An asymmetric Neumann problem with weightse

合集下载

一类椭圆方程组Neumann问题正解的唯一性

一类椭圆方程组Neumann问题正解的唯一性

一类椭圆方程组Neumann问题正解的唯一性魏晓丹;周文书;张友【摘要】研究一类椭圆方程组正解的唯一性.运用变换技巧和极值原理,在确定的条件下证明了有关解的两个递归不等式,并取极限得到了该问题的唯一正解.结果表明,在更弱的条件下,该问题没有非常值正解.【期刊名称】《吉林大学学报(理学版)》【年(卷),期】2013(051)003【总页数】4页(P427-430)【关键词】椭圆方程组;正解;唯一性【作者】魏晓丹;周文书;张友【作者单位】大连民族学院计算机科学与工程学院,辽宁大连116600;大连民族学院理学院,辽宁大连116600;大连理工大学数学学院,辽宁大连116024;大连民族学院理学院,辽宁大连116600【正文语种】中文【中图分类】O175.25考虑如下椭圆方程组Neumann问题正解的唯一性:(1)其中: Ω为 RN中的有界光滑区域;ν为∂Ω上的单位外法向量,∂ν=∂/∂ν;λ,b,μ,ξ都是正常数. 如果∀且u和v满足问题(1),则称(u,v)是问题(1)的一个正解.问题(1)与如下稳态捕食-食饵系统有紧密联系:(2)其中: β是一个正常数;a(x)是上的非负连续函数且使得一有界光滑区域且满足⊂Ω. 文献[1-4]研究了问题(2)正解的存在性与不存在性. 为得到问题(2)正解的最优空间图,文献[5]在条件μ>λ≥λ1(其中λ1是具齐Dirichlet边界条件的Laplace方程的最小特征值)下分别讨论了问题(2)正解当β →0+,β →+∞及μ→+∞时的渐近行为. 特别地,证明了: 沿β任何趋于+∞的序列,都有子列{βn},使得当n→+∞时,(uβn,vβn)满足:(3)其中: “⇀”表示弱收敛;为当ξ∈(0,1]时问题(1)的一个正解. 如果问题(1)的正解是唯一的,则在问题(3)中当β → +∞时收敛关系成立,从而能更准确地描述问题(2)解的空间图.显然,是问题(1)的一个正解. 文献[5]指出,当空间维数N=1时,用类似文献[6]的方法可证:对所有的μ>0,问题(1)的正解是唯一的. 文献[7]运用紧致技巧证明了当N≥2时,对所有充分大的μ,问题(1)的正解是唯一的. 本文运用变换技巧,并反复运用极值原理,在确定的条件下证明了有关解的两个递归不等式,然后取极限得到了该问题的唯一正解,从而改进了文献[7]的结果.引理1[8] 假设则有如下结论:1) 如果满足且则g(x0,w(x0))≥0;2) 如果满足且则g(x0,w(x0))≤0.定理1 设N≥2. 如果μ>2λ,则问题(1)存在唯一正解.证明: 因为是问题(1)的一个正解当且仅当是如下问题的一个正解:(4)因此,只需证明当μ>2λ时,(1,1)是问题(4)的唯一正解.设(u,v)是问题(4)的任一正解,令由于μ>2λ,则可断言:∀(5)∀(6)由于式(6)的证明蕴含在式(5)的证明过程中,因此仅证明式(5). 为此,做变换φ=v/u,则v=φu,对该等式两边微分两次得Δ v=uΔ φ+2φu+φΔ u,(7)从而有φ(8)将式(4)代入式(8)得其中α=λ/μ. 由于0<α<1/2,因此根据引理1中结论2)有于是(10)利用引理1中结论1)得由此及式(9)可得φ又由引理1中结论1)得于是(11)故假设当n=k(k≥2)时,式(5)成立,即∀利用左边不等式并注意到式(9)得由引理1中结论2)得∀于是(12)由引理1中结论1)得∀x∈Ω.由式(9)得又由引理1中结论1)得于是(13)再由引理1中结论2)得因此,式(5)得证.注意到式(5)和(6)分别等价于如下不等式:∀(14)∀(15)由于所以令n→+∞得u=v=1,∀即(1,1)是问题(4)的唯一正解. 证毕.注1 设(uβ,vβ)是问题(2)的一个正解,应用定理1及文献[5]中注3.1和注3.2容易证明:如果μ>2λ,则当β →+∞时,有⇀(1,1)于[H1(Ω)]2,于[Lp(Ω)]2, ∀p>1.参考文献【相关文献】[1] DU Yi-hong,Hsu S B. A Diffusive Predator-Prey Model in Heterogeneous Environment [J]. J Differential Equations,2004,203(2): 331-364.[2] WANG Ming-xin,Pang P Y H,CHEN Wen-yuan. Sharp Spatial Pattern of the Diffusive Holling-Tanner Prey-Predator Model in Heterogeneous Environment [J]. IMA J Appl Math,2008,73: 815-835.[3] DU Yi-hong,PENG Rui,WANG Ming-xin. Effect of a Protection Zone in the Diffusive Leslie Predator-Prey Model [J]. J Differential Equations,2009,246(10): 3932-3956.[4] PENG Rui,WANG Ming-xin. Uniqueness and Stability of Steady States for a Predator-Prey Model in Heterogeneous Environment [J]. Proc Amer Math Soc,2008,136(3): 859-865.[5] DU Yi-hong,WANG Ming-xin. Asymptotic Behaviour of Positive Steady States to a Predator-Prey Model [J]. Proc Roy Soc Edin,2006,136A: 759-778.[6] Lopez-Gomez J,Pardo R M. Invertibility of Linear Noncooperative of Linear Noncooperative Elliptic Systems [J]. Nonlinear Analysis,1998,31: 687-699.[7] ZHOU Wen-shu,WEI Xiao-dan. Uniqueness of Positive Solutions for an Elliptic System [J]. Electronic J Differential Equations,2011,2011: 1-6.[8] LOU Yuan,NI Wei-ming. Diffusion vs Cross-Diffusion: An Elliptic Approach [J]. J Differential Equations,1999,154: 157-190.。

治疗阿尔茨海默病的多肽的药效学研究

治疗阿尔茨海默病的多肽的药效学研究

分类号:R915单位代码:10364密级:学号:s10071010371 安徽农业大学学位论文治疗阿尔茨海默病的多肽的药效学研究Studies on the pharmacodynamics of a Polypeptide specificallyrecognizing β-Amyloid研究生:周维维指导教师:汪维云教授合作指导教师:刘瑞田教授申请学位门类级别:理学硕士专业名称:生物化学与分子生物学研究方向:生物化学与生物制药所在学院:生命科学学院答辩委员会主席:2013年6月独创性声明本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。

尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得安徽农业大学或其它教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

研究生签名:时间:年月日关于论文使用授权的说明本人完全了解安徽农业大学有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件和磁盘,允许论文被查阅和借阅,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。

同意安徽农业大学可以用不同方式在不同媒体上发表、传播学位论文的全部或部分内容。

(保密的学位论文在解密后应遵守此协议)研究生签名:时间:年月日第一导师签名:时间:年月日摘要阿尔茨海默病(Alzheimer’s disease, AD)是一种以老年人记忆和认知功能损伤为临床表征的神经退行性疾病。

AD是老年痴呆疾病中最常见的形式,病理特征包括A 聚集形成的老年斑(senile plaques, SP)、Tau蛋白异常磷酸化形成的神经纤维缠结(neurofibrillary tangles, NFT)、神经元丢失导致的脑萎缩、胶质增生以及炎症。

在AD 的发病过程中,Aβ扮演着重要的角色。

Aβ是新陈代谢的自然产物,由39-42个氨基酸组成,由β-分泌酶(BACE1)和γ-分泌酶水解加工淀粉样前体蛋白(APP)产生。

Riemann 猜想漫谈 (十八)

Riemann 猜想漫谈 (十八)

Riemann 猜测漫谈 (十八)卢昌海“山寨版〞Riemann猜测这枚坚果该从哪里啃起呢?为了彰显将科普进展到底的决心,让我们从中小学算术啃起吧!这并不是搞笑,在它背后其实有一段小小的故事——一段与美苏冷战有关的故事。

故事发生在半个多世纪前的1957年。

那一年,苏联先于美国将一颗人造卫星送入了近地轨道,迈出了航天时代的第一步。

这一在太平年代可以令全人类共同自豪的成就,由于发生在冷战时期,带给美国的乃是宏大的震动和反思。

作为反思的结果之一,美国初等教育界兴起了一场以革新教材为主旨的所谓“新数学〞运动(NewMath),试图“从娃娃抓起〞,加强教育、奋起直追。

在这场运动中,许多本来晚得多才讲述的内容被参加到了中小学教材中,其中包括公理化集合论(axiomaticsettheory)、模算术(modulararithmetic)、抽象代数(abstractalgebra)、符号逻辑(symboliclogic)等[注一]。

这种“拔苗助长〞般的革新不仅远远超出了普通中小学生的承受才能,甚至也超出了一局部中小学老师的教学才能,因此只尝试了几年就被放弃了。

不过对我们来说,这场“小跃进〞式的“新数学〞运动却是一个很好的幌子,让我们可以声称从中小学算术开场本节的科普,因为我们将要介绍的“山寨版〞Riemann猜测,可以从“新数学〞当中的一种——模算术——说起。

模算术的一个典型的题目是:如今时钟的时针指向7,请问8小时之后时针指向几?这个题目与“7+8=?〞那样的传统小学算术题的差异,就在于时钟上的数字是以12为周期循环的,从而不存在大于12的数字。

这种带有“周期〞的算术题就是典型的模算术题目,它通常被表述为“7+8=?(mod12)〞,其中的“(mod12)〞表示以12为周期,而这周期的正式名称叫做“模〞(modulus),模算术之名因此而来[注二]。

模算术是数论中一种很有用的工具,数学大腕Euler、Joseph-LouisLagrange(1736-1813)、Legendre等人都使用过,但对它的系统研究那么要归功于Gauss。

海森方程的纽曼问题及其几何应用Neumann-中国科学技术大学

海森方程的纽曼问题及其几何应用Neumann-中国科学技术大学

Neumann Problems for Hessian equations and geometric applications
Author : Speciality : Supervisor : Finished Time : Guohuan Qiu Mathematics Prof. Xinan Ma March, 2016
I
ABSTRACT
ABSTRACT
Hessian equations are important kind of fully nonlinear second order elliptic paritial differential equations. Boundary values problems of these equations are mainly divided into two categories: Dirichlet problems and Neumann problems. Dirichlet problems have studied for a long time. Its existence and regularity results are well known in this area. While the Neumann problems are still unkown for many decades. In this paper, we mainly study Neumann boundary problems of Hessian equations. We completely solve Neumann problems for Hessian equaions which is also a conjecture of Trudinger. The main contribution of this paper is that we construct a new auxiliary function and use maximum principle to prove second order derivative estimates on the boundary then existence results. Moreover, we use the solutions of these boundary problems to obtian a new proof of some geometric inequalities. Keywords: Second order elliptic equations, Hessian equations, Neumann boundary, geometric inequalities

10.1007%2Fs11537-013-1280-5

10.1007%2Fs11537-013-1280-5

Japan.J.Math.8,147–183(2013)DOI:10.1007/s11537-013-1280-5About the Connes embedding conjectureAlgebraic approachesNarutaka Ozawa?Received:28December2012/Accepted:15January2013Published online:20March2013©The Mathematical Society of Japan and Springer Japan2013Communicated by:Yasuyuki KawahigashiAbstract.In his celebrated paper in1976,A.Connes casually remarked that anyfinite von Neu-mann algebra ought to be embedded into an ultraproduct of matrix algebras,which is now known as the Connes embedding conjecture or problem.This conjecture became one of the central open problems in thefield of operator algebras since E.Kirchberg’s seminal work in1993that proves it is equivalent to a variety of other seemingly totally unrelated but important conjectures in the field.Since then,many more equivalents of the conjecture have been found,also in some other branches of mathematics such as noncommutative real algebraic geometry and quantum infor-mation theory.In this note,we present a survey of this conjecture with a focus on the algebraic aspects of it.Keywords and phrases:Connes embedding conjecture,Kirchberg’s conjecture,Tsirelson’s prob-lem,semi-pre-C -algebras,noncommutative real algebraic geometryMathematics Subject Classification(2010):16W80,46L89,81P151.IntroductionThe Connes embedding conjecture([Co])is considered as one of the most im-portant open problems in thefield of operator algebras.It asserts that anyfi-nite von Neumann algebra is approximable by matrix algebras in a suitable sense.It turns out,most notably by Kirchberg’s seminal work([Ki1]),that the N.O ZAWAResearch Institute for Mathematical Sciences,Kyoto University,Kyoto606-8502,Japan(e-mail:)?Partially supported by JSPS(23540233)and by the Danish National Research Foundation (DNRF)through the Centre for Symmetry and Deformation.148N.Ozawa Connes embedding conjecture is equivalent to a variety of other important con-jectures,which touches most of the subfields of operator algebras,and also someother branches of mathematics such as noncommutative real algebraic geome-try([Sm])and quantum information theory.In this note,we look at the alge-braic aspects of this conjecture.(See[BO,Ki1,Oz1]for the analytic aspects.)This leads to a study of the C -algebraic aspect of noncommutative real alge-braic geometry in terms of semi-pre-C -algebras.Specifically,we treat someeasy parts of Positivstellensätze of Putinar([Pu]),Helton–McCullough([HM]),and Schmüdgen–Bakonyi–Timotin([BT]).We then treat their tracial analogueby Klep–Schweighofer([KS]),which is equivalent to the Connes embeddingconjecture.We give new proofs of Kirchberg’s theorems on the tensor productC F d˝B.`2/and on the equivalence between the Connes embedding conjec-ture and Kirchberg’s conjecture.We also look at Tsirelson’s problem in quantuminformation theory([Fr,J+,Ts]),and prove it is again equivalent to the Connesembedding conjecture.This paper is an expanded lecture note for the author’slecture for“Masterclass on sofic groups and applications to operator algebras”(University of Copenhagen,5–9November2012).The author gratefully ac-knowledges the kind hospitality provided by University of Copenhagen duringhis stay in Fall2012.He also would like to thank Professor Andreas Thom forvaluable comments on this note.2.Ground assumptionWe deal with unital -algebras over k2f C;R g,and every algebra is assumedto be unital,unless it is clearly not so.The unit of an algebra is simply denotedby1and all homomorphisms and representations between algebras are assumedto preserve the units.We denote by i the imaginary unit,and by the complexconjugate of 2C.In case k D R,one has D for all 2k.3.Semi-pre-C -algebrasWe will give the definition and examples of semi-pre-C -algebras.Recall thata unital algebra A is called a -algebra if it is equipped with a map x!xsatisfying the following properties:(i)1 D1and.x / D x for every x2A;(ii).xy/ D y x for every x;y2A;(iii). x C y/ D x C y for every x;y2A and 2k.The sets of hermitian elements and unitary(orthogonal)elements are writtenrespectively asA h WD f a2A W a D a g and A u WD f u2A W u u D1D uu g:About the Connes embedding conjecture149 Every element x2A decomposes uniquely as a sum x D a C b of an hermitian element a and a skew-hermitian element b.The set of hermitian elements is an R-vector space.We say a linear map'between -spaces is self-adjoint if ' D',where' is defined by' .x/D'.x / .We call a subset A C A h a -positive cone(commonly known as a quadratic module)if it satisfies the following:(i)R 01 A C and a C b2A C for every a;b2A C and 2R 0; (ii)x ax2A C for every a2A C and x2A.For a;b2A h,we write aÄb if b a2A C.We say a linear map'be-tween spaces with positivity is positive if it sends positive elements to positive elements(and often it is also required self-adjoint),and a positive linear map' is faithful if a 0and'.a/D0implies a D0.Given a -positive cone A C, we define the -subalgebra of bounded elements byA bdd D f x2A W9R>0such that x xÄR1g:This is indeed a -subalgebra of A.For example,if x is bounded and x xÄR1,then x is also bounded and xx ÄR1,because0ÄR 1.R1 xx /2D R1 2xx C R 1x.x x/x ÄR1 xx : Thus,if A is generated(as a -algebra)by S,then S A bdd implies A D A bdd.Definition.A unital -algebra A is called a semi-pre-C -algebra if it comes together with a -positive cone A C satisfying the Combes axiom(also called the archimedean property)that A D A bdd.Since hÄ.1C h2/=2for h2A h,one has A h D A C A C for a semi-pre-C -algebra.We define the ideal of infinitesimal elements byI.A/D f x2A W x xÄ"1for all">0gand the archimedean closure of the -positive cone A C(or any other cone)by arch.A C/D f a2A h W a C"12A C for all">0g:The cone A C is said to be archimedean closed if A C D arch.A C/.A C -alge-bra A is of course a semi-pre-C -algebra,with a zero infinitesimal ideal and an archimedean closed -positive coneA C D f x x W x2A g:If A B.H/(here B.H/denotes the C -algebra of the bounded linear opera-tors on a Hilbert space H over k),then one also hasA C D f a2A h W h a ; i 0for all 2H g:150N.Ozawa Note that the condition a being hermitian cannot be dropped when k D R.Itwill be shown(Theorem1)that if A is a semi-pre-C -algebra,then A=I.A/is a pre-C -algebra with a -positive cone arch.A C/.Definition.We define the universal C -algebra of a semi-pre-C -algebra Aas the C -algebra C u.A/together with a positive -homomorphismÃW A!C u.A/which satisfies the following properties:Ã.A/is dense in C u.A/andevery positive -representation of A on a Hilbert space H extends to a -representation N W C u.A/!B.H/,i.e., D N ıÃ.In other words,C u.A/isthe separation and completion of A under the C -semi-normsup fk .a/k B.H/W a positive -representation on a Hilbert space H g: (We may restrict the dimension of H by the cardinality of A.)We emphasize that only positive -representations are considered.Everypositive -homomorphism between semi-pre-C -algebras extends to a posi-tive -homomorphism between their universal C -algebras.It may happen that A C D A h and C u.A/D f0g,which is still considered as a unital(?)C -algebra.Every -homomorphism between C -algebras is automatically pos-itive,has a norm-closed range,and maps the positive cone onto the positivecone of the range.However,this is not at all the case for semi-pre-C -algebras,as we will exhibit a prototypical example in Example1.On the other hand,we note that if A is a norm-dense -subalgebra of a C -algebra A such thatarch.A C/D A\A C,then every positive -representation of A extends to a-representation of A,i.e.,A D Cu .A/.(Indeed,if x2A has k x k A<1,then1 x x2A C and hence k .x/k<1for any positive -representation ofA.)It should be easy to see that the following examples satisfy the axiom of semi-pre-C -algebras.Example1.Let be a discrete group and kŒ be its group algebra over k:.f g/.s/DXt2f.st 1/g.t/and f .s/D f.s 1/ for f;g2kŒ :The canonical -positive cone of kŒ is defined as the sums of hermitian squares,kŒ C Dn n Xi D1 i i W n2N; i2kŒo:Then,kŒ is a semi-pre-C -algebra such that C u.kŒ /D C ,the full group C -algebra of ,which is the universal C -algebra generated by the unitary representations of .There is another group C -algebra.Recall that the left regular representation of on`2 is defined by .s/ıt Dıst for s;t2 , or equivalently by .f/ D f for f2kŒ and 2`2 .The reducedAbout the Connes embedding conjecture151 group C -algebra C r of is the C -algebra obtained as the norm-closure of .kŒ /in B.`2 /.The group algebra kŒ is equipped with the corresponding -positive conek rŒ C D f f2kŒ W9f n2kŒ C such that f n!f pointwise gD f f2kŒ W f is of positive type g;and the resultant semi-pre-C -algebra k rŒ satisfies C u.k rŒ /D C r .Indeed, if f2kŒ \ 1.C r C/,then for D .f/1=2ı12`2 ,one has f D and f is the pointwise limit of n n2kŒ C,where n2kŒ are such that k n k2!0.On the other hand,if f is of positive type(i.e.,the kernel .x;y/!f.x 1y/is positive semi-definite),then f D f and h .f/Á;Ái 0 for everyÁ2`2 ,which implies .f/2C r C.It follows that k rŒ C D arch.kŒ C/if and only if is amenable(see Theorem1).Example2.The -algebra kŒx1;:::;x d of polynomials in d commuting hermitian variables x1;:::;x d is a semi-pre-C -algebra,equipped with the -positive conekŒx1;:::;x d C D -positive cone generated by f1 x2i W i D1;:::;d g:One has C u.kŒx1;:::;x d /D C.Œ 1;1 d/,the algebra of the continuous func-tions onŒ 1;1 d,and x i is identified with the i-th coordinate projection.Example3.The -algebra k h x1;:::;x d i of polynomials in d non-commuting hermitian variables x1;:::;x d is a semi-pre-C -algebra,equipped with the -positive conek h x1;:::;x d i C D -positive cone generated by f1 x2i W i D1;:::;d g: One has C u.k h x1;:::;x d i/D C.Œ 1;1 / C.Œ 1;1 /,the unital full free product of d-copies of C.Œ 1;1 /.Example4.Let A and B be semi-pre-C -algebras.We denote by A˝B the algebraic tensor product over k.There are two standard ways to make A˝B into a semi-pre-C -algebra.Thefirst one,called the maximal tensor product and denoted by A˝max B,is A˝B equipped with.A˝max B/C D -positive cone generated by f a˝b W a2A C;b2B C g: The second one,called the minimal tensor product and denoted by A˝min B, is A˝B equipped with.A˝min B/C D.A˝B/h\.ÃA˝ÃB/ 1..C u.A/˝min C u.B//C/: (See Theorem14for a“better”description.)One has C u.A˝˛B/D C u.A/˝˛C.B/for˛2f max;min g.The right hand side is the C -algebra maximal u152N.Ozawa (resp.minimal)tensor product(see[BO,Pi1]).For A1 A2and B1 B2, one has.A1˝min B1/C D.A1˝min B1/\.A2˝min B2/C;but the similar identity need not hold for the maximal tensor product. Example5.The unital algebraic free product A B of semi-pre-C -algebras A and B,equipped with.A B/C D -positive cone generated by.A C[B C/;is a semi-pre-C -algebra,and C u.A B/D C u.A/ C u.B/,the unital full free product of the C -algebras C u.A/and C u.B/.The following is very basic(cf.[Ci]and Proposition15in[Sm]).Theorem1.Let A be a semi-pre-C -algebra andÃW A!C u.A/be the uni-versal C -algebra of A.Then,one has the following.kerÃD I.A/,the ideal of the infinitesimal elements.A h\à 1.C.A/C/D arch.A C/,the archimedean closure of A C.uAlthough it follows from the above theorem,we give here a direct proof of the fact that arch.A C/\. arch.A C// I.A/.Indeed,if h2Ä1and "1<h<"1for"2.0;1/,then one has0Ä.1C h/." h/.1C h/D".1C h/2 h h.2C h/hÄ.4"C"/1 .2 "/h2; which implies h2<5"1.We postpone the proof and give corollaries to this theorem.4.PositivstellensätzeWe give a few results which say if an element a is positive in a certain class of representations,then it is positive for an obvious reason.Such results are re-ferred to as“Positivstellensätze.”Recall that a C -algebra A is said to be resid-uallyfinite dimensional(RFD)iffinite-dimensional -representations separate the elements of A,i.e., .a/ 0for allfinite-dimensional -representations implies a 0in A.All abelian C -algebras and full group C -algebras of residuallyfinite amenable groups are RFD.Moreover,it is a well-known result of Choi that the full group C -algebra C F d of the free group F d of rank d is RFD(see Theorem26).In fact,finite representations(i.e.,the unitary repre-sentations such that .F d/isfinite)separate the elements of C F d([LS]). However,we note that the full group C -algebra of a residuallyfinite group need not be RFD([Be1]).We also note that the unital full free products of RFDAbout the Connes embedding conjecture153 C -algebras is again RFD([EL]).In particular,C u.k h x1;:::;x d i/is RFD.The results mentioned here have been proven for complex C -algebras,but they are equally valid for real cases.See Sect.7.Theorem1,when combined with resid-ualfinite dimensionality,immediately implies the following Positivstellensätze (cf.[Pu,HM]).Corollary2.The following are true.Let f2kŒ h.Then, .f/ 0for every unitary representation if and only if f2arch.kŒ C/.The full group C -algebra C of a group is RFD if and only if the fol-lowing statement holds.If f2kŒ h is such that .f/ 0for every finite-dimensional unitary representation ,then f2arch.kŒ C/.Let f2kŒx1;:::;x d h.Then,f.t1;:::;t d/ 0for all.t1;:::;t d/2Œ0;1 d if and only if f2arch.kŒx1;:::;x d C/.(See Example2.)Let f2k h x1;:::;x d i h.Then,f.X1;:::;X d/ 0for all contractive her-mitian matrices X1;:::;X d if and only if f2arch.k h x1;:::;x d i C/.(See Example3.)In some cases,the -positive cones are already archimedean closed.We will see later(Theorem26)this phenomenon for the free group algebras kŒF d . 5.Eidelheit–Kakutani separation theoremThe most basic tool in functional analysis is the Hahn–Banach theorem.In this note,we will need an algebraic form of it,the Eidelheit–Kakutani separation theorem.We recall the algebraic topology on an R-vector space V.Let C V be a convex subset.An element c2C is called an algebraic interior point of C if for every v2V there is">0such that c C v2C for all j j<". The convex cone C is said to be algebraically solid if the set Cıof algebraic interior points of C is non-empty.Notice that for every c2Cıand x2C, one has c C.1 /x2Cıfor every 2.0;1 .In particular,CııD Cıfor every convex subset C.We can equip V with a locally convex topology,called the algebraic topology,by declaring that any convex set that coincides with its algebraic interior is open.Then,every linear functional on V is continuous with respect to the algebraic topology.Now Hahn–Banach separation theorem reads as follows.Theorem3(Eidelheit–Kakutani([Ba])).Let V be an R-vector space,C an algebraically solid cone,and v2V n C.Then,there is a non-zero linear func-tional'W V!R such that'.c/:'.v/Äinfc2CIn particular,'.v/<'.c/for any algebraic interior point c2C.154N.Ozawa Notice that the Combes axiom A D A bdd is equivalent to that the unit1is an algebraic interior point of A C A h and arch.A C/is the algebraic closure of A C in A h.(This is where the Combes axiom is needed and it can be dispensed when the cone A C is algebraically closed.See Sect.3.4in[Sm].)Let A be a semi-pre-C -algebra.A unital -subspace S A is called a semi-operator system.Here,a -subspace is a subspace which is closed under the -operation. Existence of1in S ensures that S C D S\A C has enough elements to span S h.A linear functional'W S!k is called a state if'is self-adjoint, positive,and'.1/D1.Note that if k D C,then S is spanned by S C and every positive linear functional is automatically self-adjoint.However,this is not the case when k D R.In any case,every R-linear functional'W S h!R extends uniquely to a self-adjoint linear functional'W S!k.We write S.S/ for the set of states on S.Corollary4.Let A be a semi-pre-C -algebra.Let W A be a -subspace and v2A h n.A C C W h/.Then,there is a state'on A such that'.W/D f0g and'.v/Ä0.(Krein’s extension theorem)Let S A be a semi-operator system.Then every state on S extends to a state on A.Proof.Since A C C W h is an algebraically solid cone in A h,one mayfind a non-zero linear functional'on A h such that'.v/Äinf f'.c/W c2A C C W h g:Since'is non-zero,'.1/>0and one may assume that'.1/D1.Thus the self-adjoint extension of'on A,still denoted by',is a state such that'.v/Ä0 and'.W h/D f0g.Let x2W.Then,for every 2k,one has'.x/C. '.x// D'.. x/C. x/ /D0:This implies'.W/D f0g in either case k2f C;R g.For the second assertion,let'2S.S/be given and consider the coneC D f x2S h W'.x/ 0g C A C:It is not too hard to see that C is an algebraically solid cone in A h and v…C for any v2S h such that'.v/<0.Hence,one mayfind a state N'on A such that N'.C/ R 0.In the same way as above,one has that N'is zero on ker', which means N'j S D'.About the Connes embedding conjecture155 6.GNS constructionWe recall the celebrated GNS construction(Gelfand–Naimark–Segal construc-tion),which provides -representations out of states.Let a semi-pre-C -algebra A and a state'2S.A/be given.Then,A is equipped with a semi-inner product h y;x i D'.x y/,and it gives rise to a Hilbert space,which will bedenoted by L2.A;'/.We denote by O x the vector in L2.A;'/that correspondsto x2A.Thus,h O y;O x i D'.x y/and k O x k D'.x x/1=2.The left multiplica-tion x!ax by an element a2A extends to a bounded linear operator '.a/on L2.A;'/such that '.a/O x D ca x for a;x2A.(Observe that a aÄR1implies k '.a/k2ÄR.)It follows that 'W A!B.L2.A;'//is a positive -representation of A such that h '.a/O1;O1i D'.a/.If W A!B.H/is a positive -representation having a unit cyclic vector,then'.a/D h .a/ ; i is a state on A and .x/ !O x extends to a uni-tary isomorphism between H and L2.A;'/which intertwines and '.Sinceevery positive -representation decomposes into a direct sum of cyclic repre-sentations,one may obtain the universal C -algebra C u.A/of A as the closureof the image under the positive -representationM '2S.A/ 'W A !BM'2S.A/L2.A;'/Á:We also make an observation that.A˝min B/C in Example4coincides withc2.A˝B/h W .'˝ /.z cz/ 0for all'2S.A/;2S.B/;z2A˝B:7.Real versus complexWe describe here the relation between real and complex semi-pre-C -algebras. Because the majority of the researches on C -algebras are carried out for com-plex C -algebras,we look for a method of reducing real problems to complex problems.Suppose A R is a real semi-pre-C -algebra.Then,the complexifica-tion of A R is the complex semi-pre-C -algebra A C D A R C i A R.The -algebra structure(over C)of A C is defined in an obvious way,and.A C/C is defined to be the -positive cone generated by.A R/C:.A C/C Dn n Xi D1z i a i z i W n2N;a i2.A R/C;z i2A Co:(This is a temporary definition,and the official one will be given later.See Lemma11.)Note that A R\.A C/C D.A R/C.The complexification A C has an involutive and conjugate-linear -automorphism defined by x C i y!156N.Ozawa x i y ,x;y 2A R .Every complex semi-pre-C -algebra with an involutive and conjugate-linear -automorphism arises in this way.Lemma 5.Let R W A R !B R be a -homomorphism between real semi-pre-C -algebras (resp.'R W A R !R be a self-adjoint linear functional).Then,the complexification C W A C !B C (resp.'C W A C !C )is positive if and only if R (resp.'R )is so.Proof.Weonly prove that 'C is positive if 'R is so.The rest is trivial.Let b D P i z i a i z i 2.A C /C be arbitrary,where a i 2.A R /C and z i D x i C i y i .Then,b D P i .x i a i x i C y i a i y i /C i P i .x i a i y i y i a i x i /.Since x i a i y i y i a i x i is skew-hermitian,one has 'R .x i a i y i y i a i x i /D 0,and 'C .b/D'R .P i x i a i x i C y i a i y i / 0.This shows 'C is positive.We note that if H C denotes the complexification of a real Hilbert space H R ,then B .H R /C D B .H C /.Thus every positive -representation of a real semi-pre-C -algebra A R on H R extends to a positive -representation of its complexification A C on H C .Conversely,if is a positive -representation of A C on a complex Hilbert space H C ,then its restriction to A R is a positive -representation on the realification of H C .The realification of a complex Hilbert space H C is the real Hilbert space H C equipped with the real inner product h Á; i R D <h Á; i .Therefore,we arrive at the conclusion that C u .A R /C D C u .A C /.We also see that .R Œ /C D C Œ ,.A R ˝B R /C D A C ˝B C ,.A R B R /C D A C B C ,etc.8.Proof of Theorem 1We only prove the first assertion of Theorem 1.The proof of the second is very similar.We will prove a stronger assertion thatk Ã.x/k C u.A /D inf f R >0W R 21 x x 2A C g :The inequality Ätrivially follows from the C -identity.For the converse,as-sume that the right hand side is non-zero,and choose >0such that 21 x x …A C .By Corollary 4,there is '2S.A /such that '. 21 x x/Ä0.Thus for the GNS representation ',one hask '.x/k k '.x/O 1k D '.x x/1=2 :It follows that k Ã.x/k .About the Connes embedding conjecture157 9.Trace positive elementsLet A be a semi-pre-C -algebra.A state on A is called a tracial state if .xy/D .yx/for all x;y2A,or equivalently if is zero on the -subspace K D span f xy yx W x;y2A g spanned by commutators in A.We denote by T.A/the set of tracial states on A(which may be empty).Associated with 2T.A/is afinite von Neumann algebra. .A/00; /,which is the von Neumann algebra generated by .A/ B.L2.A; //with the faithful normal tracial state .a/D h a O1;O1i that extends the original .Recall that afinite von Neumann algebra is a pair.M; /of a von Neumann algebra and a faithful normal tracial state on M.The following theorem is proved in[KS]for the algebra in Example3and in[JP]for the free group algebras,but the proof equally works in the general setting.We note that for some groups ,notably for D SL3.Z/([Be2]),it is possible to describe all the tracial states on kŒ . Theorem6([KS]).Let A be a semi-pre-C -algebra,and a2A h.Then,the following are equivalent..1/ .a/ 0for all 2T.A/..2/ . .a// 0for everyfinite von Neumann algebra.M; /and every positive -homomorphism W A!M..3/a2arch.A C C K h/,where K h D K\A h D span f x x xx W x2A g. Proof.The equivalence.1/,.2/follows from the GNS construction.We only prove.1/).3/,as the converse is trivial.Suppose a C"1…A C C K h for some">0.Then,by Corollary4,there is 2S.A/such that .K/D f0g (i.e., 2T.A/)and .a/Ä "<0.10.Connes embedding conjectureThe Connes embedding conjecture(CEC)asserts that anyfinite von Neumann algebra.M; /with separable predual is embeddable into the ultrapower R! of the hyperfinite II1-factor R(over k2f C;R g).Here an embedding means an injective -homomorphism which preserves the tracial state.We note that if is a tracial state on a semi-pre-C -algebra A andÂW A!N is a -preserving -homomorphism into afinite von Neumann algebra.N; /,thenÂextends to a -preserving -isomorphism from .A/00onto the von Neumann subalgebra generated byÂ.A/in N(which coincides with the ultraweak clo-sure ofÂ.A/).Hence,.M; /satisfies CEC if there is an ultraweakly dense -subalgebra A M which has a -preserving embedding into R!.In particular, CEC is equivalent to that for every countably generated semi-pre-C -algebra A and 2T.A/,there is a -preserving -homomorphism from A into R!.We will see that this is equivalent to the tracial analogue of Positivstellensätze in158N.Ozawa Corollary 2.We first state a few equivalent forms of CEC.We denote by tr the tracial state 1N Tr on M N .k /.Theorem 7.For a finite von Neumann algebra .M; /with separable predual,the following are equivalent..1/.M; /satisfies CEC,i.e.,M ,!R !..2/Let d 2N and x 1;:::;x d 2M be hermitian contractions.Then,forevery m 2N and ">0,there are N 2N and hermitian contractions X 1;:::;X d 2M N .k /such thatj .x i 1 x i k / tr .X i 1 X i k /j <"for all k Äm and i j 2f 1;:::;d g ..3/Assume k D C (or replace M with its complexification in case k D R ).Letd 2N and u 1;:::;u d 2M be unitary elements.Then,for every ">0,there are N 2N and unitary matrices U 1;:::;U d 2M N .C /such thatj .u i u j / tr .U i U j /j <"for all i;j 2f 1;:::;d g .In particular,CEC holds true if and only if every .M; /satisfies condition .2/and/or .3/.The equivalence .1/,.2/is a rather routine consequence of the ultra-product construction.For the equivalence to (3),see Theorem 27.Note that the assumption k D C in condition (3)is essential because the real analogue of it is actually true ([DJ]).Since any finite von Neumann algebra M with sep-arable predual is embeddable into a II 1-factor which is generated by two her-mitian elements (namely .M R/N ˝R ),to prove CEC,it is enough to verify the conjecture (2)for every .M; /and d D 2.We observe that a real finite von Neumann algebra .M R ; R /is embeddable into R !R (i.e.,it satisfies CEC)if and only if its complexification .M C ; C /is embeddable into R !C .The “only if”di-rection is trivial and the “if”direction follows from the real -homomorphism M N .C /,!M 2N .R /,a C i b ! a b b a .A complex finite von Neumann al-gebra .M; /need not be a complexification of a real von Neumann algebra,but M ˚M op is (isomorphic to the complexification of the realification of M ).Therefore,M satisfies CEC if and only if its realification satisfies it.For a finite von Neumann algebra .M; /and d 2N ,we denote by H d .M /the set of those f 2k h x 1;:::;x d i h such that .f.X 1;:::;X d // 0for all hermitian contractions X 1;:::;X d 2M .Further,let H d D\M H d .M /and H fin d D \NH d .M N .k //D H d .R/:Notice that H d D arch .k h x 1;:::;x d i C C K h /(see Example 3and Theorem 6).About the Connes embedding conjecture 159Corollary 8([KS]).Let k 2f C ;R g .Then one has the following.Let .M; /be a finite von Neumann algebra with separable predual.Then,M satisfies CEC if and only if H fin d H d .M /for all d .CEC holds true if and only if H fin d D arch .k h x 1;:::;x d i C C K h /for all/some d 2.Proof.It is easy to see that condition (2)in Theorem 7implies H fin d H d .M /.Conversely,suppose condition (2)does not hold for some d 2N ,x 1;:::;x d 2M ,m 2N ,and ">0.We introduce the multi-index notation.For i D .i 1;:::;i k /,i j 2f 1;:::;d g and k Äm ,we denote x i D x i 1 x i k .It may happen that i is the null string ;and x ;D 1.Then,C D closure f .tr .X i //i W N 2N ;X 1;:::;X d 2M N .k /h ;k X i k Ä1gis a convex set (consider a direct sum of matrices).Hence by Theorem 3,there are 2R and ˛i 2k such that <X i ˛i .x i /< Äinf 2C <X i˛i i :Replacing ˛i with .˛i C ˛ i/=2(here i is the reverse of i ),we may omit <from the above inequality.Further,arranging ˛;,we may assume D 0.Thus f D P i ˛i x i belongs to H fin d ,but not to H d .M /.This completes the proof of the first half.The second half follows from this and Theorem 6.An analogue to the above also holds for C ŒF d .Corollary 9([JP]).Let k D C .The following holds.Let .M; /be a finite von Neumann algebra with separable predual.Then,M satisfies CEC if and only if the following holds true:If d 2N and ˛2M d .C /h satisfies that tr .P ˛i;j U i U j / 0for every N 2N and U 1;:::;U d 2M N .C /u ,then it satisfies .P ˛i;j u i u j / 0for every uni-tary elements u 1;:::;u d 2M .CEC holds true if and only if for every d 2N and ˛2M d .C /h the follow-ing holds true:If tr .P ˛i;j U i U j / 0for every N 2N and U 1;:::;U d 2M N .C /u ,then P ˛i;j s i s j 2arch .C ŒF d C C K h /,where s 1;:::;s d are the free generators of F d .11.Matrix algebras over semi-pre-C -algebrasWe describe here how to make the n n matrix algebra M n .A /over a semi-pre-C -algebra A into a semi-pre-C -algebra.We note that x D Œx j;i i;j for x D Œx i;j i;j 2M n .A /.We often identify M n .A /with M n .k /˝A .There。

环球速览

环球速览

环球速览作者:暂无来源:《东方女性》 2017年第5期法国:小镇迎50年来首位新生儿,镇长不知登记手续法国克勒兹省的欧日小镇,近日迎来了当地50年来的第一位新生儿。

小女婴阿克塞拉的诞生在当地实属罕见,以至于镇长伊丽莎白·亨利及秘书在办理出生登记时惊慌失措,因为她们根本不了解相关流程。

据报道,产妇原本计划请附近小镇的助产士帮忙接生,但她刚刚坐上去产科的汽车,就诞下了一名女婴,并为其取名阿克塞拉。

为此,阿克塞拉的父亲前往市政厅为其办理出生登记。

他在此得到了欢迎和祝福,而亨利与其秘书则不得不向临近的蒙吕松镇询问出生证的办理流程。

亨利向媒体解释道,她们的确有出生登记簿,但不知道该如何办理,也不希望犯错。

欧日小镇由12个小村庄组成,村里的房子几乎全部空置。

整个镇只有一家商店。

对于镇长而言,这名婴儿的降生给其他年轻伴侣带来了希望,未来他们或许会选择在这个房子360天都紧闭的地区安家落户。

印尼:神秘部落矮人现身,身份成谜引猜测近期,印度尼西亚一支摩托车骑行队在苏门答腊岛野外遇见了一个矮人,该矮人上身赤裸、相貌奇异,而且有些胆小。

车队人员以视频形式记录下了这段短暂的不期之遇,并将其上传网络。

该视频拍摄于班达亚齐市附近。

视频显示,车队当时正在野外的土路上骑行,突然有一个秃顶的矮人手持木棍,从路旁树丛中跳了出来,但见到车队后又匆忙逃跑。

一名车手被吓得摔倒在地,其他人试图尾随矮人,但矮人随即跳入路旁的树丛消失。

自视频发布以来,已经有超过200万人次观看了这段视频,关于矮人身份的猜测也是众说纷纭。

不少观看者认为这个“神秘矮人”就是印尼传说中的“曼特”部落人。

关于这一部落的唯一记载出现在17世纪。

传说中,他们身材矮小而且怕生,见到外界的人就会逃跑。

德国:统计学家刷牙间破解世界级数学难题德国统计学家托马斯·罗延在刷牙间灵光乍现,想出了困扰学术界多年的难题“高斯相关不等式”的破解之道,随后用经典数学方法证明了这一定理。

专业英语句子

Unit 9A。

1. According to the Nyquist theorem,a signal with a maximum frequency of W Hz (called a band—limited signal)must be sampled at least 2W samples per second to ensure accurate recording。

根据奈奎斯特采样定理,为了确保准确记录信号,最高频率为W Hz的信号(称为带限信号),每秒内必须采集至少2W个样本。

2. This process begins by converting each digital code into an analog voltage that is proportional in size to the number represented by the code。

这个电压值在零阶保持器中保持到下一个码字出现,即需要保持一个采样间隔。

3。

Depending on the relationship between the signal frequencies and the sampling rate,spectral inversion may cause the shape of the spectrum in the baseband to be inverted from the true spectrum of the signal。

根据信号频率和采样频率之间的关系的不同,可能出现“频谱反转”现象——基带频谱的形状和信号真实频谱的形状正好相反。

4。

Field-Programmable Gate Arrays (FPGA) have the capability of being reconfigurable within a system,which can be a big advantage in applications that need multiple trial versions within development, offering reasonably fast time to market.现场可编程门阵列具有在系统可重新配置的能力,在开发需要多次试用的应用时,这是一个巨大的优势——它能提供快速的上市时间.5. However, for applications in which the end product must process answers in real time,or must do so while powered by consumer batteries,GPPs comparatively poor real time performance and high power consumption all but rules them out。

一类半线性椭圆型Neumann边值问题解的存在唯一性

一类半线性椭圆型Neumann边值问题解的存在唯一性邢慧;陈红斌【摘要】半线性椭圆型方程解的性质蕴含了方程的丰富信息,对于描述各种现象的发展规律起着至关重要的作用.多物种互助模型的平衡解以及经济均衡点的存在性问题等都可以转化为Neumann边值问题解的存在性.本文研究一类半线性椭圆型方程Neumann边值问题解的存在唯一性.在假定非线性项满足渐近非一致条件的情况下,我们利用拓扑度理论和特征值比较原理得到了解的存在性,运用特征值比较原理证明了解的唯一性.推广和补充了以往的相关研究成果.作为应用,文中通过一个例子验证了所得结论.%The solutions to semilinear elliptic partial differential equations contain rich infor-mation about the equations, which is very important for describing the development of various phenomena. The existence of equilibrium solutions of multi-species mutual aid model and the economic equilibrium point can be transformed into the existence of the solutions to Neumann boundary value problems. In this paper, we study the existence and uniqueness of the solutions for a class of semilinear elliptic equations with Neumann boundary value conditions. Using the topological degree theory and the eigenvalue comparison principle, we obtain the existence of the solutions under the assumption that the nonlinear terms satisfy the asymptotic nonuniform conditions. Using the eigenvalue comparison principle, we prove the uniqueness of the solutions. The obtained results extend and complement some relevant existing works. As an application, an example is given to verify the obtained results.【期刊名称】《工程数学学报》【年(卷),期】2017(034)006【总页数】7页(P622-628)【关键词】Neumann边值问题;解的存在唯一性;渐近非一致条件;拓扑度理论;特征值比较原理【作者】邢慧;陈红斌【作者单位】西安工程大学理学院,西安 710048;西安交通大学数学与统计学院,西安 710049【正文语种】中文【中图分类】O175.21 引言不少数学家从不同侧面研究了如下在Dirichlet边值条件下的半线性椭圆型方程解的存在唯一性.但是,对在Neumann边值条件下半线性椭圆型方程解的相关研究还比较少见.Neumann边值问题在数学物理、经济数学和生物数学等交叉学科中有着广泛的应用背景.在研究波动方程、梁问题、热传导问题以及多物种互助模型平衡解和经济均衡点的存在性等问题时,经常会转化成研究Neumann边值问题解的存在性的问题,所以研究半线性椭圆型方程Neumann边值问题解的存在性具有非常重要的理论意义和实际价值.众所周知,Duffing型方程是典型的振动微分方程,而且是方程(1)在一维时的特殊情形,解的存在性问题因涉及领域广泛而备受人们关注,此类方程在大气科学中有着非常广泛的应用.在我们的日常生活和工程实践中,振动现象普遍存在.随着科技的进步和社会生产力的发展,高强度材料、新结构形式不断出现,使得振动问题日益受到关注.当结构参数有了小变化之后,为了尽早发现和预防可能出现的有害振动,结构固有频率和固有振型的变化情况的研究就非常重要.所以,对于振动方程解的相关研究和特征值理论密切相关.Hammerstein[1]在研究非线性积分方程的过程中最早发现了Laplace算子第一特征值λ1的重要性,并且证明了存在γ,使得当ξ∈R 时方程(1)在条件f′(ξ)≤γ<λ1下有唯一解.1949年,Dolph[2]得到了方程(1)有如下的结果:设λk<λk+1是−Δ的两个相邻的特征值,如果存在ε>0,对任意ξ∈R,当λk+ε≤ f′(ξ)≤ λk+1−ε时,方程(1)存在唯一解.在文献[3—5]中,Mawhin等学者讨论了带有不跨特征扰动的方程解的存在性和唯一性.1990年,Ruf[6]研究了半线性椭圆型Neumann边值问题解的结构,其中λ是一个正常数,h(x)是一个给定的函数,ν表示边界上的外法向量.2012年,Sfecci[7]研究了半线性椭圆型Neumann边值问题在非振动条件下径向解的存在性.徐登洲和马如云[8]对半线性微分方程的Dirichlet边值问题解的存在性和唯一性的研究进展做了详尽的介绍.在文献[2—9]的启发下,本文利用拓扑度理论和特征值比较原理研究半线性椭圆型方程的Neumann边值问题在带有不跨特征值扰动时解的存在性和唯一性,其中Ω是Rn中的有界区域,ν表示边界上的外法向量,h(x)∈C0,α(¯Ω)是有界的,f(x,u)是连续函数且满足渐近非一致条件.本文中的渐近非一致条件不同于多数文献中的形式,这个条件更精确,而且应用更广泛.2 预备知识定义1 对于半线性椭圆型方程其中Ω是Rn中的有界区域,h(x)是连续函数,如果连续函数f(x,u):Ω×R→R满足以下条件则称连续函数f(x,u)为线性方程Δu=h的不跨特征扰动,其中且严格不等式在Ω的一个正测度集上成立.类似地,也表示同样的含义.这里λk和λk+1分别表示在Neumann边值条件下的特征值问题的第k和第k+1个特征值.方程(3)的特征值为λ1=0所对应的特征子空间为span{1},对于任意自然数k,λk所对应的特征子空间是有限维的.方程(3)等价于方程其中A表示在Neumann边值条件下算子−Δ+I的逆.引理1 对于方程(4),如果λk≪λ≪λk+1,则存在充分大的R>0,使得其中k是满足(λ+1)µ∈(1,+∞)的所有特征值µ的代数重数之和,µ是算子A的特征值,BR表示半径为R的球.证明显然v=0是方程(3)的解,由于λk≪λ≪λk+1,所以算子I−(λ+1)A是可逆的,由则由文献[10]中定理8.10可得关于拓扑度的计算可参见文献[10—13].考虑下面的线性椭圆型方程其中Ω是RN中的有界区域,而且边界∂Ω是光滑的.下面给出方程(5)的H¨older估计.引理2[14,15] 对于方程(5),下面的结论成立:(i)如果h∈L∞(Ω),那么对于任意0<α<1,有且是方程(5)的一个古典解且在上面c表示一个正常数,而且依赖于Ω.引理3(特征值比较原理)设µ1(q(x))≤µ2(q(x))≤µ3(q(x))≤…是方程(ii)如果,那么的特征值.如果q1(x)≪q2(x),那么µk(q1(x))>µk(q2(x)),k=1,2,3,4,…成立.在本文中,对于方程(2),假设f(x,u)满足下述条件:其中a(x),b(x)∈C(Ω).我们把条件(H)称为渐近非一致条件,也就是说,当|u|→∞时,可与λk和λk+1任意地接近,甚至可以“接触”λk和λk+1.3 主要结果定理1 如果函数f(x,u)满足条件(H),而且λk≪ f′(x,u)≪ λk+1,则方程(2)的解是存在的,而且是唯一的.记其中f′(x,u)表示对第二变量u的导数.证明对于任意t∈[0,1],考虑下面的方程其中λk≪λ≪λk+1,对于充分大的R,下面证明方程(6)在∂BR上没有解.用反证法,假设存在hn∈Y,方程(6)在∂BR上存在解un∈X,且‖un‖Y→∞,tn∈[0,1],下面把‖·‖Y记为‖·‖.令,得到令显然Un是有界的,由引理2(i)可得‖zn‖C1,α≤C,C为常数,则在空间中存在子列,使得zn→ z,tn→ t.由于‖zn‖=1,则‖z‖=1,由此得到z一定不等于0.方程(7)两边同乘以,并分部积分可得这样,令由‖un‖→∞,可得方程(8)的右边为零.当n→∞时,有(f(x,un)/un)zn→m(x)z,对方程(8)取极限并由Lebesgue控制收敛定理可得由条件(H)可得λk≪ tm(x)+(1− t)λ ≪ λk+1,记q(x)=tm(x)+(1− t)λ,那么µk(q(x))<0,µk+1(q(x))>0,由引理2(ii)和特征值比较原理即引理3可得方程只有平凡解z≡ 0,这与前面z必定不等于零相矛盾.因此,当R充分大时,方程(6)在∂BR上没有解.当t=1时,方程(6)的解可表示为我们将方程(2)的解的存在性转化为算子F的不动点问题.当t=0时,方程(6)的解可表示为由引理1可知,deg(I−(λ+1)A,BR,0)=(−1)k.令由同伦不变性和引理1可得因此,方程(2)至少有一个解u.下面证明方程(2)的解是唯一的.用反证法,假设v也是方程(2)的一个解.令w=u−v,由此我们得到由于λk≪f′(x,u)≪λk+1,由特征值比较原理可得由此得到方程(2)的解w≡0,从而得到u≡v.因此,方程(12)的解是唯一的.4 例子在定理1中,如果没有条件(H),只有条件λk≪f′(x,u)≪λk+1时,并不能保证解的存在性,也就得不到解的唯一性.只有满足条件(H),保证解是存在的情况下,才能讨论解的唯一性.为了更好地说明以上所得结果,下面给出一个例子.例1 二阶线性微分方程的Neumann边值问题在A>2π时无解.证明在方程(13)两边同乘以cosx,并在[0,π]上积分可得由方程(13)的边值条件和方程(14)可得由方程(15)可得因此,当A>2π时,方程(13)无解.令f(x,u)=u+arctanu,则由(17)式可以看出,当|u|→∞时,f(x,u)/u的极限等于1,而1是Neumann边值条件下的特征值问题的第二特征值,函数f(x,u)不满足渐近非一致条件.因此,当函数f(x,u)不满足渐近非一致条件(H)时,方程(13)在A>2π时无解.以上的例子说明了定理1的渐近非一致条件(H)是精确的,如果不能保证条件(H),方程有可能无解.参考文献:[1]Hammerstein A.Nichtlineare integralgleichungen nebst anwendungen[J].Acta Mathematica,1929,54(1):117-176[2]Dolph C L.Nonlinear integral equations of Hammersteintype[J].Transactions of the American Mathematical Society,1949,66(2):289-307[3]Mawhin J,Ward J R.Nonresonance and existence for nonlinear elliptic boundary value problems[J].Nonlinear Analysis:Theory,Methods and Applications,1981,5(6):677-684[4]丁同仁.在共振点的非线性振动[J].中国科学(A辑),1982,25(1):1-13 Ding T R.Nonlinear oscillations at a point of resonance[J].Science in China(SeriesA),1982,25(1):1-13[5]Santo D D,Omari P.Nonresonance conditions on the potential for a semilinear elliptic problem[J].Journal of DifferentialEquations,1994,108(1):120-138[6]Ruf B.Singularity theory and the Geometry of a nonlinear elliptic equation[J].Annali della Scuola Normale Superiore di Pisa,Class di Scienze,1990,17(1):1-33[7]Sfecci A.A nonresonance condition for radial solutions of a nonlinear Neumann elliptic problem[J].Nonlinear Analysis:Theory,Methods and Applications,2012,75(16):6191-6202[8]徐登洲,马如云.线性微分方程的非线性扰动(第2版)[M].北京:科学出版社,1994 Xu D Z,Ma R Y.Nonlinear Disturbances of the Linear Differential Equations(2nd Edition)[M].Beijing:Science Press,1994[9]Xing H,Chen H B,He X B.Exact multiplicity and stability of solutions of second-order Neumann boundary value problem[J].Applied Mathematics and Computation,2014,232(3):1104-1111[10]Deimling K.Nonlinear Functional Analysis[M].Berlin:Springer-Verlag,1985[11]郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,1985 Guo DJ.Nonlinear Functional Analysis[M].Jinan:Shandong Science and Technology Press,1985[12]孙经先.一类非线性算子的不动点[J].山东大学学报,1990,25(4):424-427 SunJ X.Fixed point theorems for a class of nonlinear operators[J].Journal of Shandong University,1990,25(4):424-427[13]Amann H.Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J].SIAmReview,1976,18(4):620-709[14]Maz’ya V.Boundedness of the gradient of a solution to the Neumann-Laplace problemin a convex domain[J].Comptes RendusMathématique,2009,347(9-10):517-520[15]Nardi G.Schaud er estimate for solutions of Poisson’s equation with Neumann boundary condition[J].L’enseignementMathématique,2014,60(3-4):421-435。

Neumann边值问题非平凡解的存在性


设 U是 V 中 0点 的开 的有界 的不变邻 域 , 若对 每个 连续等 变 映射 _ r 厂] :u—
上的作用 是相 容的.
, 都存 在一 个 0点 , 则称 G在
定义 3 E
设 ∈C ( E , ∈ X, ) f . 若对 任 意满足
一 。。 ,

∈Y
( ) c I “ 一 ,
第 1卷 O
第 1 期
太 原 师 范 学 院 学 报 ( 自然 科 学版 )
J 0URNAL 0F TAI YUAN NORM AL UNI VERS TY ( t rl ce c io ) I Nau a in eEdt n S i
V 11 N . o. 0 o 1
≤R. 因此 , 是 。 ∈Z , l l 一 时 , 对 ≥是 , k且 { “I z 有 ( ) ,A 得证 . “ ≥0 ( )
在有 限维空 间 y 上所 有范数 均等 价 , 而有 从 ( ) 1 I I 一 ( I “l I ; “I + T】 +
第 1 期

媛 : u n 边 值 问题 非 平凡 解 的存 在 性 Nema n
6 3
T: ( +C H) H . } 。 { J o { 一 一 1 q
} ~是 T的全 部特征 值 , e} 。 T的相应 于 { } 。 。 { 是 的标 准 正交
-c /k ox
引 2 泛 “一 l j等fV I l “ ) 一oT L0] 理 函 ( 专 “ 。 { l1 在 。, 中 ) 一 ( T “ + T C , d 2 u [
有一个 临界 点 , 问题 ( ) c 0 1 则 1 在 [ ,]中有一个 解 . 现在定 义 X, e, 一R ,X一④ 川 , X,Y 一④ J 一④ x 一X . . 引理 3 设 G—Z/ , E 2 一] 则 G在 上 的作 用是 相容 的. , 文 中设 下列条件 成 立 :A ) 紧群 G等 矩地作 用在 B n c ( 设 a ah空间 X一① ” 上 , 在 G 的作 用下 是不 ∈ x, x,

冯诺依曼迹不等式


where U 1 , V1, U 2 , V2 are unitary matrices and R = diag (Q1, 99 0~), S = diag (al, 99 an).
Then, since tr (P Q) = fr (Q P), we have tr (A B) = tr ( V~. U1 R V1 U2 S ) = tr (U ~ R V S), where U = (urs) = (V2 U1) T and matrices. Hence tr(AB)= and therefore
q~
V = (Vrs) = V1 U2 are
unitary
r,$ =
~ ursvrs~r~8
i
Itr (A B)i ~<
r,s=l
r,s=l
~
r,s=l
i
But, as is plain, (Juts [2) and (Ivrs l~) are doubly-stochastic matrices; and (1) now follows immediately by the application of the lemma. 4. We shM1 conclude our discussion with miscellaneous remarks bearing on von Neumann's theorem. An almost immediate consequence of (1) is the identity sup [tr (A U B V) ] = ~ ~r at,
304
L. MraSKY
2. A square matrix is said to be doubly-stochastic if its elements are real and non-negative numbers and if the sum of the elements in each row and in each column is equal to 1. We need the following preliminary result, which has also a certain independent interest. Lemma. I f (drs) is a doubly-stochastlc n • n matrix and i f
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ann.I.H.Poincaré–AN 25(2008)267–280/locate/anihpcAn asymmetric Neumann problem with weightsM.Arias a ,J.Campos a ,M.Cuesta b ,J.-P.Gossez c ,∗a Departamento de Matemática Aplicada,Universidad de Granada,18071Granada,Spainb LMPA,Universitédu Littoral,50,rue F .Buisson,BP 699,62228Calais,Francec Département de Mathématique,C.P .214,UniversitéLibre de Bruxelles,1050Bruxelles,Belgium Received 17March 2006;accepted 21July 2006Available online 8January 2007AbstractWe prove the existence of a first nonprincipal eigenvalue for an asymmetric Neumann problem with weights involving the p -Laplacian (cf.(1.2)below).As an application we obtain a first nontrivial curve in the corresponding Fuˇc ik spectrum (cf.(1.4)below).The case where one of the weights has meanvalue zero requires some special attention in connexion with the (PS)condition and with the mountain pass geometry.©2007Elsevier Masson SAS.All rights reserved.RésuméNous démontrons l’existence d’une première valeur propre non principale pour un problème de Neumann asymétrique avec poids faisant intervenir le p -laplacien (cf.(1.2)ci-dessous).Comme application nous obtenons une première courbe non triviale dans le spectre de Fuˇc ik correspondant (cf.(1.4)ci-dessous).Le cas oùl’un des poids est de moyenne nulle demande une attention particulière en liaison avec la condition de Palais–Smale et avec la géométrie du col.©2007Elsevier Masson SAS.All rights reserved.MSC:35J60;35P30Keywords:Neumann problem;Asymmetry;p -Laplacian;Weights;Fuˇc ik spectrum;Cerami (PS)condition1.IntroductionIn a previous work [2],we investigated the eigenvalues of the following asymmetric Dirichlet problem with weights:− p u =λm(x)(u +)p −1−n(x)(u −)p −1 in Ω,u =0on ∂Ω,(1.1)where p is the p -Laplacian,Ωis a bounded domain in R N and m,n satisfy some summability conditions togetherwith m +≡0,n +≡0.We proved the existence of a first nonprincipal positive eigenvalue for (1.1).Various appli-cations were given to the study of the Fuˇc ik spectrum and to the study of nonresonance.The construction of this*Corresponding author.E-mail addresses:marias@ugr.es (M.Arias),campos@ugr.es (J.Campos),cuesta@lmpa.univ-littoral.fr (M.Cuesta),gossez@ulb.ac.be (J.-P.Gossez).0294-1449/$–see front matter ©2007Elsevier Masson SAS.All rights reserved.doi:10.1016/j.anihpc.2006.07.006268M.Arias et al./Ann.I.H.Poincaré–AN 25(2008)267–280distinguished eigenvalue was obtained by applying a version of the mountain pass theorem to the functionalΩ|∇u |prestricted to the manifold {u ∈W 1,p0(Ω): Ω[m(u +)p +n(u −)p ]=1}.In this process the (PS)condition was shown to hold at all levels and the geometry of the mountain pass was derived from the observation that ϕ1(m)and −ϕ1(n)were strict local minima (where ϕ1(m)denotes the normalized positive first eigenfunction of the Dirichlet p -Laplacian with weight m ).Our purpose in the present paper is to investigate the corresponding Neumann problem:− p u =λ m(x)(u +)p −1−n(x)(u −)p −1 in Ω,∂u∂ν=0on ∂Ω,(1.2)where νdenotes the unit exterior normal.When trying to adapt the preceding approach to the present situation,the relevant functional is still Ω|∇u |p but now restricted to the manifoldM m,n := u ∈W 1,p (Ω):B m,n (u):=Ωm(u +)p +n(u −)p=1 .(1.3)A first difficulty arises in connexionwith the (PS)condition.It turns out that the (PS)condition remains satisfied at all levels when Ωm =0and Ωn =0,but it is not satisfied anymore at level 0when Ωm =0or Ωn =0.In this latter case,which we will call the singular case,we do not know whether the (PS)condition still holds at all positive levels (see Remark 3.4).However one can show that the Palais–Smale condition of Cerami (abbreviated into (PSC))holds at all positive levels.Another difficulty arises when dealing with problem (1.2),which is now connected with the geometry of the functional.It turns out that in the singular case,at least one of the two natural candidates for local minimum fails to belong to the manifold M m,n .To bypass this difficulty we will consider a minimax procedure defined from a family of paths having free endpoints (cf.(3.1)).The existence of a first nonprincipal positive eigenvalue for (1.2)is derived in Section 3.The argument uses a version of the mountain pass theorem for a C 1functional restricted to a C 1manifold and which satisfies the (PSC)condition at certain levels.Section 4is devoted to such a theorem.In Section 5we briefly indicate some properties of the eigenvalue constructed in Section 3as a function of the weights m,n and in Section 6we apply our results to the study of the Fuˇc ik spectrum.Recall that the latter is defined as the set Σof those (α,β)∈R 2such that − p u =αm(x)(u +)p −1−βn(x)(u −)p −1in Ω,∂u∂ν=0on ∂Ω,(1.4)has a nontrivial solution.As in the Dirichlet case we obtain for (1.4)the existence in Σof hyperbolic-like first curves.Note however that contrary to what was happening in the Dirichlet case,the asymptotic behaviour of these first curves does not depend on the supports of the weights (at least when the weights are bounded,cf.Proposition 6.4and Remark 6.5).In the preliminary Section 2we collect some results relative to the usual eigenvalue problem− p u =λm(x)|u |p −2u in Ω,∂u∂ν=0on ∂Ω.(1.5)We also recall there some general definitions relative to (PS)and (PSC)conditions.2.PreliminariesThroughout this paper Ωwill be a bounded domain in R N with Lipschitz boundary and the weights m,n will be assumed to belong to L r (Ω)with r >N p if p N and r =1if p >N .We also assume unless otherwise statedm +and n +≡0in Ω.(2.1)Solutions of (1.2)or of related equations are always understood in the weak sense,i.e.u ∈W 1,p (Ω)withΩ|∇u |p −2∇u ∇ϕ=λ Ωm(u +)p −1−n(u −)p −1ϕ,∀ϕ∈W 1,p (Ω).Regularity results from [13]on general quasilinear equations imply that such a solution u is locally Hölder continuousin Ω;moreover the derivation of the L ∞estimates in [1]can be adapted to the present situation to show that u ∈M.Arias et al./Ann.I.H.Poincaré–AN 25(2008)267–280269L ∞(Ω).Note that if in addition m,n ∈L ∞(Ω)and Ωis of class C 1,1,then u ∈C 1,α(Ω)for some 0<α<1(cf.[12]).Our main purpose in this preliminary section is to collect some results relative to the eigenvalue problem (1.5).Clearly 0is a principal eigenvalue of (1.5),with the constants as eigenfunctions.The search for another principal eigenvalue involves the following quantity:λ∗(m)=infΩ|∇u |p :u ∈W 1,p (Ω)andΩm |u |p=1 .(2.2)By (2.1),λ∗(m)<∞.Proposition 2.1.(i)SupposeΩm <0.Then λ∗(m)>0and λ∗(m)is the unique nonzero principal eigenvalue ;this eigenvalue is simple and admits an eigenfunction which can be chosen >0in Ω;moreover the interval ]0,λ∗(m)[does not contain any other eigenvalue.(ii)Suppose Ωm >0.Then λ∗(m)=0and 0is the unique nonnegative principal eigenvalue.(iii)SupposeΩm =0.Then λ∗(m)=0and 0is the unique principal eigenvalue.Proposition 2.1is proved in [10](see also [6,11])when m ∈L ∞(Ω),but the arguments can easily be adapted to the present situation.We observe in this respect that in the case of an unbounded weight,Harnack’s inequality as given in [13,9]should be used instead of Vazquez maximum principle [14]to derive in case (i)that the eigenfunction can be chosen >0in Ω.See [4]for similar considerations in the Dirichlet case.In case (i)or (ii)of Proposition 2.1,the positive eigenfunction associated to λ∗(m)and normalized so as to satisfy the constraint in (2.2)will be denoted by ϕm .The infimum (2.2)is then achieved at ϕm .In case (iii)the fact that λ∗(m)=0is easily verified by considering the sequencev k =(1+ψ/k)1/p[Ωm(1+ψ/k)]1/p,(2.3)where ψis any fixed smooth function with ψ 0andΩmψ>0.Note that in that case (iii),the infimum (2.2)is not achieved (since no constant satisfies the constraint in that case).Let us conclude this section with some general definitions relative to the (PS)condition.Let E be a real Banach space and let M :={u ∈E :g(u)=1}where g ∈C 1(E,R )and 1is a regular value of g .Let f ∈C 1(E,R )and consider the restriction ˜f of f to M .The differential ˜f at u ∈M ,has a norm which will be denoted by ˜f (u) ∗and which is given by the norm of the restriction of f (u)∈E ∗to the tangent space of M at uT u (M):= v ∈E : g (u),v =0,where , denotes the pairing between E ∗and E .A critical point of ˜f is a point u ∈M such that ˜f(u) ∗=0;˜f (u)is then called a critical value of ˜f .We recall that ˜f is said to satisfy the (PS)c condition (resp.(PSC)c condition)at level c ∈R if for any sequenceu k ∈M such that ˜f (u k )→c and ˜f(u k ) ∗→0(resp.˜f (u k )→c and (1+ u k E ) ˜f (u k ) ∗→0),one has that u k admits a convergent subsequence.We will also say that ˜f satisfies the (PS)c condition along bounded sequencesif for any bounded sequence u k ∈M such that ˜f (u k )→c and ˜f(u k ) ∗→0,one has that u k admits a convergent subsequence.Condition (PSC)c was introduced in [3]as a weakening of the classical (PS)c condition.Going back to case (iii)of Proposition 2.1,one can see that the functionalΩ|∇u |p restricted to the manifold M m,n (cf.(1.3))does not satisfy the (PS)0condition.Indeed the sequence v k from (2.3)provides an unbounded (PS)0sequence.That the (PSC)0condition does not hold neither will follow from Proposition 4.3.3.A first nontrivial eigenvalueThe assumptions on m,n in this section are those indicated at the beginning of Section 2.We look for nonnegative eigenvalues λof (1.2).270M.Arias et al./Ann.I.H.Poincaré–AN 25(2008)267–280Clearly the only nonnegative principal eigenvalue of (1.2)are 0,λ∗(m)and λ∗(n).Moreover multiplying by u +or u −,one easily sees that if (1.2)with λ 0has a solution which changes sign,then λ>max {λ∗(m),λ∗(n)}.Proving the existence of such a solution which changes sign,and which in addition corresponds to a minimum value of λ,is our purpose in this section.As indicated in the introduction we will use a variational approach and consider the functional A(u):=Ω|∇u |pon W 1,p (Ω),the manifold M m,n defined in (1.3)and the restriction ˜Aof A to M m,n .In this context one easily verifies that λ>0is an eigenvalue of (1.2)if and only if λis a critical value of ˜A .The case of the eigenvalue λ=0is particular:it is a critical value of ˜A iff M m,n contains a constant function,i.e.iff Ωm >0orΩn >0.It follows in particular from these considerations that ifΩm =0,then λ∗(m)is a critical value of ˜Acorresponding to the critical point ϕm ,and similarly for λ∗(n)and −ϕn ifΩn =0.To state our main result let us introduce the following family of paths in M m,n :Γ:= γ∈C [0,1],M m,n :γ(0) 0and γ(1) 0 .(3.1)Lemma 3.1.Γis nonempty.Proof.Choose u ∈W 1,p (Ω)such that Ωm(u +)p >0andΩn(u −)p >0,which is possible by (2.1),and define γ1(t):=t 1/p u +−(1−t)1/p u −for t ∈[0,1].Using the fact that u +and u −have disjoint supports,one obtainsB m,n γ1(t) =t Ωm(u +)p +(1−t) Ωn(u −)p min Ωm(u +)p ,Ωn(u −)p >0.The path γ2(t):=γ1(t)/(B m,n (γ1(t)))1/p is thus well defined and clearly belongs to Γ.2Define now the minimax value c(m,n):=inf γ∈Γmax u ∈γ[0,1]˜A(u),(3.2)which is finite by Lemma 3.1.Theorem 3.2.c(m,n)is an eigenvalue of (1.2)which satisfiesmaxλ∗(m),λ∗(n) <c(m,n).(3.3)Moreover there is no eigenvalue of (1.2)between max {λ∗(m),λ∗(n)}and c(m,n).The rest of this section is devoted to the proof of Theorem 3.2.As indicated in the introduction,some difficulty arises in connexion with the (PS)condition.Proposition 3.3.(i)˜Asatisfies (PS)c along bounded sequences for all c 0.(ii)˜A satisfies (PSC)c for all c >0.(iii)IfΩm =0and Ωn =0,then ˜Asatisfies (PS)c for all c 0.Remark 3.4.One can show that ifp =2,then ˜A satisfies (PS)c for all c >0,but the case p =2remains undecided.On the other hand,if Ωm =0or Ωn =0,then ˜Adoes not satisfy (PSC)0.This latter fact can be seen as in Section 2:assumingΩm =0,one first observes that v k from (2.3)provides an unbounded (PS)0sequence for ˜A ,and then oneapplies Proposition 4.3below;similar argument when Ωn =0.Proof of Proposition 3.3.(i)Let u k ∈M m,n be a bounded (PS)c sequence for ˜A.SoΩ|∇u k |p →c andΩ|∇u k |p −2∇u k ∇ξεk ξ ∀ξ∈T u k M m,n ,(3.4)M.Arias et al./Ann.I.H.Poincaré–AN 25(2008)267–280271where εk →0and · denotes the W 1,p (Ω)norm.For a subsequence and some u 0∈W 1,p (Ω),one has that u k u 0in W 1,p (Ω).Let us write for w ∈W 1,p (Ω)a k (w):=w −Ωm(u +k )p −1−n(u −k )p −1 w u k ∈T u k M m,n .Taking ξ=a k (w)in (3.4),one deducesΩ|∇u k |p −2∇u k ∇w − Ωm(u +k )p −1−n(u −k )p −1 w Ω|∇u k |p εk a k (w) Dεk u k p +1 w for some constant D ;taking now w =u k −u 0in the above,one obtainsΩ|∇u k |p −2∇u k ∇(u k −u 0)→0.It then follows from the (S +)property that u k →u 0in W 1,p (Ω),which yields the conclusion of part (i).(ii)Let now u k ∈M m,n be a (PSC)c sequence for ˜A ,with c >0.So Ω|∇u k |p →c and (3.4)is replaced byΩ|∇u k |p −2∇u k ∇ξ εk 1+ u kξ ∀ξ∈T u k M m,n(3.5)where εk →0.We will show that u k remains bounded so that part (i)applies and yields the conclusion of part (ii).Let us assume by contradiction that,for a subsequence, u k →∞.Write v k =u k / u k .For a further subsequence and some v 0∈W 1,p (Ω),one has that v k v 0in W 1,p (Ω).Since Ω|∇u k |p remains bounded,one has Ω|∇v k |p →0and it follows easily that v 0≡cst =0and that v k →v 0in W 1,p (Ω).On the other hand,taking ξ=a k (w)in (3.5)and dividing by u k p −1,one getsΩ|∇v k |p −2∇v k ∇w −Ω m(v +k )p −1−n(v −k )p −1 w Ω|∇u k |p εk u k 1+ u k w u k p−Ωm(v +k )p −1−n(v −k )p −1 w v k .This implies that v 0is a solution of− p v 0=c m(v +0)p −1−n(v −0)p −1 in Ω,∂v 0∂ν=0on ∂Ω,(3.6)where c is the level appearing in the (PSC)c sequence.Since v 0≡cst ,the right-hand side of (3.6)is ≡0,and sincec >0,one gets m(v +0)p −1−n(v −0)p −1≡0.This relation with a nonzero constant v 0implies m ≡0or n ≡0,which contradicts (2.1).(iii)Let us finally consider the case where Ωm =0,Ωn =0,and let u k ∈M m,n be a (PS)c sequence for ˜Awith c 0.We will show that u k remains bounded so that part (i)applies and yields the conclusion.Assume that for a subsequence u k →+∞.For a further subsequence one obtains as above that v k →v 0in W 1,p (Ω)with v 0a nonzero constant.But B m,n (u k )=1and so,dividing by u k p and going to the limit,one obtainsΩm(v +0)p +n(v −0)p =0.This is a contradiction since v 0is a nonzero constant andΩm =0,Ωn =0.2We now turn to the geometry of ˜A.The situation here is again simpler in the nonsingular case where the following proposition applies.272M.Arias et al./Ann.I.H.Poincaré–AN 25(2008)267–280Proposition 3.5.IfΩm =0,then ϕm ∈M m,n is a strict local minimum of ˜A,with in addition for some ε0>0and all 0<ε<ε0,˜A(ϕm )=λ∗(m)<inf ˜A(u):u ∈M m,n ∩∂B(ϕm ,ε),(3.7)where B(ϕm ,ε)denotes the ball in W 1,p (Ω)of center ϕm and radius ε.Similar conclusion for −ϕn ifΩn =0.Proof.We only sketch it since it is adapted from [2].One first shows that for some ε0>0,˜A(ϕm )<˜A(u)∀u ∈M m,n ∩B(ϕm ,ε0),u =ϕm .(3.8)To prove (3.8)one distinguishes two cases:(i)λ∗(m)=0or (ii)λ∗(m)>0.In case (i)one chooses ε0such thatM m,n ∩B(ϕm ,ε0)only contains ϕm as constant function.This clearly implies (3.8).In case (ii)one assumes bycontradiction the existence of a sequence u k ∈M m,n with u k =ϕm ,u k →ϕm in W 1,p (Ω)and ˜A(uk ) λ∗(m).One then deduces,as on p.585of [2],that u k changes sign for k sufficiently large.One also hasλ∗(m) Ωm(u +k )p +n(u −k )p =λ∗(m) ˜A(u k ) λ∗(m) Ωm(u +k )p + Ω|∇u −k|p and consequently λ∗(m) Ωn +(u −k )p λ∗(m) Ωn(u −k )pΩ|∇u −k |p.Since u k →ϕm ,|u −k >0|→0where |u −k >0|denotes the measure of the set where u −k is >0.The desired contra-diction then follows from Lemma 3.6below.Thus (3.8)is proved.The fact that (3.8)implies (3.7)follows from Lemma 6in [2],after observing that it suffices in this lemma that the functional satisfies (PS)along bounded sequences,a property which holds here by Proposition 3.3.This concludes the proof of Proposition 3.5whenΩm =0.Similar arguments when Ωn =0.2Lemma 3.6.Let v k ∈W 1,p (Ω)with v k 0,v k ≡0and |v k >0|→0.Let n k be bounded in L r (Ω).ThenΩn k v p kΩ|∇v k |p →0.Proof.Without loss of generality,one can assume v k =1.So for a subsequence,v k v in W 1,p (Ω)and v k →v in L p (Ω).The assumption on |v k >0|implies v ≡0and consequentlyΩ|∇v k |p →1.The conclusion then followssince,by Hölder inequality, Ωn k v pk →0.2In the singular case,one at least of the two local minima provided by Proposition 3.5is missing.The search for suitable endpoints of paths which allow the application of a mountain pass argument will be based on the following lemmas (see in particular Lemma 3.10).Lemma 3.7.Inequality (3.3)holds.Proof.The inequality easily follows from the definition of λ∗(m)and λ∗(n).Indeed for any γ∈Γ,γ(1)belongs to M m,n ,is 0and so satisfies the constraint in the definition (2.2)of λ∗(m).Consequently c(m,n) λ∗(m),and a similar argument applies to λ∗(n).To prove the strict inequality assume by contradiction that for instance λ∗(m)=c(m,n).So,there exists a sequence γk ∈Γsuch thatmax t ∈[0,1]˜Aγk (t) →λ∗(m).(3.9)Put u k :=γk (1).Since u k 0,one has λ∗(m)Ω|∇u k |p max t ∈[0,1]˜Aγk (t) →λ∗(m),(3.10)M.Arias et al./Ann.I.H.Poincaré–AN 25(2008)267–280273and consequentlyΩ|∇u k |p →λ∗(m).Let us now distinguish two cases:either (i) u k remains bounded or (ii)for a subsequence u k →∞.In case (i),for a subsequence and for some u 0∈W 1,p (Ω),one has that u k u 0in W 1,p (Ω).Since u k 0,one hasΩm |u 0|p =1,(3.11)and soλ∗(m)Ω|∇u 0|p lim infΩ|∇u k |p =λ∗(m),which implies that Ω|∇u 0|p =λ∗(m).Consequently u k →u 0in W 1,p (Ω).If Ωm =0,then λ∗(m)=0and so u 0≡cst ,which leads to a contradiction with (3.11).SoΩm =0and we conclude that u 0=ϕm .Let us now choose ε>0such that (3.7)holds and B(ϕm ,ε)does not contain any function v with v 0,which is clearly possible.For k sufficiently large u k =γk (1)∈B(ϕm ,ε),while γk (0)/∈B(ϕm ,ε)since γk (0) 0.It follows that the path γk intersects ∂B(ϕm ,ε)and consequentlymax t ∈[0,1]˜Aγk (t) inf ˜A(u):u ∈M m,n ∩∂B(ϕm ,ε) >λ∗(m).This contradicts (3.9).In case (ii)we put v k =u k / u k .For a subsequence and some v 0∈W 1,p (Ω),v k v 0in W 1,p (Ω).Since Ω|∇u k |p remains bounded,we obtain Ω|∇v k |p →0and so v 0≡cst ;also v 0≡0since v k =1implies v 0 =1.Moreover Ωm |v 0|p =0since Ωm |u k |p =1.We have reached a contradiction if Ωm =0.So let us assume from now on thatΩm =0.We first observe that for any γ∈Γthere exists t 0=t 0(γ)∈[0,1]such thatΩm γ(t 0)+ p=Ωn γ(t 0)− p =12.(3.12)Consider now w k :=γk (t 0(γk )).We have now instead of (3.10)Ω|∇w k |p max t ∈[0,1]˜Aγk (t) →λ∗(m)=0.(3.13)We again distinguish two cases:either w k remains bounded,or for a subsequence w k →∞.In the first case,for a subsequence and some w 0∈W 1,p (Ω),w k w 0in W 1,p (Ω).It follows from (3.13)that w 0≡cst and that w k →w 0in W 1,p (Ω).A contradiction then follows fromΩm(w +0)p = Ωn(w −0)p=12.In the second case we put z k :=w k / w k .For a subsequence and some z 0∈W 1,p (Ω),z k z 0in W 1,p (Ω).It follows from (3.13)that z 0≡cst and that z k →z 0in W 1,p (Ω);consequently z 0 =1.If z 0>0then |w k <0|=|z k <0|→0;moreover w k changes sign and by (3.12)Ωn +|w −k |pΩ|∇w −k |p 1/2 Ω|∇w k |p →+∞.This yields a contradiction with Lemma 3.6.A similar argument applies if z 0<0.2Lemma 3.8.For any d >0,the setO := u ∈M m,n :u 0and ˜A(u)<dis arcwise connected.Similar conclusion if u 0is replaced by u 0.274M.Arias et al./Ann.I.H.Poincaré–AN 25(2008)267–280Note that by the definition of c(m,n),{u ∈M m,n :˜A(u)<d }is not arcwise connected when max {λ∗(m),λ∗(n)}<d <c(m,n).Proof of Lemma 3.8.Since O is empty if d λ∗(m),we can assume from now on d >λ∗(m).We first consider the case whereΩm =ing Lemma 3.9below,one constructs a weight ˆn∈L r (Ω)such that ˆn +≡0,ˆn m , Ωˆn <0and λ∗(ˆn)>d .When m −≡0,it suffices in this construction to take ˆn =εm +−m −with ε>0sufficiently small;when m −=0i.e.m 0,it suffices to take ˆn=εm −kχB with εsufficiently small and k sufficiently large,where χB is the characteristic function of a ball B Ωsuch that m +≡0on Ω\B .We then consider the manifold M m,ˆn and the sublevel setO := u ∈M m,ˆn :A(u)<d .By part (iii)of Proposition 3.3,the restriction ˆA of A to M m,ˆn satisfies (PS)c for all c 0.Lemma 14from [2]thenimplies that any (nonempty)component of O contains a critical point of ˆA .But the first two critical levels λ∗(m),λ∗(ˆn)of ˆAverify λ∗(m)<d <λ∗(n),and consequently ˆA admits only one critical point in O .We can conclude in this way that Ois arcwise connected.Let now u 1,u 2∈O .Since they are 0,they also belong to O.Let γbe a path in O from u 1to u 2and consider the pathγ1(t):=|γ(t)|(Ωm |γ(t)|).By the choice of ˆn ,Ωm γ(t) pΩm γ(t)+ p +ˆnγ(t)−p =1,(3.14)and consequently γ1is a well defined path in M m,n ,which clearly goes from u 1to u 2and is made of nonnegativefunctions.Moreover,by (3.14),A γ1(t) =A(γ(t))Ωm |γ(t)| A γ(t) <d for all t ,and we conclude that the path γ1lies in O .Consider now the case where Ωm =0.Let u 1,u 2∈O .One starts by decreasing a little bit the weight m intoa weight ˆm ∈L r (Ω)such that ˆm m , Ωˆm <0, Ωˆmu p 1>0, Ωˆmu p2>0andΩ|∇u 1|p Ωˆmu p 1<d, Ω|∇u 2|p Ωˆmu p 2<d,which is clearly possible since λ∗(m)<d .Putv 1:=u 1( Ωˆmu p 1)1/p and v 2:=u 2( Ωˆmu p2)1/p.By the first part of this proof,there exists a path γin M ˆm,ˆm which goes from v 1to v 2,is made of nonnegative functionsand is such that A(γ(t))<d for all t .Consider now the pathγ1(t):=γ(t)(Ωm |γ(t)|p )1/p .By the choice of ˆm ,Ωm γ(t) pΩˆm γ(t) p =1,(3.15)and consequently γ1is a well defined path in M m,n ,which clearly goes from u 1to u 2and is made of nonnegativefunctions.Moreover,by (3.15),A γ1(t) =A(γ(t))Ωm |γ(t)|p A γ(t) <dM.Arias et al./Ann.I.H.Poincaré–AN 25(2008)267–280275for all t .This concludes the proof of Lemma 3.8for O with u 0.Similar argument in the case u 0.2Lemma 3.9.Let m k ∈L r (Ω)with m +k ≡0and m k →m in L r (Ω)where m 0,m ≡0.Then λ∗(m k )→+∞.Proof.Suppose by contradiction that for a subsequence,λ∗(m k )→λ<+∞.Let ϕk be the positive eigenfunctionassociated to λ∗(m k )and normalized by ϕk pr =1,where · q denotes the L q (Ω)norm.One hasΩ|∇ϕk |p =λ∗(m k ) Ωm k ϕpk λ∗(m k ) m +k r .It follows that for a subsequence,ϕk ϕin W 1,p (Ω),with ϕ pr =1.Moreover,by the above inequality, Ω|∇ϕk |p →0,which implies ϕ≡cst =0(call it A )and ϕk →ϕin W 1,p(Ω).Consequently,for k sufficiently large so that Ωm k <0,one has0<1λ∗(m)Ω|∇ϕk |p = Ωm k ϕpk →A p Ωm <0,a contradiction.2Lemma 3.10.There exists u 1 0and u 2 0in M m,n such that ˜A(u1)<c(m,n)and ˜A(u 2)<c(m,n).Moreover,for any such choice of u 1,u 2,one hasc(m,n)=inf γ∈Γmax u ∈γ[0,1]˜A(u)(3.16)whereΓ:= γ∈C[0,1],M m,n :γ(0)=u 2and γ(1)=u 1 .Proof.IfΩm =0,one takes u 1=ϕm and the inequality ˜A(u 1)<c(m,n)follows from Lemma 3.7.Similarly with u 2=−ϕn in caseΩn =0.If now Ωm =0,one takes u 1=v k for k sufficiently large,where v k is defined in (2.3).Indeed ˜A(v k )→0and by Lemma 3.7,0<c(m,n),so that ˜A(v k )<c(m,n)for k sufficiently large.Similar argument for the choice of u 2in caseΩn =0.It remains to prove (3.16).Call ¯c the right-hand side of (3.16).One clearly has c(m,n) ¯c .To prove the converse inequality,let ε>0and take γε∈Γsuch thatmax u ∈γε[0,1]˜A(u)<c(m,n)+ε.By Lemma 3.8there exits a path η1in M m,n joining γε(1)and u 1,made of nonnegative functions,and such thatmax u ∈η1[0,1]˜A(u)<c(m,n)+ε.Similarly there exists a path η2in M m,n joining γε(0)and u 2,made of nonpositive functions,and such thatmax u ∈η2[0,1]˜A(u)<c(m,n)+ε.Gluing together η2,γεand η1,one gets a path in M m,n joining u 2and u 1,and such that ˜Aremains <c(m,n)+εalong this path.This implies ¯c <c(m,n)+ε.Since ε>0is arbitrary,the conclusion follows.2We are now ready to give theProof of Theorem 3.2.Inequality (3.3)was established in Lemma 3.7.To prove that c(m,n)is an eigenvalue,we pick u 1,u 2as in Lemma 3.10and we will show that ¯c,the right-hand side of (3.16),is a critical value of ˜A .IfΩm =0andΩn =0,then ˜A satisfies (PS)c for all c 0and the classical mountain pass theorem for a C 1functional on a C 1manifold (cf.e.g.Proposition 4from [2])yields the conclusion.If either Ωm =0orΩn =0,then we only knowthat ˜Asatisfies (PSC)c for all c >0.It is then Theorem 4.1from the following section which yields the conclusion.276M.Arias et al./Ann.I.H.Poincaré–AN25(2008)267–280It remains to show that there is no eigenvalue between max{λ∗(m),λ∗(n)}and c(m,n).Assume by contradiction the existence of such an eigenvalueλand let u be the corresponding nontrivial solution of(1.2).We know that u changes sign(sinceλ>max{λ∗(m),λ∗(n)});moreover0<Ω|∇u+|p=λΩm(u+)p,0<Ω|∇u−|p=λΩnu−p,and we can normalize u so that u∈M m,n.The functionsu1:=u+(Ωm(u+)p)1/p,u2:=−u−(Ωn(u−)p)1/pbelongs to M m,n,with u1 0,u2 0.We will construct a pathγin M m,n joining u1and u2,and such that˜A remains equal toλalong that path.This will give a contradiction with the definition of c(m,n).To constructγwefirst go from u1to u by the pathγ1(t):=u+−tu−(B m,n(u+−tu−))1/pand then from u to u2by the pathγ2(t):=tu+−u−(B m,n(tu+−)).It is easily verified that the path constructed in this way is well defined and satisfies all the required conditions.2Remark3.11.Reproducing the end of the above proof withλreplaced by c(m,n),we conclude that the infimum in(3.2)is achieved.4.A mountain pass theoremOur purpose in this section is to derive a mountain pass theorem for a C1functional on a C1manifold and which satisfies the(PSC)condition.We put ourselves in the general setting of the end of Section2:E is a real Banach space,g∈C1(E,R),M:= {u∈E:g(u)=1}with1a regular value of g,f∈C1(E,R),˜f the restriction of f to M.The space E in this section is assumed to be uniformly convex.Theorem4.1.Let K be a compact metric space,K0⊂K,and h0∈C(K0,M).Consider the family of extensionsof h0:H:=h∈C(K,M):h|K0=h0.Assume H nonempty as well as the following condition:max t∈K0fh0(t)<maxt∈Kfh(t)for any h∈H.Definec:=infh∈H maxt∈Kfh(t).(4.1)Assume that˜f satisfies(PSC)c for c given in(4.1).Then c is a critical value of˜f.Typically,as in the application in Section3,K=[0,1]and K0={0,1}.Proof of Theorem4.1.Arguing as in the proof of Theorem2.1in[5]but using the strong form of Ekeland variational principle(cf.[8,7])instead of the usual one,one obtains that if h∈H andε>0are such thatmax t∈K fh(t)<c+ε2,(4.2)。

相关文档
最新文档