聚类算法总结
常用的聚类算法

常用的聚类算法
1聚类算法概述
聚类算法是一种无监督学习算法,它可以根据样本的内在特征将它们分组到不同的簇中,而不需要人工的参与。
它的实质是把同类的对象划分到同一个簇,把不同类的对象分到不同的簇,以达到将类似的物体进行自动分组的目的。
聚类的结果要求能将类似的对象划分到同一簇,而将不同的对象划分到不同簇,相邻簇中可以有极少数据点的相异。
2常用聚类算法
1.K-Means
K-means是最流行的聚类算法,它简单、速度快,可以根据数据特征把数据点分成K个不同簇,是一种基于划分的聚类算法。
2.层次聚类算法
层次聚类算法是一种树形聚类算法,将数据按照层级结构编码成树结构,采用分支和合并的方法,将给出的数据逐步聚合。
3.谱聚类算法
谱聚类算法对密集网络数据具有很好的分类能力,将相似性LR矩阵作为分析基础,使用其提取节点之间的相似程度,将节点分为多个簇。
4.EM聚类算法
EM聚类算法是一种高效的聚类算法,主要利用期望最大算法,利用概率模型对数据进行聚类,通过计算数据的对应度和估计模型参数,将数据划分到若干个类中。
总的来说,聚类算法最终的目的都是将一些数据表示的对象,根据某种特征的相似性,划分到不同的组中,以构建一种新的结构,使具有相似特征的样本分为一组,从而帮助更好地理解数据并协助作出正确的决策。
常见的六大聚类算法

常见的六大聚类算法六大常见的聚类算法包括K-means聚类算法、层次聚类算法、DBSCAN 算法、OPTICS算法、谱聚类算法和高斯混合模型聚类算法。
1. K-means聚类算法:K-means聚类算法是一种基于距离的聚类算法,它通过最小化数据点与聚类中心之间的欧氏距离来划分数据点。
算法的步骤如下:a.随机选择K个聚类中心。
b.将每个数据点分配到距离最近的聚类中心。
c.更新聚类中心为选定聚类的平均值。
d.重复步骤b和c直到聚类中心不再改变或达到最大迭代次数。
2.层次聚类算法:层次聚类算法是一种自底向上或自顶向下递归地将数据划分成不同的聚类的方法。
它通过计算数据点之间的距离或相似度来判断它们是否应该被合并到同一个聚类中。
算法的步骤如下:a.初始化每个数据点为一个单独的聚类。
b.计算两个最近的聚类之间的距离或相似度。
c.合并两个最近的聚类,形成一个新的聚类。
d.重复步骤b和c直到所有数据点都被合并到一个聚类中。
3.DBSCAN算法:DBSCAN(Density-Based Spatial Clustering of Applicationswith Noise)算法是一种基于密度的聚类算法,它通过寻找具有足够密度的数据点来划分聚类。
算法的步骤如下:a.随机选择一个未被访问的数据点。
b.如果该数据点的密度达到预设的阈值,则将其归为一个聚类,同时将其相邻且密度达到阈值的数据点添加到聚类中。
c.重复步骤a和b直到所有数据点都被访问。
4.OPTICS算法:OPTICS(Ordering Points To Identify the Clustering Structure)算法是一种基于密度的聚类算法,它通过将数据点按照密度排序来划分聚类。
算法的步骤如下:a.计算每个数据点的可达距离和局部可达密度。
b.根据可达距离和局部可达密度排序所有数据点。
c.根据可达距离和阈值划分聚类。
d.重复步骤b和c直到所有数据点都被访问。
(完整版)聚类算法总结

1.聚类定义“聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有一些相似的属性”——wikipedia“聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。
它是一种重要的人类行为。
聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
”——百度百科说白了,聚类(clustering)是完全可以按字面意思来理解的——将相同、相似、相近、相关的对象实例聚成一类的过程。
简单理解,如果一个数据集合包含N个实例,根据某种准则可以将这N 个实例划分为m个类别,每个类别中的实例都是相关的,而不同类别之间是区别的也就是不相关的,这个过程就叫聚类了。
2.聚类过程:1) 数据准备:包括特征标准化和降维.2) 特征选择:从最初的特征中选择最有效的特征,并将其存储于向量中.3) 特征提取:通过对所选择的特征进行转换形成新的突出特征.4) 聚类(或分组):首先选择合适特征类型的某种距离函数(或构造新的距离函数)进行接近程度的度量;而后执行聚类或分组.5) 聚类结果评估:是指对聚类结果进行评估.评估主要有3 种:外部有效性评估、内部有效性评估和相关性测试评估.3聚类算法的类别没有任何一种聚类技术(聚类算法)可以普遍适用于揭示各种多维数据集所呈现出来的多种多样的结构,根据数据在聚类中的积聚规则以及应用这些规则的方法,有多种聚类算法.聚类算法有多种分类方法将聚类算法大致分成层次化聚类算法、划分式聚类算法、基于密度和网格的聚类算法和其他聚类算法,如图1 所示的4 个类别.3.聚类算法基于层次聚类算法:基于划分聚类算法(partition clustering)基于密度聚类算法:基于网格的聚类算法:STING :利用网格单元保存数据统计信息,从而实现多分辨率的聚类WaveCluster:在聚类分析中引入了小波变换的原理,主要应用于信号处理领域。
层次聚类算法总结

层次聚类算法总结层次聚类算法的总结一、引言层次聚类算法是一种常用的数据聚类方法,它通过逐步合并或分割数据来构建聚类层次结构。
本文将对层次聚类算法进行总结,包括算法原理、应用领域以及算法的优缺点。
二、算法原理层次聚类算法主要包括凝聚型层次聚类和分裂型层次聚类两种类型。
其中,凝聚型层次聚类是自底向上的合并过程,而分裂型层次聚类是自顶向下的分割过程。
1. 凝聚型层次聚类凝聚型层次聚类从每个数据点作为一个独立的类开始,然后逐步合并最相似的类,直到达到预设的聚类数目或者合并所有数据点为止。
常用的合并策略有单链接、完全链接和平均链接等。
- 单链接:将两个最相似的类合并,其中最相似的类定义为两个类中最近的两个数据点之间的距离。
- 完全链接:将两个最相似的类合并,其中最相似的类定义为两个类中最远的两个数据点之间的距离。
- 平均链接:将两个最相似的类合并,其中最相似的类定义为两个类中所有数据点之间距离的平均值。
2. 分裂型层次聚类分裂型层次聚类从所有数据点作为一个类开始,然后逐步将类分裂成更小的子类,直到达到预设的聚类数目或者每个类只包含一个数据点为止。
常用的分裂策略有K-means算法、二分K-means算法等。
三、应用领域层次聚类算法在许多领域都有广泛的应用,下面列举几个常见的应用领域。
1. 生物学层次聚类算法可以用于基因表达谱数据的聚类分析,帮助研究人员发现不同基因的表达模式,从而揭示基因之间的相互关系。
2. 图像处理层次聚类算法可以用于图像分割,将相似的像素点聚类到同一个区域,实现图像的分割和识别。
3. 社交网络层次聚类算法可以用于社交网络中的用户聚类,将具有相似兴趣和行为模式的用户聚集在一起,为推荐系统和个性化推送提供基础。
四、优缺点分析层次聚类算法具有以下优点:1. 不需要预先指定聚类数目,能够自动构建聚类层次结构。
2. 可以处理任意形状和大小的聚类。
3. 聚类结果具有层次结构,方便后续的分析和解释。
聚类分析实验心得体会(通用20篇)

聚类分析实验心得体会(通用20篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!聚类分析实验心得体会(通用20篇)写心得体会可以帮助我们在以后的工作或学习中更好地运用所学所思。
复杂网络中聚类算法总结

复杂⽹络中聚类算法总结⽹络,数学上称为图,最早研究始于1736年欧拉的哥尼斯堡七桥问题,但是之后关于图的研究发展缓慢,直到1936年,才有了第⼀本关于图论研究的著作。
20世纪60年代,两位匈⽛利数学家Erdos和Renyi建⽴了随机图理论,被公认为是在数学上开创了复杂⽹络理论的系统性研究。
之后的40年⾥,⼈们⼀直讲随机图理论作为复杂⽹络研究的基本理论。
然⽽,绝⼤多数的实际⽹络并不是完全随机的。
1998年,Watts及其导师Strogatz在Nature上的⽂章《Collective Dynamics of Small-world Networks》揭⽰了复杂⽹络的⼩世界性质。
随后,1999年,Barabasi及其博⼠⽣Albert在Science上的⽂章《Emergence of Scaling in Random Networks》⼜揭⽰了复杂⽹络的⽆标度性质(度分布为幂律分布),从此开启了复杂⽹络研究的新纪元。
随着研究的深⼊,越来越多关于复杂⽹络的性质被发掘出来,其中很重要的⼀项研究是2002年Girvan和Newman在PNAS上的⼀篇⽂章《Community structure in social and biological networks》,指出复杂⽹络中普遍存在着聚类特性,每⼀个类称之为⼀个社团(community),并提出了⼀个发现这些社团的算法。
从此,热门对复杂⽹络中的社团发现问题进⾏了⼤量研究,产⽣了⼤量的算法,本⽂试图简单整理⼀下复杂⽹络中聚类算法,希望对希望快速了解这⼀部分的⼈有所帮助。
本⽂中所谓的社团跟通常我们将的聚类算法中类(cluster)的概念是⼀致的。
0. 预备知识为了本⽂的完整性,我们⾸先给出⼀些基本概念。
⼀个图通常表⽰为G=(V,E),其中V表⽰点集合,E表⽰边集合,通常我们⽤n表⽰图的节点数,m表⽰边数。
⼀个图中,与⼀个点的相关联的边的数量称为该点的度。
知识点归纳 数据挖掘中的聚类分析与分类算法

知识点归纳数据挖掘中的聚类分析与分类算法数据挖掘中的聚类分析与分类算法数据挖掘是指从大量数据中自动发现有用的模式、关系或规律的过程。
在数据挖掘过程中,聚类分析和分类算法是两个常用且重要的技术。
本文将对这两个知识点进行归纳总结。
一、聚类分析聚类分析是将一组无标签的数据对象进行分组或聚类的数据挖掘技术。
其目标是通过对象之间的相似性将它们划分为若干个簇,使得同一簇内的对象相似度高,不同簇之间的相似度低。
聚类分析广泛应用于市场分割、社交网络分析、图像处理等领域。
常用的聚类算法有以下几种:1. K-means算法:K-means是一种基于距离度量的聚类算法。
它通过逐步迭代,将数据集分为K个簇,使得每个数据对象与本簇内的其他对象的相似度最高。
2. 层次聚类算法:层次聚类算法是一种通过计算不同类别之间的相似性,并逐步合并相似度高的类别的方式进行数据聚类的方法。
Hierarchical Agglomerative Clustering(HAC)是层次聚类的一种常见算法。
3. 密度聚类算法:密度聚类算法是一种通过计算对象的密度来确定簇的方法,常见的算法有DBSCAN和OPTICS算法。
这类算法可以有效地发现具有不同密度分布的聚类。
二、分类算法分类算法是将带有标签的数据集按照类别或标签进行划分的数据挖掘技术。
通过学习已有数据集的特征和类别标签,分类算法能够对新的未标记数据进行分类预测。
分类算法广泛应用于垃圾邮件过滤、文本分类、风险评估等领域。
常用的分类算法有以下几种:1. 决策树算法:决策树算法是一种基于树形结构的分类算法。
它通过对数据集进行递归分割,使得每个子节点具有最佳的纯度或信息增益,从而实现对数据的分类。
2. 朴素贝叶斯算法:朴素贝叶斯算法是一种基于条件概率的分类算法。
它假设特征之间相互独立,并通过计算条件概率来进行分类预测。
3. 支持向量机算法:支持向量机算法是一种通过寻找最优分割超平面将数据划分为不同类别的算法。
聚类算法

聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇)。
其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的。
组内相似性越大,组间差别越大,聚类就越好。
先介绍下聚类的不同类型,通常有以下几种:(1)层次的与划分的:如果允许簇具有子簇,则我们得到一个层次聚类。
层次聚类是嵌套簇的集族,组织成一棵树。
划分聚类简单地将数据对象划分成不重叠的子集(簇),使得每个数据对象恰在一个子集中。
(2)互斥的、重叠的与模糊的:互斥的指每个对象都指派到单个簇。
重叠的或是模糊聚类用来反映一个对象同时属于多个组的事实。
在模糊聚类中,每个数据对象以一个0和1之间的隶属权值属于每个簇。
每个对象与各个簇的隶属权值之和往往是1。
(3)完全的与部分的:完全聚类将每个对象指派到一个簇中。
部分聚类中,某些对象可能不属于任何组,比如一些噪音对象。
聚类分析后发现的簇往往也具有不同的类型:(1)明显分离的:簇是对象的集合,不同组中的任意两点之间的距离都大于组内任意两点之间的距离。
(1)(2)基于原型的:簇是对象的集合,其中每个对象到定义该簇的原型的距离比到其他簇的原型的距离更近(或更加相似)。
对于具有连续属性的数据,簇的原型通常是质心,即簇中所有点的平均值。
这种簇倾向于呈球状。
(3)基于图的:如果数据用图表示,其中节点是对象,而边代表对象之间的联系,则簇可以定义为连通分支,即互相连通但不与组外对象连通的对象组。
基于图的簇一个重要例子就是基于临近的簇,其中两个对象是相连的,仅当他们的距离在指定的范围之内。
也就是说,每个对象到该簇某个对象的距离比不同簇中的任意点的距离更近。
(4)基于密度的:簇是对象的稠密区域,被低密度的区域环绕。
当簇不规则或互相盘绕,并且有噪声和离群点时,常常使用基于密度的簇定义。
下面介绍三种常用的聚类算法:(1)基本K均值:基于原型的,划分的聚类技术,试图从全部数据对象中发现用户指定个数的簇。
(2)凝聚层次聚类:开始每个点各成一簇,然后重复的合并两个最近的簇,直到指定的簇个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚类算法的种类:
---------------------------------------------------------
几种常用的聚类算法从可伸缩性、适合的数据类型、高维性(处理高维数据的能力)、异常数据的抗干扰度、聚类形状和算法效率6个方面进行了综合性能评价,评价结果如表1所示:
---------------------------------------------------------
目前聚类分析研究的主要内容:
对聚类进行研究是数据挖掘中的一个热门方向,由于以上所介绍的聚类方法都
存在着某些缺点,因此近些年对于聚类分析的研究很多都专注于改进现有的聚
类方法或者是提出一种新的聚类方法。
以下将对传统聚类方法中存在的问题以
及人们在这些问题上所做的努力做一个简单的总结:
1 从以上对传统的聚类分析方法所做的总结来看,不管是k-means方法,还是CURE方法,在进行聚类之前都需要用户事先确定要得到的聚类的数目。
然而在
现实数据中,聚类的数目是未知的,通常要经过不断的实验来获得合适的聚类
数目,得到较好的聚类结果。
2 传统的聚类方法一般都是适合于某种情况的聚类,没有一种方法能够满足各
种情况下的聚类,比如BIRCH方法对于球状簇有很好的聚类性能,但是对于不
规则的聚类,则不能很好的工作;K-medoids方法不太受孤立点的影响,但是
其计算代价又很大。
因此如何解决这个问题成为当前的一个研究热点,有学者
提出将不同的聚类思想进行融合以形成新的聚类算法,从而综合利用不同聚类
算法的优点,在一次聚类过程中综合利用多种聚类方法,能够有效的缓解这个
问题。
3 随着信息时代的到来,对大量的数据进行分析处理是一个很庞大的工作,这
就关系到一个计算效率的问题。
有文献提出了一种基于最小生成树的聚类算法,该算法通过逐渐丢弃最长的边来实现聚类结果,当某条边的长度超过了某个阈值,那么更长边就不需要计算而直接丢弃,这样就极大地提高了计算效率,降
低了计算成本。
4 处理大规模数据和高维数据的能力有待于提高。
目前许多聚类方法处理小规
模数据和低维数据时性能比较好,但是当数据规模增大,维度升高时,性能就
会急剧下降,比如k-medoids方法处理小规模数据时性能很好,但是随着数据
量增多,效率就逐渐下降,而现实生活中的数据大部分又都属于规模比较大、
维度比较高的数据集。
有文献提出了一种在高维空间挖掘映射聚类的方法PCKA (Projected Clustering based on the K-Means Algorithm),它从多个维度中选择属性相关的维度,去除不相关的维度,沿着相关维度进行聚类,以此对
高维数据进行聚类。
5 目前的许多算法都只是理论上的,经常处于某种假设之下,比如聚类能很好
的被分离,没有突出的孤立点等,但是现实数据通常是很复杂的,噪声很大,
因此如何有效的消除噪声的影响,提高处理现实数据的能力还有待进一步的提高。