理想流体动力学基本方程
流体动力学基本方程

例题1求流体作用于闸门上的力。(设渠宽) 解:取控制体如图所示,根据假定只需讨论动量方程的方向分量方程。
闸门受合力= 代入动量方程方程得 故 注:求时可直接设。 注 微分形式的动量定理也可由积分形式的动量定理导出,推导过程如 下: 其中,因而得到
。 上式表明:流体团总动量的变化率=组成该流体团的流体质点的动量变 化率之和。 另外,, 综上可得,再考虑到系统大小形状的任意性可得。 尽管得到了流动的动量方程,但是不像经典力学有了动量定理就可以求 解质点运动一样,流体运动的动量方程中应力张量等于什么我们还不知 道,并且速度的随体导数同时包含空间导数和时间导数,使得我们不仅 需要初始条件,还需要边界条件才能确定一个具体流动。 3兰姆—葛罗米柯形式的动量方程
第二章流体的运动

2、稳定流动 流线上任一点速度大小、方向都不随时间变化,即流线的形
状保持不变
流线即流体质元的运动轨迹 3、性质 (1)流线不能相交 (2)在某一流管内,外面流线不能流进来,里面流线不能流 出去
第二节 连续性方程 伯努利方程
一、理想流体的连续性方程
在稳定流动中,假设一段细流管,且任一截面上的各物理量都 可以看成均匀的,即(ρ1、S1、v1)和( ρ 2、S2、v2) 经过t时间,通过截面S1流入流管质量为
S AvA S B vB
Q 0.12 vA 12(m / s ) 2 S A 10
Q 0.12 vB 20(m / s ) 2 S B 0.6 10
又根据伯努力方程有
1 1 2 2 PA gh A v A PB ghB v B 2 2
1 1 2 2 PB PA gh A v A ghB v B 2 2 1 1 2 2 PA g (h A hB ) v A v B 2 2 4 5.24 10 ( Pa)
S1v1 S2v2
Sv 常量
体积流量守恒定律
说明:
1、条件:(1)理想流体 (2)稳定流动 2、单位时间内质量流量: Q= ρ Sv(单位:kg/s)
(S1, v1)
(S, v) (S2, v2)
3、单位时间内体积流量:
V=Sv(单位:m3/s) 4、S与v成反比,S大v小,S小v大。 5、流管有分支时:
(2)假设在另一个开一小孔,其离液面高度为h',按上 述计算方法可求得其射程为
若有相同射程,即有s=s' 解得 h'=H-h
(3)要使s最大,只要求s的极大值即可 求得 最大射程为H
03.流体动力学方程-柏努利方程

流体动力学方程-柏努利方程Hydrodynamics Equation -Bernoulli equation任课教师:蒋炜流体流动的物料衡算Material Balance of Fluid物料衡算是计算化工过程所处理的物料量(原料量、半成品量、成品量及副产物量)之间的关系物料衡算的基本方程式即进料量-出料量=积累量∑∑F-D=AMaterial Balance in Steady Flow在稳定连续流动系统中,对直径不同的管段作物料衡算,如图1-8所示。
以管内壁、截面1-1′与2-2′为衡算范围。
由于把流体视连续为介质,即流体充满管道,并连续不断地从截面1-1′流入、从截面2-2′流出。
1m q 2m qMaterial Balance in Steady Flow 对于连续稳态的一维流动,如果没有流体的泄漏或补充,由物料衡算的基本关系:输入质量流量=输出质量流量12m m q q 1m q 2m q因推广到管路上任何一个截面,即:上式称为管内稳定流动的连续性方程式。
Continuity Equationm q uA ρ=1122...m q u A u A u A constρρρ=====1122m q u A u A ρρ==Continuity Equation连续性方程式反映了在稳定流动系统中,流体流经各截面的质量流量不变时,管路各截面上流速的变化规律。
此规律与管路的安排以及管路上是否装有管件、阀门或输送设备等无关。
若流体视为不可压缩流体,则连续性方程可改写为1122...u A u A uA const ====Continuity Equation对于在圆管内作稳态流动的不可压缩流体流体流动的连续性方程式仅适用于稳定流动时的连续性流体。
21121122A d u u u A d ⎛⎫== ⎪⎝⎭例Example例:在稳态流动系统中,水连续从粗管流入细管。
粗管内径为细管的两倍,求细管内水的流速是粗管内的多少倍?解:水可看为不可压缩流体,则满足因此得:,因为,所以1122m q u A u A ==21121122A d u u u A d ⎛⎫== ⎪⎝⎭22112()u d u d =122d d =222122()4u d u d ==Conservation of mechanical energy and Bernoulli equation柏努利方程式是流体流动中机械能守恒和转化原理的体现。
流体力学理论基础

3.2.2 伯努利方程
3.3 流动阻力基本概念
流体旳平衡—流体静力学基础
3.1.1 平衡状态下流体中旳应力特征
1、流体静压力方向必然重叠于受力面旳内法向方向
n
A
c
b
B
P
a
2、平衡流体中任意点旳静压强只能由该点旳坐标位置
决定,而与该压强作用方向无关。
z
c
pn
dz py
px dy O dx b
a
pz
x
PyD g sin J x
PyD ghc AyD gyc sin AyD
gyc sin AyD g sin J x
根据面积二次力矩平行移轴定理
J x Jc yc2 A
yD
yC
JC yC A
常见图形旳几何特征量
常见截面旳惯性矩
y
z h
b
Jc
bh3 12
y
dz
Jc
d4
64
0
0'
p0=p=pa+ρgh0
h0=(p-pa) /ρg =(119.6-100)×103/(1000×9.81)=2.0m
3.1.5 均质流体作用在平面上旳液体总压力
p0
O
C点为平面壁旳形心,
a
hD
hc h dp P
y
yc
D点为总压力P旳作用点 取微元面积dA,设形
bα
yD
dA
心位于液面下列h深处
T
A hE
hc
HP
D
B 60
解:闸门形心
hc 1.5m
总压力
P hc A
98001.5 ( 3 1) sin 60
理想流体动量传输方程——欧拉方程

x方向: (1)压力
p p dy
y
z
D
C
P
P
P x
dx
dydz
P x
dxdydz
E
p
pF
p p dx x
(2)体积力
A
B
Xρdxdydz
(3)流体加速度
ma dxdydz dux
dt
H
p p dz
G
p
0
z
x
y
理想流体微小平行六面体
ma F dxdydz dux Xdxdydz p dxdydz
用矢量表示—— W 1 P Du
Dt
(3.39)
3.3 理想流体动量传输方程——欧拉方程
把
dux dt
ux t
ux
ux x
uy
ux y
uz
ux z
ax
代入式(3.38)得:
(3.5)
X Y
1
1
P x P y
ux t u y
t
ux ux
ux x u y
x
uy uy
ux y u y
yz
y z y
dy
yz
yx
yx y
dy
pyy
p y y x
ydy
0
x
实际流体微小平行六面体
3.4 实际流体动量传输方程——纳维尔-斯托克斯方程
微元体受力分析(续):
垂直于 z轴的两个平面
z
底面
压应力: pzz
切应力: zx、 zy
zy
zy z
dz
pzz
pzz z
dz
zx
zx z
流体力学重要公式

流体流动流体特性→流体静力学→流体动力学→流体的管内流动gΔZ+Δu2/2+Δp/ρ=W e-∑h f静压能:p/ρ,J/kg静压头:p/(ρg),m流体密度:ρ,kg/m3 ,不可压缩流体与可压缩流体压强差:Δp,Pa, mmHg,表压强,绝对压强,大气压强,真空度流体静力学基本方程:gΔz+Δp/ρ=0或p1/ρ+gZ1=p1/ρ+gZ1或p=p A+hρg应用:U型压差计gΔZ+Δu2/2+Δp/ρ=W e-∑h f位能:gZ,J/kg位头:Z,m截面的选择基准面的选定gΔz+Δu2/2+Δp/ρ=W e-∑h f动能:u2/2,J/kg动压头(速度头):u2/(2g),m流速:u, m/s当两截面积相差很大时,大截面上(贮液槽)u≈0流体在圆管内连续定态流动:u2=u1(d1/d2)2体积流速:q v, m3/s q v=uA质量流速:q m, kg/s q m=q vρ=uAρ流速测定:变压差(定截面)流量计:测速管/孔板/文丘里u=C(2Δp/ρ)1/2=C[2R(ρA-ρ)g/ρ]1/2孔板C=0.6-0.7;测速管/文丘里C=0.98-1.0变截面(定压差)流量计:转子流量计gΔZ+Δu2/2+Δp/ρ=W e-∑h f管路总阻力:∑h f=h f+h f’,J/kg;总压头损失:H f=∑h f/g,m对静止流体或理想流体:∑h f=0直管阻力:h f=λ.L/d.u2/2局部阻力:h f’=ζu2/2 (阻力系数法)或h f’=λ.L e /d.u2/2 (当量长度法)(进口:ζ=0.5;出口:ζ=1)雷诺准数:Re=duρ/μ, 流型判断管内层流:Re≤2000ur=Δp f/(4μL).(R2-r2), u=u max/2;λ=64/Re管内湍流:Re>2000λ=0.3164/Re0.25 (光滑管)λ=f(Re,ε/d)(粗糙管)牛顿黏性定律:τ=μ(du/dy)当量直径:d e=4流通面积/润湿周边长度gΔZ+Δu2/2+Δp/ρ=W e-∑h f有效功(净功):W e,J/kg;有效压头:H e=W e/g,m有效功率:P e=W e q m,W功率:P=P e/η非均相混合物分离及固体流态化非均相混合物(颗粒相+连续相)→相对运动(沉降/过滤)→分离颗粒相+连续相→固体流态化→混合沉降沉降(球形颗粒):连续相:气体/液体颗粒受力:(重力/离心)场力-浮力-阻力=ma沉降速率重力沉降离心沉降ζ=f(Re t,υs),Re t=du tρ/μ<10-4-1(层流区),ζ=24/ Ret离心分离因数沉降设备设计沉降条件:θ≥θt重力沉降:降尘室离心沉降:旋风分离器生产能力qv=blu t q v=hBu i(q v与高度无关)n层沉降室q v=(n+1)blu t过滤(滤饼过滤)恒压滤饼过滤(忽略过滤介质阻力)K过滤常数:K=2k(Δp)1-s, m2/s;*K取决于物料特性与过滤压差;单位过滤面积所得的滤液体积q=V/A,m3/m2;单位过滤面积所得的当量滤液体积q e=V e/A,m3/m2;s-滤饼的压缩性指数每得1m3滤液时的滤饼体积υ(1m3滤饼/1m3滤液)体积为V W的洗水所需时间θW = V W/(dV/dθ)W过滤机的生产能力(单位时间获得的滤液体积)间歇式连续式Q=V/T=V/(θ+θW+θD)若V e可忽略转筒表面浸没度ψ=浸没角度/3600转筒转速为n-- r/min,过滤时间θ=60 ψ/n传热传热方式及定律热传导:傅立叶定律对流:牛顿冷却定律辐射;斯蒂芬-波耳兹曼定律:E b=σ0T4=C0(T/100)4传热基本方程Q=KS△t m换热器的热负荷用热焓用等压比热容用潜热两平行灰体板间的辐射传热速度Q1-2Q1-2=C1-2S[(T1/100)4-(T2/100)4对流和辐射联合传热总散热速率:Q=Q c+Q R=αTS w(t w-t b)αT=αc+αR恒温传热△t m=T-t变温传热:平均温差*逆流和并流错流和折流温差校正系数=f(P,R)传热单元数法计算确定C min→NTU,C R→ε→由冷热流体进口温度和ε→冷热出口温度传热表面积S=Q/(K△t m)热传导和对流联合传热总传热系数R so,R si垢阻;壁阻对流传热系数αi,αo流体有相变时的对流传热系数层流膜状冷凝时:努塞尔特方程湍流液膜冷凝时:水平管外液膜冷凝时:液体沸腾传热系数:罗森奥公式:α=(Q/S)/Δt蒸发蒸发器的热负荷Q,kJ/hQ=D(H-h c)=WH’+(F-W)h1-Fh c+Q L冷凝水在饱和温度下排出Q=Dr=WH’+(F-W)h1-Fh0+Q L溶液稀释热可忽略D=[Wr’ +Fc0(t1–t0)+Q L]/rr’=(H’-c W t1)近似可作为水在沸点t1的汽化热。
流体动力学

3)按照液体流动方向列出伯努利方程的一般形式;
4)忽略影响较小的次要参数,以简化方程; 5)若未知数的数量多于方程数,则必须列出其它辅助 方程,如连续性方程、静压力方程等联立求解。
伯努利方程应用举例
例1:如图示简易热水器,左端接冷水管,右端接淋浴莲蓬头。 已知 A1=A2/4 和A1、h 值,问冷水管内流量达到多少时才能 抽吸热水? 解:沿冷水流动方向列A1、A2截面的伯努利方程
2 1 1 2 2
注意: 1)截面1、2应顺流向选取,且选在流动平稳的通流截面上。 2)z和p应为通流截面的同一点上的两个参数,一般将其定在 通流截面的轴心处。
应用伯努利方程解题的一般步骤
1)顺流向选取两个计算截面:一个设在所求参 数的截面上,另一个设在已知参数的截面上; 2)选取适当的基准水平面;
伯 努 利 方 程 应 用 举 例
泵吸油口真空度
分析变截面水平管道各处的压力情况
求水银柱高度?
管中流量达多少时才能抽吸?
判断管中液体流动方向和流量?
动量方程
动量方程是动量定理在流体力学中的具体应用,可用来计算 流动液体作用在限制其流动的固体壁面上的总作用力。
∑F = Δ(m u)/Δt = ρq(u2 - u1)
例1:如图所示,进入液压缸的流量Q1是否等于缸排
出的流量Q2?
d1
d2
Q2
解: ∵油液是不连续的,不可用连续性方程。
Q 1≠ Q 2
例2 如图所示,已知流量 q1= 25L/min,小活塞杆直径d1=20mm,小活塞
直径D1=75mm,大活塞杆直径d2=40mm,大活塞直径D2=125mm,假设没有泄 漏流量,求大小活塞的运动速度v1,v2。
25 L / min
流体力学--伯努利方程

对于实际流体,如果粘滞性很小,如:水、空气、酒精等,可应用伯 努利方程解决实际问题;
对于确定流体内部各处的压力和流速有很大的实际意义、在水利、造 船、航空等部门有着广泛的应用。
伯努利方程的应用
水平流管的伯努利方程:
1 2 p 恒量 2
在水平流动的流体中,流速大的地方压强小;流速 小的地方压强大。 在粗细不均匀的水平流管中,根据连续性原理,管:水流抽气机、喷雾器、内燃机的汽化器的基本 原理都基于此;
稳定流动的理想流体中,忽略流体的粘滞性,任意细流管中的 液体满足能量守恒和功能原理!
设:流体密度,细流管中分析一段流体a1 a2 : a1处:S1,1,h1, p1
a2处:S2,2,h2, p2
经过微小时间t后,流体a1 a2 移到了b1 b2, 从 整体效果看,相当于将流体 a1 b1 移到了a2 b2, 设a1 b1段流体的质量为m,则:
伯努利方程的应用伯努利方程的应用飞机的机翼的翼型使得飞行中前面的空气掠过机翼向后时流经机翼上部的空气要通过的路程大于流经机翼下部的空气通过的路程因此上部空气流速大于下部空气的流速上部空气对机翼向下的压力就会小于下部空气对机翼向上的压力从而产生升力
伯努利方程是瑞士物理学家伯努利提出来的,是理想流体作稳定流动时的 基本方程,对于确定流体内部各处的压力和流速有很大的实际意义、在水 利、造船、航空等部门有着广泛的应用。
应用实例2.汾丘里流量计
汾丘里管:特制的玻璃管,两端较粗,中间较细,在较粗和较细 的部位连通着两个竖直细管。
汾丘里管水平接在液体管道中可以测定液体的流量;
1 2 p v 恒量 2
S 恒量
2 S1
2p1 p 2 2 p1 p 2 gH S1 S2 2