理想流体动力学基本方程

合集下载

《高等流体力学》第2章 流体动力学积分形式的基本方程

《高等流体力学》第2章 流体动力学积分形式的基本方程
τ0
(φ 为广延量)
取τ= τ0(t)为控制体, A= A0(t)为控制面:
A2 ( A02 )
τ 03
′ A02
v∆t
A1 ( A01 )
′ A01
n
τ 02
v∆t
τ 01
dA0
τ = τ 0 (t )
A = A0 ( t )
n
′ ( t + ∆t ) = A′ A0
∆ = I I ( t + ∆t ) − I ( = t)
I在∆t内的增量为:
∫∫∫τ
01 +τ 02
φ ( r , t + ∆t ) dτ 0 − ∫∫∫
τ 01 +τ 03
φ ( r , t ) dτ 0
∫∫∫τ
φ ( r , t + ∆t ) − φ ( r , t ) dτ 0 + ∫∫∫ φ ( r , t + ∆t ) dτ 0 τ 02 01
D ∂φ Dφ φ dτ 0 = + ∇ φ= v + φ∇ ⋅ v ⇒ ∫∫∫ τ 0 Dt ∂t Dt Dt ∂t
( )
Dφ + φ∇ ⋅ v dτ ∫∫∫τ Dt
Dρ + ρ∇ ⋅ v = 0 (微分形式连续方程) 如果 φ = ρ ,则: Dt (2) D D ( ρφ ) ρφ dτ 0 ∫∫∫ = + ρφ∇ ⋅ v dτ ∫∫∫ τ τ 0 Dt Dt ρ Dφ ρ Dφ Dρ dτ = ∫∫∫ +φ + ρ∇ = ⋅ v dτ ∫∫∫ τ τ Dt Dt Dt
∂x′ ′ = ∇xα iβ α i′α = ∂xβ ∂φ ∂x′ ∂φ ∂φ ∴∇′φ = i′α = iβ α = iβ = ∇φ ′ ′ ∂xα ∂xβ ∂xα ∂xβ

第3章流体力学连续性方程微分形式

第3章流体力学连续性方程微分形式

第四节 欧拉运动微分方程的积分
du p p p du d y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt d
<I> <II> <III>
p 2、均匀不可压缩流体,即=Const; <II>= d ( )
中心的微元六面体为控制体,边 长为dx,dy,dz,中心点压强为 p(x,y,z) 。 受力分析(x方向为例): 1.表面力
z
A'
D' M p(x,y,z) B' N
C'
p dx p x 2
dz dx D dy A
O
o’
p dx p Cx 2
B
x
∵理想流体,∴=0
左表面
y
p dx P p A ( p ) dydz M M 2 x p dx 右表面 P p A ( p ) dydz N N 2 x
2 2 2 2 2 2 ,例: 拉普拉斯算符 x y z 2
2 2 2 u u u x x x u x 2 2 2 x y z 2

第三节 流体动力学基本方程式
第四节 欧拉运动微分方程的积分
由于欧拉运动微分方程是一个一阶非线性偏微分方程组(迁移加速度的三 项中包含了未知数与其偏导数的乘积),因而至今还无法在一般情况下积分, 只能在一定条件下积分。 欧拉运动微分方程组各式分别乘以dx,dy,dz(流场任意相邻两点间距ds 的坐标分量),然而相加得:
du p p p du du y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt dt

第7章_理想流体动力学基本方程

第7章_理想流体动力学基本方程

④列动量方程求解。
Fx p1A1 p2 A2 cos Rx Qv2x v1x
Fy p2 A2 sin Ry Q v2y v1y
Fx p1A1 p2 A2 cos Rx Qv2 cos v1
Fy p2 A2 sin Ry Qv2 sin 0
Rx p1A1 p2 A2 cos Qv2 cos v1
动量方程:反映了流体的动量变 化与外力之间的关系
粘性流体:实际流体都具有粘性。既有粘性切应力,又有法向压应力。
0
理想流体:理想流体可忽略粘性。即无粘性切应力,只有法向压应力。
0
粘性流体:
理想流体:
一、动量方程——流体的运动方程
1、积分形式的动量方程——流体的运动方程
质点系的动量定理:
系统的动量对时间的变化率等于作
第7章 理想流体动力学动量方程
粘性流体:实际流体都具有粘性,致使所研究的问题比较复杂。 理想流体:指粘性为零的流体,实际上并不存在,但在有些问题
中,粘性的影响很小,可以忽略不计,致使所研究的 问题简单化。 理想流体动力学规律可以应用于粘性的影响很小的实 际流体中,所以本章的研究具有实际意义。
主要内容
过流断面是均匀流或渐(缓)变流断面不可压缩流体
Fx Q(2v2x 1v1x ) Fy Q(2v2 y 1v1y ) Fz Q(2v2z 1v1z )
④当沿程有分流和汇流时:
Fx (3Q3v3x 2Q2v2x 1Q1v1x ) Fy (3Q3v3y 2Q2v2 y 1Q1v1y ) Fz (3Q3v3z 2Q2v2z 1Q1v1z )
对1-1,2-2断面列伯努利方程
p1 v12 p2 v22
g 2g g 2g
v1 1.42m / s v2 3.18m / s

第三章 流体动力学基础

第三章 流体动力学基础

1、在水位恒定的情况下: (1)A®A¢不存在时变加速 度和位变加速度。 (2)B®B¢ 不存在时变加速 度,但存在位变加速度。 2、在水位变化的情况下: (1)A®A¢ 存在时变加速度, 但不存在位变加速度。 (2)B®B¢ 既存在时变加速 度,又存在位变加速度。
图3-19
第二节 流体质点运动特点和有旋流
图3-13
非均匀流——流线不是平行直线的流 动, 。 非均匀流中流场中相应点的流速大 小或方向或同时二者沿程改变,即沿流 程方向速度分布不均。例:流体在收缩 管、扩散管或弯管中的流动。(非均匀 流又可分为急变流和渐变流)
4.渐变流与急变流
非均匀流中如流动变化缓 慢,流线的曲率很小接近平行, 过流断面上的压力基本上是静 压分布者为渐变流(gradually varied flow),否则为急变流。
图3-17
(3)三元流
三元流(threedimensional flow):流动 流体的运动要素是三 个空间坐标函数。例 如水在断面形状与大 小沿程变化的天然河 道中流动,水对船的 绕流等等,这种流动 属于三元流动。(图 3-18)
图3-18
三.描述流体运动的方法
1.拉格朗日法 拉格朗日方法(lagrangian method)是以 流场中每一流体质点作为描述流体运动 的方法,它以流体个别质点随时间的运 动为基础,通过综合足够多的质点(即 质点系)运动求得整个流动。——质点 系法
一、流体质点的运动 特点 刚体的运动是由 平移和绕某瞬时轴 的 转动两部分组成,如 图3-20(a)。
图3-20(a)
流体质点的运动, 一般除了平移、转 动外,还要发生变 形(角变形和线变 形),如图3-20(b)。
图3-20(b)
二、角速度的数学表达式 流体质点的旋转用角速度表征,习 惯上是把原来互相垂直的两邻边的角速 度平均值定义为该转轴的角速度。

《流体力学》流体力学基本方程

《流体力学》流体力学基本方程

2.2 描述流体运动的一些基本概念
2.2.1定常流与非定常流
流场中所有的运动 要素不随时间变化
u u(x, y, z)
(x, y, z)
p p(x, y, z)
u 0 t p 0 t
0
t
流场中有运动 要素随时间变化
u u(x, y, z,t)
(x, y, z,t)
p p(x, y, z,t)
p p(x, y, z,t) (x, y, z,t)
x, y, z ,t--欧拉变量,其中x,y,z与时间t有关。
欧拉法是常用的方法。
5
16 October 2021
欧拉法中的加速度 -- 质点速度矢量对时间的变化率。
a
u t
ux
u x
uy
u y
uz
u z
三个分量:
ax
ux t
ux
ux x
拉格朗日法 从流体质点的运动着手,描述每一个流体质点自始至 终的运动过程。如果知道了所有流体质点的运动规律,那么整个流 体的运动规律也就清楚了。是质点--时间描述法。
质点运动的轨迹
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
ln x t ln y t ln c
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
y x
12
16 October 2021
2. 求迹线
将已知速度分布代入式(2.2.1)可得
dx x t, dy ( y t), dz 0

流体力学第六章流体动力学积分形式基本方程

流体力学第六章流体动力学积分形式基本方程

右端为零。
第1页
退出 返回
第六章 流体动力学积分形式基本方程
第三节 动量矩方程
例题6.3 如图6.4所示,离心压缩机叶轮转
速为 ,带动流体一起旋转,圆周速度
为 u ,流体沿叶片流动速度为w ,流量
为Q,流体密度为 ,求叶轮传递给流体
的功率。
解:流体绝对速度为 c u w
当叶片足够多时,可认为流动是稳定的。取
则控制体内流体内能的增量将由辐射热提供,于是有
qR d
de dt
d
d dt
ed
qR
de dt
,即 (6.11)
第3页
退出 返回
第六章 流体动力学积分形式基本方程
第四节 能量方程
据系统导数公式(输运公式),有
d dt
ed
t
ed
A w
nedA
稳定流动时由式(6.11)、(6.12)可得
(6.12)
d
u
t
d
(b)
第4页
退出
返回
第六章 流体动力学积分形式基本方程
第二节 动量方程
将式(a),(b)代入式(6.4)得到
A wr nwrdA u
A wr ndA
Fd
A pndA
t
wrd
u t
d
u t
d
(c)
由连续性方程可知
u
t
d
uA
wr
ndA
0
,则(c)式变为
Awr nwrdA
第1页
退出
返回
第六章 流体动力学积分形式基本方程
第一节 连续性方程
如图6.1所示,令 为控制体体积,A为控制面面积,n为 dA 控制面外

流体动力学基本方程

流体动力学基本方程

Chapter 3 流体动力学基本方程例如求解定常均匀来流绕流桥墩时的桥墩受力问题:流场和桥墩表面受力由(边界条件+控制方程组)决定。

本章任务建立控制方程组,确定边界条件的近似描述和数学表达。

I 质量连续性方程(质量守恒方程) I-1方程的导出物质体(或系统)的质量恒定不变——质量守恒假设。

质量守恒假设对于很多流动问题是良好近似,分子热运动引起的系统与外界的物质交换可忽略不计。

在此假设下,对物质体τ有0dd dtτρτ=⎰。

根据输运定理,设t 时刻该系统所占控制体为CV ,对应控制面CS ,则有0CVCSd v ds tρτρ∂+⋅=∂⎰⎰⎰——质量守恒方程积分形式。

上式亦表明,CV 内单位时间内的质量减少=CS 上的质量通量。

由奥高公式得()CSCVv ds v d ρρτ⋅=∇⋅⎰⎰⎰,于是有()0CV v d t ρρτ∂⎡⎤+∇⋅=⎢⎥∂⎣⎦⎰。

考虑到τ的任意性,故有()0v t ρρ∂+∇⋅=∂,即 0d v dtρρ+∇⋅= ——质量守恒方程微分形式 I-2各项意义分析: 1)dt d ρ——流体微团密度随时间的变化率;定常流动0=∂∂t ρ;不可压缩流动0=dt d ρ;均质流体的不可压缩流动.const ρ=。

2)由0=dtmd δ(m δ为微团的质量)知11d d dt dt ρδτρδτ=-(δτ为该微团t 时刻体积),从而知v ∇⋅=流体微团体积随时间的相对变化率,即体膨胀率。

3)不可压缩流体0d dtρ=,故有 0v ∇⋅=。

由奥高公式有CVCSv ds vd τ⋅=∇⋅⎰⎰⎰,可见对于不可压缩流动,任意闭合曲面上有0CSv ds ⋅=⎰⎰。

不可压缩流动满足的0v ∇⋅=或0CSv ds ⋅=⎰⎰是对速度场的一个约束。

例1、1)定常流场中取一段流管,则由0CSv ds ⋅=⎰⎰易知:222111S V S V ρρ=;如为均质不可压缩流动,则1122V S V S =。

流体力学重要公式

流体力学重要公式

流体流动流体特性→流体静力学→流体动力学→流体的管内流动gΔZ+Δu2/2+Δp/ρ=W e-∑h f静压能:p/ρ,J/kg静压头:p/(ρg),m流体密度:ρ,kg/m3 ,不可压缩流体与可压缩流体压强差:Δp,Pa, mmHg,表压强,绝对压强,大气压强,真空度流体静力学基本方程:gΔz+Δp/ρ=0或p1/ρ+gZ1=p1/ρ+gZ1或p=p A+hρg应用:U型压差计gΔZ+Δu2/2+Δp/ρ=W e-∑h f位能:gZ,J/kg位头:Z,m截面的选择基准面的选定gΔz+Δu2/2+Δp/ρ=W e-∑h f动能:u2/2,J/kg动压头(速度头):u2/(2g),m流速:u, m/s当两截面积相差很大时,大截面上(贮液槽)u≈0流体在圆管内连续定态流动:u2=u1(d1/d2)2体积流速:q v, m3/s q v=uA质量流速:q m, kg/s q m=q vρ=uAρ流速测定:变压差(定截面)流量计:测速管/孔板/文丘里u=C(2Δp/ρ)1/2=C[2R(ρA-ρ)g/ρ]1/2孔板C=0.6-0.7;测速管/文丘里C=0.98-1.0变截面(定压差)流量计:转子流量计gΔZ+Δu2/2+Δp/ρ=W e-∑h f管路总阻力:∑h f=h f+h f’,J/kg;总压头损失:H f=∑h f/g,m对静止流体或理想流体:∑h f=0直管阻力:h f=λ.L/d.u2/2局部阻力:h f’=ζu2/2 (阻力系数法)或h f’=λ.L e /d.u2/2 (当量长度法)(进口:ζ=0.5;出口:ζ=1)雷诺准数:Re=duρ/μ, 流型判断管内层流:Re≤2000ur=Δp f/(4μL).(R2-r2), u=u max/2;λ=64/Re管内湍流:Re>2000λ=0.3164/Re0.25 (光滑管)λ=f(Re,ε/d)(粗糙管)牛顿黏性定律:τ=μ(du/dy)当量直径:d e=4流通面积/润湿周边长度gΔZ+Δu2/2+Δp/ρ=W e-∑h f有效功(净功):W e,J/kg;有效压头:H e=W e/g,m有效功率:P e=W e q m,W功率:P=P e/η非均相混合物分离及固体流态化非均相混合物(颗粒相+连续相)→相对运动(沉降/过滤)→分离颗粒相+连续相→固体流态化→混合沉降沉降(球形颗粒):连续相:气体/液体颗粒受力:(重力/离心)场力-浮力-阻力=ma沉降速率重力沉降离心沉降ζ=f(Re t,υs),Re t=du tρ/μ<10-4-1(层流区),ζ=24/ Ret离心分离因数沉降设备设计沉降条件:θ≥θt重力沉降:降尘室离心沉降:旋风分离器生产能力qv=blu t q v=hBu i(q v与高度无关)n层沉降室q v=(n+1)blu t过滤(滤饼过滤)恒压滤饼过滤(忽略过滤介质阻力)K过滤常数:K=2k(Δp)1-s, m2/s;*K取决于物料特性与过滤压差;单位过滤面积所得的滤液体积q=V/A,m3/m2;单位过滤面积所得的当量滤液体积q e=V e/A,m3/m2;s-滤饼的压缩性指数每得1m3滤液时的滤饼体积υ(1m3滤饼/1m3滤液)体积为V W的洗水所需时间θW = V W/(dV/dθ)W过滤机的生产能力(单位时间获得的滤液体积)间歇式连续式Q=V/T=V/(θ+θW+θD)若V e可忽略转筒表面浸没度ψ=浸没角度/3600转筒转速为n-- r/min,过滤时间θ=60 ψ/n传热传热方式及定律热传导:傅立叶定律对流:牛顿冷却定律辐射;斯蒂芬-波耳兹曼定律:E b=σ0T4=C0(T/100)4传热基本方程Q=KS△t m换热器的热负荷用热焓用等压比热容用潜热两平行灰体板间的辐射传热速度Q1-2Q1-2=C1-2S[(T1/100)4-(T2/100)4对流和辐射联合传热总散热速率:Q=Q c+Q R=αTS w(t w-t b)αT=αc+αR恒温传热△t m=T-t变温传热:平均温差*逆流和并流错流和折流温差校正系数=f(P,R)传热单元数法计算确定C min→NTU,C R→ε→由冷热流体进口温度和ε→冷热出口温度传热表面积S=Q/(K△t m)热传导和对流联合传热总传热系数R so,R si垢阻;壁阻对流传热系数αi,αo流体有相变时的对流传热系数层流膜状冷凝时:努塞尔特方程湍流液膜冷凝时:水平管外液膜冷凝时:液体沸腾传热系数:罗森奥公式:α=(Q/S)/Δt蒸发蒸发器的热负荷Q,kJ/hQ=D(H-h c)=WH’+(F-W)h1-Fh c+Q L冷凝水在饱和温度下排出Q=Dr=WH’+(F-W)h1-Fh0+Q L溶液稀释热可忽略D=[Wr’ +Fc0(t1–t0)+Q L]/rr’=(H’-c W t1)近似可作为水在沸点t1的汽化热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g 2 g
u S
压强沿流线法向的变化
ar

fr

1

p r
ar
u2 r
fr
g cos
g
z r
u 2 (gz p )
r
r

r
g
u S
当曲率半径很大时, 上式左边可忽略不计, 故沿流线的
法向有
z
p
g
C1
缓变流与急变流概念
总流的伯努利方程
分叉情况:
H 01 H 02 hw12 H 01 H 03 hw13 Q1 Q2 Q3
例 已知: d=200mm H=4.5m Q=100 (l/s)
求: 水流的总水头损失
解:
1
1
选1-1与2-2两个断 面间的流动
hw

z1

p1
g
1V12
2g
(z2

p2
解: 1-1与2-2两截 面间流动, 由伯努 利方程有
1
8m
1.5m 1
0
A
0
c 3.5m
2 2B
V2
H 01

z2

p2
g
V22 2g
8m
列1-1与c断面间能量方程有
V22 2m Vc2
2g
2g
H 01

zc

pc
g
cVc2
2g
pc
g

H 01 zc
Vc2 2g
通过过流断面将元流积分
(A)
(V12 2g

p1
g

z1)gVdA
(V22 2g

p2
g

z2 )gVdA
hw' gdQ
(z
A

p
g
) gV dA
考虑恒定渐变流 (缓变流)
z pdA-(p+dP)dA+gdAdlcos=0
dp+g dz=0
z+p/(g )=C
0
x

A
称为动能修正系数, 一般为1
(C )
hw' gVdA hw gQ
A
由 则有
z1
p1
g
1V12
2g

z2

p2
g
2V22
2g
hw
H0

z

p
g

V 2
2g
H 01 H 02 hw
总流能量方程的应用
应用条件:
(1)恒定(定常) (2)不可压流体 (3)重力场 (4)所选过流断面流动均匀或渐变流 (5)无其它能量的输入或输出 (6)总流量沿程不变
x y z


(5)沿流线 有v=u(dy/dx) w=u(dz/dx)
du dx du udt udu d u2
dt dt
2
dv dy d v2
dt
2
dw dz d w2
dt
2
u u u u
1 p
t
u
x
v
y
w z

fx


x
(a)
v u v v v w v
若存在能量的输入或输出 则有 H H01 H02 hw
其中H表示流体机械输入给单位重量流体的机械能
伯努利方程应用
一.小孔定常出流 二.毕托管测速原理 三.文丘里流量计
例 已知无穷远 V=1.2m/s , p=0
求:驻点处的压强ps 解:
V
p
s
V2 2g

p

z
Vs2 2g
t s
2
由0-0到1-1点积分有
p0 0
h 1
x
1
l
s1 u
s0 t
ds gz1
p1

u2 2

gz0

p0

u02 2
积分得
du
u2
l gh
dt
2
u du
0 gh u 2
1 l
t
dt
0
2
u 2 gh tanh(
t 0 u0 2 gh
t) 2l
g

2V22
2g
)
H
2 2
将H=z1-z2和p1=p2=0 及 V1=0 2=1.0 则有
hw

H
Байду номын сангаасV22 2g

H

Q2 2 gA2
hw

4.5

2

0.12 9.8 0.0312
4.5 0.53 3.97(m)
例 已知: zc=9.5m zB=6m 不计损失
求: c 点压能和动能
(z

p
g
) gVdA

g (z

p
g
)Q
dA p
dz dl

G P+dP
(B)
V 2 gVdA gV 3 (V )3 dA
A 2g
2g A V

gV
2g
2
VA A
V ( AV
)3 dA (gQ) V 2
2g
1

A
V ( AV
)
3
dA


1 (V )3 dA AA V
t
x y
z

fy

1

p y
(b)
w u w v w w w
t
x y
z

fz

1

p z
( c)
(a)dx+(b)dy+( c)dz
积分得
u2 v2 w2
p
d(
) dW d( )
2

V2 p d( W) 0
2
V2 2

p

dds 2r cos
gdAdscos
0
cos dz
ds
cos dr
ds
d ( gz p Vr2 2r 2 ) 0
ds
2
2
叶轮机械内相对运 动的伯努利方程
对于同一流线上任意两点, 可写为
dvr
dt p p ds
s
s


dA
p
z1

p1
g
理想
定常 重力场 不可压
沿流线S伯努利积分
as

fs
1

p s
as

u t
u
u s
u u s

fs

1

p s
r
g
fs

g cos

g
z s
u u g z ( p )
s
s s

p u2
(gz ) 0
s
2
z p u2 C
8 9.5 2 3.5m
叶轮机械内相对运动的伯努利方程
叶轮
S
微元体
叶片

R2
R1 r
0
叶轮
S
微元体
叶片

R2
R1 r
dvr
dt p p ds
s
s


dA
p

0
S方向的力平衡方程为(座标固结叶轮上)
o
pd ( p
p s
ds)d ddsVr
Vr s
U形管中液体的振荡

x
0
l 0
u t
ds

gz1

p1


u12 2

gz0

p0

u02 2
du l gx(sin sin )
dt
u dx dt
x
1


d2x dt 2


2
x

0
x x0 sin(t)
g(sin sin )
l
作业 : 3-11 3-15
预习 第三章 理想流体动力学基 本方程
§3-11动量方程和动量矩方 程及其应用
Vr21 2g
2 (r22 r12 )
2g

z2

p2
g
Vr22 2g

H1

2 (R22
2g
R12 )

H2
o
可对流体机械 (水轮机, 汽轮机, 水泵, 风机) 的解释
非定常流动的伯努利方程
0
一. 容器旁管非定常出流
u (gz p u 2 ) 0
第三章 理想流体动力学基本方程
• §3-6 压强沿流线法向的变化 • §3-7 总流的伯努利方程 • §3-8 伯努利方程应用举例 • §3-9 叶轮机械内相对运动的伯努利方程 • §3-10 非定常流动的伯努利方程
伯努利方程
(1)理想 (2)恒定
u u u u
1 p
t
u x
v y
w z

fx


x
v u v v v t x y
w v z

fy
相关文档
最新文档