工资 p3=p1+p2=520
计算净得工资 p=p3×0.9=468
结束
输出p 结束
P15习题1—1(A)
3: 设两位小数为a.bc ,其
中a, b, c 都为整数,且
Y
S=S+i
i=i+1
输出S 结束
开始 S=0,i=1
N
i 10
Y
S=S+1/i
i=i+1
高中数学必修三-算法与程序框图

算法与程序框图知识集结知识元算法的概念知识讲解算法的概念算法是做一件事情的方法和步骤.在生活中做一件事情的方法和步骤有多种,我们设计的算法应本着简捷方便的原则.要正确地设计一个算法就需要了解算法的特征:有限性:一个算法当运行完有限个步骤后必须结束,而不能是无限地运行确定性:算法的每一步计算,都必须有确定的结果,不能模棱两可,即算法的每一步只有唯一的执行路径,对于相同的输入只能得到相同的输出结果可行性:算法中的每一步骤必须能用实现算法的工具精确表达,并能在有限步内完成有序性算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,只有执行完前一步才能执行后一步普遍性:算法一般要适用于输入值集合中不同形式的输入值,而不是局限于某些特殊的值,即算法具有一般性,一个算法总是针对某类问题设计的,所以对于求解这类问题中的任意一个问题都应该是有效的不唯一性:解决一个或一类问题,可以有不同的方法和步骤,也就是说,解决这个或这类问题的算法不一定是唯一的例题精讲算法的概念与程序语句例1.下列叙述中,不能称为算法的是()A.植树需要运苗、挖坑、栽苗、浇水这些步骤B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100 C.从济南到北京旅游,先坐火车,再坐飞机抵达D.3x>x+1例2.下列各式中S的值不可以用算法求解的是()A.S=1+2+3+4B.S=1+2+3+4+…C.S=1+++…+D.S=12+22+32+…+1002例3.程序框图中,表示处理框的是()A.B.C.D.程序框图知识讲解1.程序框图的三种基本逻辑结构的应用【知识点的认识】三种基本逻辑结构:1.顺序结构:往往从上到下的顺序进行,常用于直接应用公式的题型.如图,算法执行完A 后才执行B.2.条件结构:执行具有选择性.如图,当算法执行到条件P时,若P成立,则执行A,否则执行B.无论条件P是否成立,A和B只能选择其一执行,不能同时执行或同时不执行.A和B中可以有一个为空,即不执行任何操作.3.循环结构:有“当型”和“直到型”两种循环结构.①当型:先判断再执行.如图,当算法执行到条件P时,先判断P是否成立,若不成立,执行A,再判断P,若P依然不成立,继续执行A,再判断…,如此循环直到P成立退出循环.②直到型:先执行再判断.如图,算法先执行A,然后判断条件P是否成立,若P不成立,继续执行A,直到P成立推出循环.例题精讲程序框图例1.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6例2.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S表示()A.a0+a1+a2+a3的值B.a3+a2x0+a1x02+a0x03的值C.a0+a1x0+a2x02+a3x03的值D.以上都不对例3.某程序框图如图所示,若运行该程序后输出S=()A.B.C.D.当堂练习单选题练习1.算法的三种基本结构是()A.逻辑结构,模块结构,条件分支结构B.顺序结构,条件结构,循环结构C.矩形结构,菱形结构,平行四边形结构D.顺序结构,重复结构,分支结构练习2.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是()A.-4 B.-1 C.5 D.6练习3.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一、”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为()A.3 B.3.14 C.3.2 D.3.3练习4.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6填空题练习1.将“杨辉三角”中的数从左到右、从上到下排成一数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,如图所示程序框图用来输出此数列的前若干项并求其和,若输入m=4则相应最后的输出S的值是____。
高中数学 程序框图

试用这个公式设计一个计算三角形面积的算 法步骤. 第一步,输入三角形三条边的边长a,b,c. a + b+ c 第二步,计算 p = . 2 第三步,计算 S = p( p - a )( p - b)( p - c) .
S=
p(p - a)(p - b)(p - c)
例1 若一个三角形的三条边长分别为a,b, c,令p=(a+b+c)/2,则三角形的面积
S p( p a )( p b)( p c )
试用这个公式设计一个计算三角形面积的算 法步骤. 第一步,输入三角形三条边的边长a,b,c. a + b+ c 第二步,计算 p = . 2 第三步,计算 S = p( p - a )( p - b)( p - c) .
第四步,输出S.
3. 将上述算法的用程序框图表示
试用这个公式设计一个计算三角形面积的算 法步骤. 第一步,输入三角形三条边的边长a,b,c. a + b+ c 第二步,计算 p = . 2
S=
p(p - a)(p - b)(p - c)
Байду номын сангаас
例1 若一个三角形的三条边长分别为a,b, c,令p=(a+b+c)/2,则三角形的面积
S p( p a )( p b)( p c )
S p( p a )( p b)( p c )
试用这个公式设计一个计算三角形面积的算 法步骤. 第一步,输入三角形三条边的边长a,b,c.
S=
p(p - a)(p - b)(p - c)
例1 若一个三角形的三条边长分别为a,b, c,令p=(a+b+c)/2,则三角形的面积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本算法语句
【基础知识】
1.输入、输出语句
输入语句INPUT 对应框图中表示输入的平行四边形框
输出语句PRINT 对应框图中表示输出的平行四边形框
2.赋值语句
格式为变量=表达式,对应框图中表示赋值的矩形框
3.条件语句一般有两种:IF—THEN语句;IF—THEN—ELSE语句.语句格式及对应框图如下.(1)IF—THEN—ELSE格式
当计算机执行这种形式的条件语句时,首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句体1,否则执行ELSE后的语句体2.
(2)IF—THEN格式
4.算法中的循环结构是由循环语句来实现的.对应于程序框图中的两种循环结构,一般程序设计语言中有当型(WHILE型)和直到型(UNTIL型)两种语句结构,即WHILE语句和UNTIL语句.
(1)WHILE语句
(2)UNTIL语句
5.
......................................巧是把题目中的算法语言依照上面的对应关系翻译成框图。
.....解决算法语言试题的基本技
..温馨提示:
【例题分析】
考点一 输入、输出和赋值语句的应用
例1 分别写出下列语句描述的算法的输出结果: (1) a =5b =3c =(a +b )/2d =c*c
PRINT “d =”;d
(2)
a =1
b =2
c =a +b b =a +c -b
PRINT “a =,b =,c =”;a ,b ,c
【解答】 (1)∵a =5,b =3,c =a +b 2
=4, ∴d =c 2=16,即输出d =16.
(2)∵a =1,b =2,c =a +b ,∴c =3,又∵b =a +c -b ,
即b =1+3-2=2,∴a =1,b =2,c =3,
即输出a =1,b =2,c =3.
练习1 请写出下面运算输出的结果__________.
a =10
b =20
c =30
a =
b b =c
c =a
PRINT “a =,b =,c =”;a ,b ,c
【解答】经过语句a =b ,b =c 后,b 的值赋给a ,c 的值赋给b ,即a =20,b =30,再经过语句c =a 后,a 的当前值20赋给c ,∴c =20.故输出结果a =20,b =30,c =20.
考点二 条件语句的应用
例2 阅读下面的程序,当分别输入x =2,x =1,x =0时,输出的y 值分别为________、________、________.
INPUT “x =”;x
IF x>1 THEN
y =1/(x -1)
ELSE
IF x =1 THEN
y =x^2 ELSE
y =x^2+1/(x -1)
END IF
END IF
PRINT y
END
【解答】计算机执行这种形式的条件语句时,是首先对IF 后的条件进行判断,如果条件符合,就执行THEN 后的语句;如果条件不符合,则直接结束该条件语句,转而执行其他语句,嵌套时注意内外分层,避免逻辑混乱.
由程序可知分段函数是:
y =⎩⎪⎨⎪⎧ x 2+1x -1, x<1x 2, x =1
1x -1, x>1
∴输入x =2,输出1;
输入x =1,输出1;
输入x =0,输出-1. 故输出的y 的值1,1,-1
练习2 阅读下面的程序,写出程序运行的结果.
(1)若x =6,则P =______;(2)若x =20,则P =______.
【解答】(1)2.1 (2)10.5
考点三 循环语句的应用
例3 下列程序执行后输出的结果是( )
n =5
s =0
WHILE s<14
s =s +n n =n -1
WEND
PRINT n
END
A .-1
B .0
C .1
D .2
【解答】解题导引 解答这类问题的关键是认真阅读程序,理解程序功能.必要时,根据程序画出框图辅助分析.
C [由程序画出对应的程序框图,这是一个当型循环语句.
由框图可知,该程序的功能是计算s =5+4+…+n 到首次不小于14的n -1的值,即(s ,n)由以下运
算得:(0,5)→(0+5,5-1)→(5+4,4-1)→(9+3,3-1)→(12+2,2-1),所以输出n =1.]
练习3 下面的程序运行后第3个输出的数是( )
A .1
B.32 C .2 D.52
【解答】C [该程序中关键是循环语句,
第一次输出的数是1,
第二次输出的数是x =1+12=32
, 第三次输出的数是x =1+12+12
=2.]
【课后练习】
1.(2011·银川模拟)下面程序运行的结果是( ) i =1
S =0
WHILE i<=100
S =S +i i =i +1
WEND
PRINT S
END
A .5 050
B .5 049
C .3
D .2
【解答】A [该程序的功能是求S =1+2+…+100的值.由等差数列求和公式得,S =1002
×(1+100)=5 050.]
2.下面程序运行后,输出的值是( )
i =0
DO
i =i +1
LOOP UNTIL i*i>=2 000 i =i -1
PRINT i
END
A .42
B .43
C .44
D .45
【解答】C [程序功能是求使i 2≥2 000成立的最小i 值,输出结果为i -1.∵442=1 936,452=2 025>2 000,∴输出结果为44.]
3.利用计算机计算:s =
11×2+12×3+13×4+…+199×100
,某同学编写的程序语句中,①处应填________.
【解答】k >99
解析 循环体执行到k =99.
4.为了在运行下面的程序之后得到y =25,键盘输入的x 应该是________.
INPUT x
IF x<0 THEN
y =(x +1)*(x +1)
ELSE y =(x -1)*(x -1)
END IF
PRINT y
END
【解答】-6或6
解析 程序对应的函数是y =⎩⎪⎨⎪⎧
(x +1)2,x<0(x -1)2,x ≥0. 由题意得,⎩⎨⎧ x<0(x +1)2=25,或⎩
⎨⎧
x ≥0(x -1)2=25, 解得x =-6或x =6.
5.当a =1,b =3时,执行完如下的一段程序后x 的值是( )
INPUT a,b
IF a<b THEN
x =a +b
ELSE
x =a -b
END IF
A .1
B .3
C .4
D .-2
【解答】C [∵1<3,∴x =1+3=4.]
6.(2011·淄博统考)当x =2时,下面的程序运行结果是( )
i =1
s =0
WHILE i<=4
s =s*x +1 i =i +1
WEND
PRINT s
END
A .3
B .7
C .15
D .17
【解答】C [当x =2时,i =1≤4,s =0×2+1=1;
i =1+1=2≤4,s =1×2+1=3;
i =2+1=3≤4,s =3×2+1=7;
i =3+1=4≤4,s =7×2+1=15;
i =4+1=5>4,输出s =15.]
7.(2011届温州期末)下列程序执行后输出的结果是________________________. i =11
s =1
DO
s =s*i i =i -1
LOOP UNTIL i<9
PRINT s
END
【解答】990
解析由题意s=11×10×9=990.。