正交试验的原理和实施
正交试验设计法简介

正交试验设计法简介一、本文概述正交试验设计法是一种高效、系统的试验设计方法,广泛应用于科学研究、工程实践以及日常生产中的优化问题。
本文将对正交试验设计法的基本概念、原理、应用及其优势进行详细介绍,旨在帮助读者更好地理解和应用这一实用的试验设计方法。
正交试验设计法基于数理统计和正交表的理论,通过合理安排试验因素与水平,以较少的试验次数获得丰富的试验信息。
该方法的核心在于利用正交表的正交性,使得各试验因素之间互不干扰,从而能够准确地评估各因素对试验结果的影响程度。
本文将从正交试验设计法的基本原理出发,阐述其在实际应用中的操作步骤和方法。
通过具体案例的分析,展示正交试验设计法在解决实际问题中的优势和应用价值。
本文还将对正交试验设计法的局限性和改进方向进行探讨,以期为读者提供更为全面、深入的了解。
二、正交试验设计法的基本原理正交试验设计法是一种以数理统计和正交性原理为基础的高效试验设计方法。
其基本原理在于,通过选择一组具有代表性的试验点,即正交表中的行,来全面、均衡地考察多个因素在不同水平下的试验效果。
这种方法能够在保证试验全面性的大大减少试验次数,提高试验效率。
正交试验设计法主要基于两个核心原理:正交性原理和代表性原理。
正交性原理指的是在试验设计中,各因素之间应相互独立,互不影响,从而确保试验结果的准确性和可靠性。
代表性原理则是指在选择试验点时,应确保每个试验点都能代表一定的因素水平组合,以便全面考察各因素对试验结果的影响。
正交表是正交试验设计法的核心工具,它是一种具有特定结构的表格,用于安排试验因素和水平。
正交表具有均衡分散和整齐可比的特点,能够确保每个试验点都具有一定的代表性,并且各因素之间保持正交性。
通过正交表,可以方便地安排试验,并对试验结果进行分析和比较。
正交试验设计法的应用范围广泛,适用于多因素、多水平的试验场景。
它不仅可以用于新产品的开发和优化,还可以用于工艺改进、质量控制等领域。
通过正交试验设计法,可以更加高效地找出最优的参数组合,提高产品的性能和质量,降低生产成本,为企业带来更大的经济效益。
公路工程正交试验设计法 概述及解释说明

公路工程正交试验设计法概述及解释说明1. 引言1.1 概述公路工程是现代城市化建设中的重要组成部分之一,为了确保公路的安全运行和良好性能,需要进行大量的研究和实践。
而正交试验设计法作为一种重要的设计方法,在公路工程领域也得到了广泛应用并取得了显著成果。
1.2 文章结构本文将从概述、解释说明和结论三个方面来探讨公路工程正交试验设计法。
首先,我们将对此方法进行详细的概述,包括介绍其基本原理、应用范围以及在公路工程中的具体应用案例。
然后,我们将进一步解释选择正交试验设计法进行公路工程研究的原因,并分析其优势和局限性。
最后,我们将讨论如何进行公路工程正交试验设计法的实施与分析,并给出一些建议和指导。
1.3 目的本文旨在介绍公路工程正交试验设计法,并且通过解释说明其特点和应用情况,帮助读者更好地了解该方法在实践中的价值和意义。
同时也旨在为相关研究人员提供一些实施和分析该方法所需的指导和建议,以促进公路工程领域的科学研究和实践发展。
2. 正文:公路工程正交试验设计法是一种基于统计方法的实验设计方法,用于确定公路工程中各个因素对某一指标的影响程度。
它通过系统地设计和组织一系列实验,以确保得出准确可靠的结论。
在公路工程项目中,我们经常需要研究不同因素对路面质量、交通流量、环境影响等方面的影响。
然而,由于受到时间、成本和资源限制,我们无法对所有可能的因素进行全面研究。
这时候,正交试验设计法就派上了用场。
正交试验设计法的基本原理是将多个因素按照一定规律组合起来,并在给定范围内设置不同水平,从而获得较少实验次数下尽可能全面且高效地获取信息的方法。
它能够帮助我们探索主要因素及其相互关系,并识别出对所研究指标最具影响力的主要因素。
在公路工程领域中,正交试验设计法被广泛应用于以下方面:1. 建设方案优化:通过对多个建设参数进行正交试验设计,可以确定各参数之间的优化组合方案。
例如,在新建公路工程中,可以探究不同材料、施工方法和设计标准等因素对路面强度和耐久性的影响,从而优化项目建设方案。
正交试验设计八因素三水平

正交试验设计八因素三水平1. 介绍正交试验设计是一种用于研究多个因素对实验结果的影响的统计方法。
它通过设计一组合适的试验条件,以最小的资源和时间成本获取尽可能多的信息。
本文将介绍正交试验设计中的八因素三水平设计,并详细解释其原理和应用。
2. 正交试验设计原理正交试验设计的核心原理是通过合理的因素选择和水平设置,将多个因素的影响分离开来,使得实验结果能够准确地反映每个因素的作用。
八因素三水平设计是其中一种常用的设计方式。
3. 八因素三水平设计八因素三水平设计是指在实验中选择八个影响因素,并且每个因素有三个水平。
这样的设计可以通过正交表来实现。
正交表是一种特殊的表格,可以有效地组织实验条件和记录实验结果。
4. 正交表的构建正交表的构建是八因素三水平设计的关键步骤之一。
构建正交表的目的是使得每个因素的每个水平在不同的试验条件下均匀分布。
常用的构建方法包括拉丁方和田口方法。
5. 实验的设计与执行在进行八因素三水平设计的实验之前,需要明确实验的目的和要求,并确定好每个因素的水平。
然后,根据构建好的正交表,安排实验条件和记录实验结果。
在实验执行过程中,需要严格按照设计要求进行操作,保证实验的可靠性和有效性。
6. 数据的分析与解读实验数据的分析与解读是八因素三水平设计的重要环节。
通过统计分析,可以得出每个因素的主效应和交互效应,从而评估它们对实验结果的影响程度。
同时,还可以通过分析方差和回归分析等方法,进一步探究因素之间的关系和优化方案。
7. 应用案例八因素三水平设计在许多领域都有广泛的应用。
例如,在制造业中,可以利用这种设计方法来优化生产工艺和提高产品质量;在医药领域,可以通过这种设计方法来优化药物配方和疗效评估等。
8. 总结正交试验设计八因素三水平是一种有效的实验设计方法,可以在最小的资源和时间成本下获取尽可能多的信息。
通过合理的因素选择和水平设置,能够准确地分析每个因素对实验结果的影响,并优化实验方案。
正交试验设计和分析方法研究

正交试验设计和分析方法研究一、本文概述正交试验设计是一种高效、系统的试验设计方法,广泛应用于科学研究、工程实践以及社会调查等领域。
通过正交表的正交性、均匀分散性和整齐可比性,正交试验设计能够在众多试验因素中快速找出关键因素,优化试验方案,提高试验效率。
本文旨在深入研究正交试验设计的理论基础,探讨其在实际应用中的优化策略,分析正交试验设计的优缺点,并展望其未来发展趋势。
本文首先介绍正交试验设计的基本原理和常用正交表,然后详细阐述正交试验设计的步骤和方法,接着通过案例分析展示正交试验设计在不同领域的应用实践,最后对正交试验设计的未来发展进行展望,以期为相关领域的研究和实践提供有益的参考和借鉴。
二、正交试验设计基本原理正交试验设计是一种高效、系统的试验设计方法,其核心在于利用正交表来安排试验,通过对试验因素与水平进行全面、均匀的搭配,从而找出最佳的试验方案。
正交试验设计的基本原理主要包括以下几点:正交性原理:正交表具有正交性,即表中的每一行(或列)所代表的因素水平组合都是唯一的,且在整个表中均匀分布。
这种正交性保证了试验点在试验范围内均匀分布,从而能够全面反映试验因素与水平的变化情况。
代表性原理:正交表中的每一行都代表一组试验因素与水平的组合,这些组合在试验范围内具有代表性。
通过选择适当的正交表,可以在较少的试验次数下获得较为全面的试验结果。
综合可比性原理:正交表中的每一列都对应一个试验因素,不同列之间的因素是相互独立的。
这意味着每个因素在不同水平下的效果可以单独进行分析和比较,从而便于找出影响试验结果的主要因素及其最佳水平。
分析简便性原理:正交试验设计的结果分析简便易行,可以通过直观分析或方差分析等方法快速得出结论。
直观分析法可以直接从正交表中观察出各因素在不同水平下的效果,而方差分析法则可以进一步检验各因素对试验结果的影响程度。
正交试验设计通过合理利用正交表的性质,实现了试验的高效、系统和全面。
在实际应用中,只需根据试验需求选择合适的正交表,按照表中的安排进行试验,并对试验结果进行简便的分析,即可得出较为准确的结论。
正交实验的原理应用

正交实验的原理应用1. 引言正交实验是一种常用的实验设计方法,其原理是通过选择一组不相关的因素进行测试,以确定不同因素对实验结果的影响程度。
正交实验可以提高实验的效率,减少实验次数,同时也能有效地分析因素之间的相互作用。
2. 正交实验的原理2.1 正交实验的定义正交实验是一种系统地排列实验因素和水平的方法,通过对每个因素进行组合和配对,以获得最小的误差均方和,从而确定各因素对应试验的结果的影响程度。
2.2 正交表的应用正交表是进行正交实验的工具,它可以帮助设计者选择合适的实验方案,减少试验次数,同时能够较好地探索因素之间的相互作用。
常见的正交表包括OA (Orthogonal Array)、OB(Balanced Incomplete Block Design)等。
2.3 正交实验的优势正交实验在实验设计中具有以下优势: - 高效性:通过正交表选择与目标相关的因素进行测试,可以减少实验次数,节省时间和资源。
- 统计性:正交实验考虑不同因素的相互作用,能够提供系统性的数据分析,帮助研究者理解因素之间的关系。
- 可重复性:由于正交实验是一种系统的实验设计方法,其结果可以被其他研究者重复验证,提高实验的可信度。
3. 正交实验的应用场景3.1 工程设计在工程设计中,正交实验可以用于确定影响系统性能的关键因素。
通过选择适当的因素和水平进行正交实验,可以分析不同因素对系统性能的影响程度,从而确定最佳的设计方案。
3.2 食品工业在食品工业的产品研发中,正交实验可以用于确定原料成分、加工工艺等因素对产品质量的影响。
借助正交实验,可以进行系统性的试验,分析不同因素的相互作用,优化产品配方和生产工艺。
3.3 医学研究医学研究中常常需要进行试验以验证新药物的疗效和副作用。
正交实验可以帮助研究者确定试验的因素和水平,降低试验次数和资源消耗,同时也能够考虑不同因素之间的相互作用,提高试验的可靠性和实用性。
4. 正交实验的设计步骤进行正交实验时,一般可以按照以下步骤进行: 1. 确定实验目标和因素:明确实验的目的和需要考察的因素,如产品质量、工艺参数等。
正交试验设计方法讲义及举例

正交试验设计方法讲义及举例正交试验设计方法是一种多因素试验设计方法,它能够有效地减少试验所需的样本数量,提高试验结果的精确性和可靠性。
正交试验设计方法是在已知因素水平的情况下选择对试验结果影响最大的因素进行研究的一种方法。
以下是正交试验设计方法的讲义及举例:一、正交试验设计方法的原理及步骤:1.原理:正交试验设计方法通过选择适当的正交表,将多个因素的不同水平组合进行排列,使各因素的变化对试验结果影响均匀化,从而获得准确可靠的试验结果。
2.步骤:a.确定试验因素及其水平:根据试验目的确定需要研究的因素及其水平。
b.选择正交表:根据试验因素的个数和水平确定适用的正交表,正交表能够保证试验结果的均匀性和可靠性。
c.设计试验方案:根据选择的正交表,将试验因素的水平进行组合,获得试验方案。
d.进行试验:按照试验方案进行实际试验。
e.分析试验结果:对试验结果进行统计分析,获得对试验因素的影响程度及其交互作用等信息。
f.微调试验方案:根据试验结果微调试验方案,迭代优化试验过程。
二、正交试验设计方法的优点:1.降低样本数量:正交试验设计方法能够通过对试验水平的排列组合,使试验因素的水平均匀分布,从而减少试验所需的样本数量。
2.提高试验效率:正交试验设计方法能够在有限样本量下获得更多的试验信息,提高试验效率。
3.确保结果可靠:正交试验设计方法通过保证试验因素的均匀分布,减少人为因素的干扰,从而保证试验结果的可靠性和准确性。
4.揭示因素交互作用:正交试验设计方法能够揭示因素之间的交互作用,进一步优化设计过程。
三、正交试验设计方法的举例:例如,公司要研究一种新的洗发水对头发柔顺度的影响,试验主要包括3个因素:洗发水品牌(A、B、C)、洗发水用量(X、Y、Z)和洗发水停留时间(T1、T2、T3)。
根据正交试验设计方法,按照以下步骤进行设计:1.选择正交表:根据3个因素和各因素的水平,选择适用的正交表,如L9正交表。
2.设计试验方案:根据L9正交表,将3个因素的水平进行组合,得到9个试验方案,每个方案分别测试一种组合情况。
第七章-正交试验设计法

第七章-正交试验设计法第七章:正交试验设计法正交试验设计法是一种实验设计方法,旨在有效地确定多个因素对结果的影响,并找到最佳的组合条件。
正交设计法是一种统计方法,通过在试验设计中使用正交矩阵来实现对各个因素的全面考虑和分析。
本章将详细介绍正交试验设计法的原理、应用和优势。
7.1 正交试验设计法的原理正交试验设计法的原理基于一个关键观点:在多因素实验设计中,通过设计合理的试验矩阵,能够避免因素之间的相互干扰,从而有效地确定各个因素对结果的影响。
正交试验设计法通过使用正交矩阵,将各个因素进行组合,确保在限定的试验条件下,各个因素之间的相互影响最小化。
这样,通过对正交试验设计法进行数据分析,可以准确地确定各个因素对结果的主导程度。
7.2 正交试验设计法的应用正交试验设计法在许多领域中得到广泛应用,特别是在工程、医学、化学和农业等实验研究中。
正交试验设计法可以帮助研究人员从多个因素中确定影响结果的主要因素,并找到最佳的操作条件。
例如,在工程领域中,正交试验设计法可以用于确定材料的最佳组合,以提高产品质量和性能。
在医学研究中,正交试验设计法可用于确定药物的最佳剂量和治疗方案。
在农业研究中,正交试验设计法可以用于确定最佳的种植条件和施肥方法。
总之,正交试验设计法可以帮助研究人员快速、准确地找到最佳的解决方案。
7.3 正交试验设计法的优势正交试验设计法相比传统的试验设计方法有以下几个优势:1. 高效性:正交试验设计法可以通过使用正交矩阵,将多个因素进行有效组合,从而减少试验次数,提高试验效率。
2. 统计可靠性:正交试验设计法通过使用正交矩阵,可以有效地避免因素之间的相互干扰,确保实验结果的统计可靠性。
3. 实用性:正交试验设计法不仅可以用于确定各个因素对结果的影响程度,还可以用于优化因素的组合以达到最佳效果。
4. 灵活性:正交试验设计法可以应用于不同的实验设计要求,可灵活调整试验因素和水平,以满足具体的研究需求。
正交实验法的原理

正交实验法的原理
正交实验法是一种多因素试验设计方法,用于确定多个因素对实验结果的影响。
该方法的原理基于以下理念:
1. 因素的独立性:正交实验法假设各个因素之间是相互独立的,即一个因素的变化不会影响其他因素的变化。
这使得实验结果能够准确地反映每个因素的影响。
2. 最小二乘法:正交实验法通过最小二乘法来构建试验矩阵。
最小二乘法是一种通过最小化实际数据与拟合曲线之间的差异来确定因素对结果的影响的方法。
正交实验法通过设计合适的试验矩阵,使得最小二乘法能够有效地判断因素对结果的影响。
3. 科学有效性:正交实验法基于数学统计学原理和设计思想,能够充分挖掘因素之间的关系,并减少试验的数量。
这使得实验结果更加科学可靠,并且能够提高实验效率。
通过正交实验法设计的实验,可以将多个因素进行有效控制,避免因素之间的相互干扰,从而准确地确定每个因素对实验结果的影响程度。
这对于优化生产工艺、改进产品性能和提高实验效率具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为什么要用正交试验
我们知道如果有很多的因素变化制约着一个事件的变化,那么为了弄明白哪些因素重要,哪些不重要,什么样的因素搭配会产生极值,必须通过做实验验证(仿真也可以说是试验,只不过试验设备是计算机),如果因素很多,而且每种因素又有多种变化(专业称法是:水平),那么试验量会非常的大,显然是不可能每一个试验都做的。
就影响主轴温升的试验来讲,影响主轴温升的因素很多,比如转速、预紧力、油气压力、喷油间隙时间、油品等等;每种因素的水平也很多,比如转速从8Krpm到20Krpm,等等,计算一下,所有因素都做,大概一共要900次试验,按一天3次试验计,要不停歇的做10个月,显然是不可能的。
能够大幅度减少试验次数而且并不会降低试验可行度的方法就是使用正交试验法。
首先需要选择一张和你的试验因素水平相对应的正交表,已经有数学家制好了很多相应的表,你只需找到对应你需要的就可以了。
所谓正交表,也就是一套经过周密计算得出的现成的试验方案,他告诉你每次试验时,用那几个水平互相匹配进行试验,这套方案的总试验次数是远小于每种情况都考虑后的试验次数的。
比如3水平4因素表就只有9行,远小于遍历试验的81次;我们同理可推算出如果因素水平越多,试验的精简程度会越高。
正交试验设计介绍
当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。
因此就出现了分式析因设计(fractional factorial de signs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。
正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行3³=27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(3)³正交表按排实验,只需作9次,7
按L18(3) 正交表进行18次实验,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
1.正交表
正交表是一整套规则的设计表格。
L 为正交表的代号,n 为试验的次数,t 为水平数,c 为列数,也就是可能安排最多的因素个数。
例如L 9(3 ) , (表11),它表示需作9次实验,
最多可观察4个因素,每个因素均为3水平。
一个正交表中也可以各列的水平数不相等,我
们称它为混合型正交表,如L 8(4×2 ) (表12),此表的5列中,有1列为4水平,4列为2
水平。
根据正交表的数据结构看出,正交表是一个n 行c 列的表,其中第j 列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现1次。
正交表具有以下两项性质:
(1) 每一列中,不同的数字出现的次数相等。
例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
(2) 任意两列中数字的排列方式齐全而且均衡。
例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。
每种对数出现次数相等。
在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、
3.2、3.3,且每对出现数也均相等。
以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。
通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。
4 4
表1 L 4 (2 ) 正交表
2. 交互作用表 每一张正交表后都附有相应的交互作用表,它是专门用来安排交互作用试验。
表14就是L 8(2 )表的交互作用表。
安排交互作用的试验时,是将两个因素的交互作用当作一个新的因素,占用一列,为交互作用列,从表14中可查出L 8(2 )正交表中的任何两列的交互作用列。
表中带( )的为主因素的列号,它与另一主因素的交互列为第一个列号从左向右,第二个列号顺次由下向上,二者相交的号为二者的交互作用列。
例如将A 因素排为第(1)列,B 因素排为第(2)列,两数字相交为3,则第3列为A×B 交互作用列。
又如可以看到第4列与第6列的交互列是第2列,等等。
3.正交实验的表头设计
表头设计是正交设计的关键,它承担着将各因素及交互作用合理安排到正交表的各列中的重要任务,因此一个表头设计就是一个设计方案。
表头设计的主要步骤如下:
(1) 确定列数
根据试验目的,选择处理因素与不可忽略的交互作用,明确其共有多少个数,如果对研究中的某些问题尚不太了解,列可多一些,但一般不宜过多。
当每个试验号无重复,只有1个试验数据时,可设2个或多个空白列,作为计算误差项之用。
(2) 确定各因素的水平数
根据研究目的,一般二水平(有、无)可作因素筛选用。
也可适用于试验次数少、分批进行的研究。
三水平可观察变化趋势,选择最佳搭配,多水平能以一次满足试验要求。
(3) 选定正交表
根据确定的列数c ,与水平数(t)选择相应的正交表。
例如观察5个因素8个一级交互作用,留两个空白列,且每个因素取2水平,则适宜选L 16(2 )表。
由于同水平的正交表有多
个,如L 8(2 )、L 12(2 )、L 16(2 ),一般只要表中列数比考虑需要观察的个数稍多一点即可,这样省工省时。
(4) 表头安排
应优先考虑交互作用不可忽略的处理因素,按照不可混杂的原则,将它们及交互作用首先在表头排妥,而后再将剩余各因素任意安排在各列上。
例如某项目考察4个因素A 、B 、C 、7 7 7 11 15 15
3
D 及A×B 交互作用,各因素均为2水平,现选取L 8(2 )表,由于A 、B 两因素需要观察其交互作用,故将二者优先安排在第1、2列,根据交互作用表查得A×B 应排在第3列,于是C 排在第4列,由于A×C 交互在第5列,B×C 交互作用在第6列,虽然未考查A×C 与B×C ,为避免混杂之嫌,D 就排在第7列。
(5) 组织实施方案
根据选定正交表中各因素占有列的水平数列,构成实施方案表,按实验号依次进行,共作n 次实验,每次实验按表中横行的各水平组合进行。
例如L 9(3 )表,若安排四个因素,第一次实验A 、B 、C 、D 四因素均取1水平,第二次实验A 因素1水平,B 、C 、D 取2水平,……第九次实验A 、B 因素取3水平,C 因素取2水平,D 因素取1水平。
实验结果数据记录在该行的末尾。
因此整个设计过程我们可用一句话归纳为:“因素顺序上列、水平对号入座,实验横着作”。
4.二水平有交互作用的正交实验设计与方差分析
例8 某研究室研究影响某试剂回收率的三个因素,包括温度、反应时间、原料配比,每个因素都为二水平,各因素及其水平见表16。
选用L 8(2 )正交表进行实验,实验结果见表 17。
首先计算Ij 与IIj ,Ij 为第j 列第1水平各试验结果取值之和,IIj 为第j 列第2水平各试验结果取值之和。
然后进行方差分析。
过程为:
求:总离差平方和
各列离差平方和 SSj=
本例各列离均差平方和见表10最底部一行。
即各空列SSj 之和。
即误差平方和 自由度v 为各列水平数减1,交互作用项的自由度为相交因素自由度的乘积。
分析结果见表18。
从表18看出,在α=0.05水准上,只有C 因素与A×B 交互作用有统计学意义,其余各因素均无统计学意义,A 因素影响最小,考虑到交互作用A×B 的影响较大,且它们的二水平为优。
在C 2的情况下, 有B 1、A 2和B 1、A 1两种组合状况下的回收率最高。
考虑到B 因素影响较A 因素影响大一些,而B 中选B 1为好,故选A 2、B 1。
这样最后决定最佳配方为A 2、B 1、C 2,即80℃,反应时间2.5h ,原料配比为1.2:1。
如果使用计算机进行统计分析,在数据是只需要输入试验因素和实验结果的内容,交互作用界的内容不用输入,然后按照表头定义要分析的模型进行方差分析。
4 7。