第六章理想流体动力学a
船舶流体力学第六章 势流理论

= Vx
- iVy
= V
\W
(z)=
dW dz
dz
=
V dz
=
V
z
6.5.2 点源
Q向四周流出 +
Q从四周流入 -
Vq =0
Q
Vr = 2pr
pqp qp 公式6.4.6
dw dz
=(Vr
-
iV q
) e-iq
d w = ( Q - i 0 ) · e - i = Q = Q d z 2 r 2 r e i 2 z
=0
\ V 2 +-U = C 2
(关于流线的常数)
条件 3)无旋 柯西 —— 拉格朗日积分
V=(f)=f
t t
t
V t +V22
+ -U+VV=0
\ft +V22+ -U=0
f \
ft +V22
+ -U
6.2 不可压势流的基本方程和边界条件
6.2.1 .不可压势流的质量守恒方程
V x
+ Vy
+ Vz
=0
x y z
f
Vx = x \
2f 2f 2f
x2 + y 2 + z 2 = 0
2f = 0 (拉普拉斯算子 2 ) 调和函数叠加性
6.2.2 .拉普拉斯 边界条件 速度场 压力分布 流体对固体的力
在空间中不变,只是时间的函数
V 2 + - U + = C ( t )
2 t
4)定常 则 V 2 +- U = C 在全部空间适用
2
6.2.3 边界条件和解法概述
流体力学第六章 旋转流体动力学

为了突出旋转流体的主要特征,下面着重讨论以偏向力有 重要作用的流体运动,此时,在运动方程中,偏向力项远 远大于运动的惯性项和粘性项。
Zhu Weijun NIM NUIST
假定流体运动满足: RO <<1 或者RO →0(即 Rossby 数很小);
Ek =
R0 →0 Re
同时要求: RO L/UT →0 (即要求T很大,1/T → 0,即 对应缓慢运动或者准定常流动)。
d aV a = dt
∑F
i
i
考虑地球的旋转效应,引进的旋转坐标系;前面给 出旋转坐标系与惯性坐标系之间的基本关系,以下 通过分析,得出适用于描述旋转流体的运动方程。
Zhu Weijun NIM NUIST
daVa dVa = + ΩΛVa ⇒ dt dt
d aVa d V + ΩΛr = + ΩΛ V + ΩΛr ⇒ dt dt
da d = + ΩΛ dt dt
① ② ③
①绝对变化项 ②相对变化项 ③牵连变化项
Zhu Weijun NIM NUIST
对于任意矢量
A
,满足:
da A dA = + ΩΛA dt dt
该算子是联系惯性坐标系与旋转坐标系的普遍关系。
Zhu Weijun NIM NUIST
(惯性)静止坐标系 绝对坐标系
此时,无量纲方程变为:
1 1 1 2kΛV′ = − ρ′ ∇′p′ + Fr g′ R0
Zhu Weijun NIM NUIST
方程进一步处理: 考虑压力梯度力项(两种情况): ①假设流体不可压: 1 p′ ρ ′ = const ⇒ − ∇′p′ = −∇′( ) ρ′ ρ′ ②正压流体:
流体力学

2008年真题:盛水容器a 和b 的上方密封,测压管水面位置如 图所示,其底部压强分别为pa与pb若两容器内水深相等, 则pa与pb的关系为: (A) pa pb (B) pa pb (C) pa pb (D)不能确定 答案:A
等压面的概念
由压强相等的点连成的面,称为等压面。等压面 可以是平面,也可以是曲面。
第六章 流 体 力 学
6.1流体的主要物性与流体静力学
6.1.1 流体的连续介质模型 1.假设液体是一种连续充满其所占据空间的毫无空隙的连 续体。流体力学所研究的液体运动是连续介质的连续流动。 意义:使描述液体运动的一切物理量在空间和时间上连续, 故可利用连续函数的分析方法来研究液体运动。 2.流体质点:指微观充分大(其中包含大量分子),宏观
连通容器
连通容器
连通器被隔断
2009年真题 : 1.静止的流体中,任一点的压强的大小与下列哪一项无关? (A) 当地重力加速度 (B) 受压面的方向
(C) 该点的位置
答案:B 2009年真题:
(D) 流体的种类
静止油面(油面上为大气)下3m深度处的绝对压强为下列哪一 项?(油的密度为800kg/m3,当地大气压为100kPa)
充满以流管为边界的一束液流,称为微小流束,也叫元流。
性质:微小流束内外液体不会发生交换;恒定流微小流束的 形状和位置不会随时间而改变,非恒定流时将随时间改变; 横断面上各点的流速和压强可看作是相等的。 任何一个实际水流都具有一定规模的边界,这种有一 定大小
尺寸的实际水流称为总流。总流可以看作是由无限多个微小
1.渐变流过流断面近似为平面 2.恒定渐变流过流断面上流体动压近似按静压分布,同一 过流断面:z+p/(ρg)=c
第六章 理想流体不可压缩流体的定常流动

厚度)的体积流量等于两条流线的流函数之差,
与流线形状无关。
QAB
ABVndS
dx dy
AB x
y
B d
A
B A
§4 理想不可压缩流体的平面势流
三、速度势函数
1、速度势函数 存在的条件:
在无旋流动中每一个流体微团的速度都要以下条件:
u w z x
v u x y
w v y z
u v 0 x y
u v (连续性方程) x y
udy vdx 0 (流线方程)
根据数学分析可知,不可压缩流体平面流动的连续性条件是 udy vdx 0 成
为某一函数全微分的充分和必要条件,这个函数为流函数 。
d dx dy vdx udy
x
y
u
y
v
x
§4 理想不可压缩流体的平面势流
p4 p5 m gh p3 m gh
及
z4 z5 h z3 h
将上两式代入(d)式可得
gz 2
p2
g(z3
h)
p3
m gh
(e)
文特里流量计:一维平均流动伯努利方程
将(c)、(e)式代入(b)式,整理后可得
V22 V12 ( m 1)gh
2
由连续性方程
V2
A1 A2
V1
由一维平均流动伯努利方程
V12 2
gz1
p1
V22 2
gz2
p2
(a)
移项可得
V22
V12 2
(gz1
p1
)
(
gz
2
p2 )
(b)
文特里流量计:一维平均流动伯努利方程
第六章理想流体不可压缩流体的定常流动

(粘性系数为常数)
Du 1 p 2u 2u 2u gx Dt x x 2 y 2 z 2
Dv 1 p 2v 2v 2v gy 2 2 2 Dt y x y z
流动条件,截面为A 1、A 2,平均速度为V 1、
V 2,流体密度为ρ. 由一维平均流动伯努利方程
V12 p1 V22 p gz1 gz 2 2 2 2
移项可得
(a)
V22 V12 p p ( gz1 1 ) ( gz 2 2 ) 2
(b)
文特里流量计:一维平均流动伯努利方程 A1、A2截面上为缓变流,压强分布规律与U 形管内静止流体一样,可得
讨论: 1、上式为非定常不可压缩理想流体欧拉运动微分方程。 DV 0 上述方程变成流体静力学中的欧拉平衡微分方程。 2、 Dt 1 g p 0 V 0 此时的理想流体欧拉运动微分方程变成定常不可压缩理 3、 t 想流体欧拉运动微分方程。 1 V V g p
基本方程组:
动量方程:
u u u 1 u v fx t x y v v v 1 u v fy t x y
p x p y
V 1 V V g p t
定常
连续性方程:
V 不考虑重力 0 t u v w D 0 Dt x y z u v 0 x y v u 0 x y
ρ,U 形管中液体密度ρm .
求:
用液位差Δh表示流速v
毕托测速管 解: 设流动符合不可压缩无粘性流体 定常流动条件。 AOB线是一条流线(常称为零流线), 沿
理想流体动力学

∂ϕ ∂z
利用梯度的概念,可类推出 vl =
∂ϕ 。 (参加书上的推导方式) ∂l
2.存在势函数的流动一定是无旋流动 设某一流动,存在势函数 设某 流动,存在势函数 ϕ ( x, y, z, t ) ,其流动的角速度分量:
1 ∂ ∂ϕ 1 ∂ 2ϕ ∂ 2ϕ 1 ∂v y ∂vx ∂ ∂ϕ ωz = ( ) = [ ( ) − ( )] = ( − )=0 − 2 ∂x ∂y 2 ∂x ∂y ∂y ∂x 2 ∂x∂y ∂x∂y
这说明, 一点的速度矢量与过该点的等势面是垂直的, 又因为速度矢 量与流向平行 可推知流线与等势面是正交的 量与流向平行,可推知流线与等势面是正交的。
4.势函数是调和函数(满足拉普拉斯方程的函数称为调和函数) ,对 不可压缩流体,连续性方程为: 缩 连
∂v x ∂v y ∂v z + =0 + ∂x ∂y ∂z
从上所见,在不可压缩流体有势流动中,拉普拉斯方程实质是连续 性方程的一种特殊形式,这样把求解无旋流动的问题,转化为求解一定 边界条件下的拉普拉斯方程的问题。 Laplace l 方程是一个线性方程,其解具有可叠加性,如: 方程是 个线性方程 其解具有可叠加性 如 ϕ1 ,ϕ 2 是 方程的解,则ϕ1 + ϕ 2 也是方程的解。利用这一性质,分析研究一些简单 的势流 然后叠加可组成比较复杂的势流 的势流,然后叠加可组成比较复杂的势流。 三、流函数 在三维、理想、不可压缩无旋流动中,由于存在速度势函数ϕ ,而 使问题大为简化。 对于不可压缩流体的平面运动(有旋、无旋) 缩 体 平 动 有旋 无旋 ,还存在另一个表征 存在另 个 征 流动的函数—流函数。且不同的流函数数值代表不同的流线。如下图所 示:
将用势函数表示的速度分量:v x = 得:
流体力学第六讲

八、流量 : 单位时间内流过某一过流断面的流 体体积。
q
dq = v dA
m3/s
l/min
—— 微小流束过流断面的流量。
q = A v dA —— 流束过流断面的流量。
九、断面平均流速 :假想的过流断面上各点处
q v A
都相等的流速。
§3-3 连续方程式(一元流动)
物理本质:控制体中流体质量的增量,必然等于
2
2
物理意义:重力作用下,理想不可压缩流体作定
常流动时,各点处不同性质的流体能量之间可以
相互转换,但在流线任意点处总的机械能守恒。
二、理想流体总流(流束)的伯努利方程
总流 —— 流体通过有限过流断面的流动。
表达了两个过流断面处流体能量的关系,但 要以过流断面上的平均值表示。 1、动能项
以断面平均流速将动能表示为:
p1 1v1 p2 1v2 所以: z1 z2 hf g 2g g 2g
2 2
式中: hf —— 单位重力流体沿总流从1 断面流 到 2 断面,为克服粘性摩擦力而消耗的机械能, 称为能量损失或水头损失。
应用伯努利方程解决工程实际应用问题时应注意 以下几点: 1、适用条件:不可压缩流体、定常流动、质量 力只有重力作用。
考虑粘性后与“理想”的区别: • hf 项 • 过流断面上流速分布不均匀, 用 要用 修正.
v
求动能时,
(4)伯努利方程的两种形式 • 沿流线的伯努利方程 用于求流线上某点 的 v、p 或 z ; • 沿总流的伯努利方程 用于求过流断面上 的平均流速 v,及某点的压强 p 或位置高度 z 。
(5)方程中的压强 p 可以是绝对压强或相对压强。 (6)缓变流动 流线平行或曲率半径很大处 的流动。 p 特点:沿流线法向,位置水头 z 与压强水头 g 之和是一个常数。 p z 两个过流断面须取在缓变流处,此时, g 可在断面上任意一点处取值。 对于管流则常在管轴线上取值。
第六章 理想流体动力学(2)

ρ
+
2
=
ρ
∞
+
∞
将圆柱面上的速度带入上式,可得圆柱面上的压强分布: 将圆柱面上的速度带入上式,可得圆柱面上的压强分布:
2 1 Γ 2 p = p∞ + ρ v∞ − −2v∞sinθ − 2 2π r0
9
2 1 Γ 2 p = p∞ + ρ v∞ − −2v∞sinθ − 2 2π r0
r02 ∂ϕ = v∞ 1 − 2 cosθ vr = ∂r r
2 r0 ∂ϕ Γ vθ = = −v∞ 1 + 2 sinθ − r ∂θ 2π r r
这说明,流体只有沿着圆周切线方向的速度,流体与圆柱体 这说明,流体只有沿着圆周切线方向的速度, 圆周切线方向的速度 没有分离现象,满足流体不能穿入和不能穿出的条件, 没有分离现象,满足流体不能穿入和不能穿出的条件,即圆 柱面的绕流条件。 柱面的绕流条件。
11
D = Fx = − ∫
2π
0
pr0 cosθ dθ
L = F柱表面压强表达式代入上式得: 将圆柱表面压强表达式代入上式得: 表面压强表达式代入上式得
2 2π 1 Γ 2 D = − ∫ p∞ + ρ v∞ − −2v∞ sinθ − r0 cosθ dθ = 0 0 2 2π r0
r0和 v∞ 不变的情况下,θ 分 只与 Γ 有关。 不变的情况下, 有关。
6
以下分三种情况讨论: 以下分三种情况讨论: 1、 当 Γ < 4πr0 v∞ 时, 、
sinθ < 1, sin(− θ ) = sin[- (π − θ )]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 理想流体动力学 6-1平面不可压缩流体速度分布为Vx=4x+1;Vy=-4y.(1) 该流动满足连续性方程否? (2) 势函数φ、流函数ψ存在否?(3)求φ、ψ 解:(1)由于044=-=∂∂+∂∂yVyx Vx ,故该流动满足连续性方程 (2)由ωz =21(y Vx x Vy ∂∂-∂∂)=)44(21+-=0, 故流动有势,势函数φ存在,由于该流动满足连续性方程, 流函数ψ存在,. (3)因 Vx yx ∂∂=∂∂=ψϕ=4x+1 Vy=y∂∂φ=-x ∂∂ψ=-4y d φ=x∂∂φdx+y ∂∂φdy=Vxdx+Vydy=(4x+1)dx+(-4y)dyφ=⎰d φ=⎰x∂∂φdx+y ∂∂φdy=⎰Vxdx+Vydy=⎰ (4x+1)dx+(-4y)dy=2x 2-2y 2+x d ψ=x∂∂ψdx+y ∂∂ψdy=-Vydx+Vxdy=4ydx+(4x+1)dyψ=⎰d ψ=⎰x∂∂ψdx+y ∂∂ψdy=⎰-Vydx+Vxdy=⎰ 4ydx+(4x+1)dy=4xy+y6-2 平面不可压缩流体速度分布:Vx=x 2-y 2+x; Vy=-(2xy+y).(1) 流动满足连续性方程否? (2) 势函数φ、流函数ψ存在否? (3)求φ、ψ . 解:(1)由于x Vx ∂∂+x Vy∂∂=2x +1-(2x +1)=0,故该流动满足连续性方程,流动存在. (2)由ωz =21(y Vx xVy ∂∂-∂∂)=))2(2(21y y ---=0, 故流动有势,势函数φ存在,由于该流动满足连续性方程,流函数ψ也存在.(3)因 Vx=x∂∂φ =y ∂∂ψ= x 2-y 2+x, Vy=y ∂∂φ=-x ∂∂ψ=-(2xy+y).d φ=x∂∂φdx+y ∂∂φdy=Vxdx+Vydy=(x 2-y 2+x )dx+(-(2xy+y).)dyφ=⎰d φ=⎰x∂∂φdx+y ∂∂φdy=⎰Vxdx+Vydy =⎰ (x 2-y 2+x )dx+(- (2xy+y))dy=33x -xy 2+(x 2-y 2)/2 d ψ=x∂∂ψdx+y ∂∂ψdy=-Vydx+Vxdyψ=⎰d ψ=⎰x∂∂ψdx+y ∂∂ψdy=⎰-Vydx+Vxdy =⎰(2xy+y)dx+ (x 2-y 2+x)dy=x 2y+xy-y 3/36-3平面不可压缩流体速度势函数 φ=x 2-y 2-x,求流场上A(-1,-1),及B(2,2)点处的速度值及流函数值 解: 因 Vx=x ∂∂φ =y ∂∂ψ=2x-1,V y =y x y 2-=∂∂-=∂∂ψφ,由于x Vx ∂∂+xVy ∂∂=0,该流动满足连续性方程,流函数ψ存在d ψ=x∂∂ψdx+y ∂∂ψdy=-Vydx+Vxdyψ=⎰d ψ=⎰x∂∂ψdx+y ∂∂ψdy=⎰-Vydx+Vxdy=⎰2ydx+(2x-1)dy=2xy-y在点(-1,-1)处 Vx=-3; Vy=2; ψ=3 在点(2,2)处 Vx=3; Vy=-4; ψ=66-4已知平面流动流函数ψ=x+y,计算其速度、加速度、线变形率εxx,εyy, 求出速度势函数φ.解: 因 Vx=x∂∂φ=y ∂∂ψ= 1Vy=y∂∂φ=-x ∂∂ψ=-1d φ=x∂∂φdx+y ∂∂φdy=Vxdx+Vydyφ=⎰d φ=⎰x∂∂φdx+y ∂∂φdy=⎰Vxdx+Vydy=⎰dx+(-1)dy=x-yyv x v y yy xxx ∂∂=∂∂=εε, a x=0=∂∂+∂∂+∂∂=y Vx Vy x Vx Vx t Vx dt dVx ; a y =0=∂∂+∂∂+∂∂=yVyVy x Vy Vx t Vy dt dVy 6-5一平面定常流动的流函数为(,)x y y ψ=+试求速度分布,写出通过A (1,0),和B (2.解:1x v y ψ∂==∂, y v xψ∂=-=∂平面上任一点处的速度矢量大小都为2=,与x 和正向夹角都是060=。
A 点处流函数值为3-•301-=+,通过A 点的流线方程为y +=样可以求解出通过B 点的流线方程也是y +=6-6平面不可压缩流体速度势函数 φ=ax(x 2-3y 2),a<0,试确定流速及流函数,并求通过连接A(0,0)及B(1,1)两点的连线的直线段的流体流量. 解: 因 Vx=x∂∂φy ∂∂=ψ=a(3x 2-3y 2) Vy=y∂∂φ=-x ∂∂ψ=-6axy d ψ=x∂∂ψdx+y ∂∂ψdy=-Vydx+Vxdy=6axydx+a(3x 2-3y 2)dyψ=⎰d ψ=⎰x∂∂ψdx+y ∂∂ψdy=⎰-Vydx+Vxdy=⎰6axydx+a (3x 2-3y 2)dy =3a x 2y-ay 3在A(0,0)点 ψA =0; B (1,1)点ψB =2a ,q=ψA-ψB =-2a. 6-7 证明以下两流场是等同的,(Ⅰ)φ=x 2+x-y 2, (Ⅱ)ψ=2xy+y. 证明:对 (Ⅰ)φ=x 2+x-y2Vx=x ∂∂φ=2x+1 Vy=y∂∂φ=-2y 对 (Ⅱ) ψ=2xy+yVx y∂∂=ψ=2x+1 Vy=-x∂∂ψ=-2y 可见φ与ψ代表同一流动.6-8 已知两个点源布置在x 轴上相距为a 的两点,第一个强度为2q 的点源在原点,第二个强度为q 的点源位于(a, 0)处,求流动的速度分布(q >0)。
解: 两个流动的势函数分别为2/122)ln(22y x q +π及2/122))ln(2y a x q+-π, 合成流动的势函数为=φ2/122)ln(22y x q +π+2/122))ln((2y a x q+-π,(x x v x ∂∂=∂∂=φ2/122)ln(22y x q +π+2/122))ln((2y a x q +-π)=2222)(2y a x ax q y x x q+--++ππ y y v y ∂∂=∂∂=φ(2/122)ln(22y x q +π+2/122))ln((2y a x q+-π)=2222)(2ya x yq y x y q+-++ππ 6-9 如图所示,平面上有一对等强度为)0(>ΓΓ的点涡,其方向相反,分别位于(0,h ),(0,-h )两固定点处,同时平面上有一无穷远平行于x 轴的来流v ∞,试求合成速度在原点的值。
解: 平面上无穷远平行于x 轴的来流v ∞, 上,下两点涡的势函数分别为x v ∞,)/)arctan((2x h y -Γ-π, )/)arctan((2x h y +Γπ, 因而平面流动的势函数为x v ∞)/)arctan((2x h y -Γ-π+ )/)arctan((2x h y +Γπ, 22)(2h y x h y v x v x -+-Γ+=∂∂=∞πφ 22)(2h y x h y +++Γ-π,=∂∂=y v y φ22)(2h y x x -+Γ-π+22)(2h y x x++Γπ,将原点坐标(0,0)代入后可得hv v x πΓ-=∞, 0=y v . 6-10 如图,将速度为v ∞的平行于x 轴的均匀流和在原点强度为q 的点源叠加,求叠加后流场中驻点位置。
解: 均匀流和在原点强度为q 的点的势函数分别为x v ∞及22ln 2y x q+π, 因而平面流动的势函数为=φx v ∞+22ln 2y x q+π, 222y x x q v x v x ++=∂∂=∞πφ, =∂∂=y v y φ222yx yq +π,令0,0==y x v v , 得到∞-=v q x π2,0=y . 6-11如图,将速度为v ∞的平行于x 轴的均匀流和在原点强度为q 的点源叠加,求叠加后流场中驻点位置, 及经过驻点的流线方程.解: 先计算流场中驻点位置.均匀流和在原点强度为q 的点的势函数分别为x v ∞及22ln 2y x q+π, 因而平面流动的势函数为=φx v ∞+22ln 2y x q+π, 222y x x q v x v x ++=∂∂=∞πφ, =∂∂=y v y φ222y x y q +π,令0,0==y x v v , 得到∞-=v qx π2,0=y .此即流场中驻点位置. 均匀流和在原点强度为q 的点的流函数分别为y v ∞, )arctan(2xyq π,因而平面流动的流函数为=ψy v ∞+)arctan(2xyq π, 在驻点0=ψ, 因而经过驻点的流线方程为y v ∞+)arctan(2xy q π=06-12 一强度为10的点源与强度为-10的点汇分别放置于(1,0)和(-1,0),并与速度为25的沿x 轴负向的均匀流合成,求流场中驻点位置。
解: 均匀流, 点源与点汇的势函数分别为-x 25,5.022))1ln((210y x +-π, 5.022))1ln((210y x ++-π, 因而平面流动的势函数为=φx 25-+22)1(ln 210y x +-π-22)1(ln 210y x ++π22)1(121025y x x x v x +--+-=∂∂=πφ22)1(1210y x x +++-π, =∂∂=y v y φ22)1(210y x y +-π22)1(210y x y++-π 令0,0==y x v v , 得到15/2+±=πx ,0=y .此即流场中驻点位置.。