EGFR Signaling in Colorectal Carcinoma

合集下载

热休克蛋白90α 与胃癌的研究进展

热休克蛋白90α 与胃癌的研究进展

热休克蛋白90α 与胃癌的研究进展王鹏【期刊名称】《检验医学与临床》【年(卷),期】2018(015)016【总页数】4页(P2511-2514)【关键词】热休克蛋白;胃癌;抑制剂;客户蛋白【作者】王鹏【作者单位】内蒙古科技大学包头医学院第一附属医院检验科 ,内蒙古包头014010【正文语种】中文【中图分类】R446热休克蛋白(HSP)是广泛存在于细菌、动物和人体中的热应激蛋白质大家族,主要由热休克或其他一些应激源诱导而发生表达。

在生物体内主要能发挥协助蛋白质的折叠、转运、跨膜、稳定构象及细胞的信号传导、损伤保护等“分子伴侣”的功能[1-2]。

按相对分子质量分为HSP27、HSP60、HSP40、HSP70、HSP90,HSP110等[3-4]。

HSP90是HSPs家族中重要的成员之一,据研究显示,HSP90常用于在肿瘤中调控突变或高表达的“客户蛋白”,如蛋白激酶B(AKT)、肝细胞生长因子受体C-Met、人类表皮生长因子受体2(HER2)、细胞周期蛋白依赖性激酶4(CDK4)、表皮生长因子受体(EGFR)、雄激素受体(AR),同时,其在肿瘤细胞的增殖、分化、侵袭、凋亡等分子通路中发挥重要作用[5]。

HSP90α是HSP90的两种异构体形式之一,在细胞内外非常稳定并且发挥主要的“伴侣蛋白”作用。

胃癌是全球常见的恶性肿瘤之一,胃癌的早期诊断是提高诊断效率和治愈率的关键。

HSP90α的底物蛋白涉及几乎所有的细胞过程,其可能具有潜在的临床用途,并作为癌症诊断的生物标记物,用于评估疾病进展和癌症的治疗靶点,现将HSAP90α 与胃癌的研究进展综述如下。

1 HSP90α特性与功能HSP90主要位于细胞质中,以二聚体的形式存在,其基本结构由3部分组成:N端结构域(25 kDa)、中间域(40 kDa)、C端结构域(12 kDa)。

HSP90是一种三磷酸腺苷酶(ATP)依赖的分子伴侣,其家族成员依赖ATP分子内的ATP酶活性,有助于蛋白质折叠、蛋白质的转运。

磷脂酶C-γ1在肿瘤中的表达及其意义

磷脂酶C-γ1在肿瘤中的表达及其意义

磷脂酶C-γ1在肿瘤中的表达及其意义朱东旺(综述);钟来平;张志愿(审校)【摘要】10.3969/j.issn.1673-5749.2012.06.019% 肿瘤转移是癌症患者死亡的主要原因,而肿瘤转移与肿瘤细胞的增殖和侵袭密切相关。

因磷脂酶C-γ1过表达增强肿瘤细胞的增殖和侵袭能力,故其可能成为肿瘤靶向治疗的潜在靶点。

本文就磷脂酶C-γ1在细胞活动性中的作用,促进肿瘤的发展和扩散,在肿瘤发展转移中的机制等研究进展作一综述。

【期刊名称】《国际口腔医学杂志》【年(卷),期】2012(000)006【总页数】4页(P775-777,781)【关键词】磷脂酶C-γ1;肿瘤;转移;侵袭【作者】朱东旺(综述);钟来平;张志愿(审校)【作者单位】上海交通大学医学院附属第九人民医院口腔颌面-头颈肿瘤外科,上海市口腔医学重点实验室上海 200011;上海交通大学医学院附属第九人民医院口腔颌面-头颈肿瘤外科,上海市口腔医学重点实验室上海 200011;上海交通大学医学院附属第九人民医院口腔颌面-头颈肿瘤外科,上海市口腔医学重点实验室上海200011【正文语种】中文【中图分类】Q55磷脂酶C(phospholipase C,PLC)与细胞的增殖和分化有关,至今已发现11种哺乳类动物磷脂酶C同工酶,并分为PLC-β、PLC-γ、PLC-ε和PLC-δ四大类型[1],每一类型还有亚型,如PLC-γ有 PLC-γ1和 PLC-γ2两个亚型。

PLC-γ1在人体细胞中广泛表达,而PLC-γ2主要表达于造血干细胞[2]。

PLC-γ1 基因位于20q12~q13.1,序列号5335。

PLC-γ1基因编码的相对分子质量约为1.48×105的蛋白质,含X、Y、C2和PH结构域各一个。

X和Y结构域为催化功能域,折叠在一起形成催化位点;C2结构域介导与钙/磷脂相互作用;PH结构域识别多磷脂酰肌醇,后两者可能是水解磷酸酰肌醇二磷酸(phosphatidylinositol bisphosphate,PIP2)所必需的结构。

EGFR 及耐药表型 GST-π、P-gp、TopoⅡ在大肠癌组织中的表达及意义

EGFR 及耐药表型 GST-π、P-gp、TopoⅡ在大肠癌组织中的表达及意义

inginearlylifeanddevelopmentofasthmaandallergy:across-sec-tionalsurvey[J].Lancet,2001,358(9928):1129-l133.[15]CananiRB,DiCostanzoM.Gutmicrobiotaaspotentialtherapeutictargetforthetreatmentofcow'smilkallergy[J].Nutrients,2013,5(3):651-662.[16]vanderAaLB,HeymansHS,vanAalderenWM,etal.Probioticsandprebioticsinatopicdermatitis:reviewofthetheoreticalback-groundandclinicalevidence[J].PediatrAllergyImmunol,2010,21(2Pt2):355-367.[17]RoesslerA,ForsstenSD,GleiM,etal.Theeffectofprobioticsonfaecalmicrobiotaandgenotoxicactivityoffaecalwaterinpatientswithatopicdermatitis:arandomized,placebo-controlledstudy[J].ClinNutr,2012,31(1):222-229.(收稿日期:2014-01-15)EGFR及耐药表型GST-π、P-gp、TopoⅡ在大肠癌组织中的表达及意义祁秀敏,张熔熔,吕 慧(无锡市第二人民医院,江苏无锡214002) 摘要:目的 探讨表皮生长因子受体(EGFR)及耐药表型谷胱甘肽S-转移酶π(GST-π)、P-糖蛋白(P-gp)、DNA拓扑异构酶Ⅱ(TopoⅡ)在大肠癌组织中的表达及意义。

方法 采用免疫组化法检测190例大肠癌组织(大肠癌组)和20例正常大肠黏膜组织(对照组)中EGFR和GST-π、P-gp、TopoⅡ的表达情况;分析其与大肠癌临床病理参数的关系。

WNT信号通路在KRAS基因突变型结直肠癌中的作用

WNT信号通路在KRAS基因突变型结直肠癌中的作用

2006ꎬ193(6) :792
[15] JY AꎬSOHN YꎬLEE SHꎬet al. Use of convalescent plasma
[18] PEIRIS JSꎬCHU CMꎬCHENG VCꎬet al. Clinical progres ̄
distress syndrome in Korea[ J] . J Korean Med Sciꎬ2020ꎬ35
靶点对于 KRAS 基因突变患者的治疗意义重大ꎮ
WNT 信号通路的异常表达参与多种肿瘤的发
生发展ꎬ 促 进 肿 瘤 细 胞 的 增 殖ꎬ 抑 制 其 凋 亡 [9 ̄10] ꎮ
RNA 反 转 录 为 cDNAꎬ 并 进 行 PCR 循 环 扩 增ꎮ β ̄
TACTG ̄3’ ꎬ下游引物序列:5’  ̄CCATCCCTFCCTGTT
was 37. 8% . The mRNA expressions of β ̄catenin and Cyclin D1 were significantly increased in samples with KRAS muta ̄
tions compared with those with wild type ( P < 0. 05) . Compared with negative control group and blank groupꎬthe prolifera ̄
殖下降( P < 0. 05) 、凋亡升高( P < 0. 05) ꎮ 结论:与野生型相比ꎬβ ̄catenin 和 Cyclin D1 两种蛋白在 KRAS 突变型结直
肠癌样本中的表达水平更高ꎬ且抑制 β ̄catenin 表达后降低了 KRAS 突变型结直肠癌细胞的增殖ꎬ促进了细胞的凋亡ꎮ

卡铂、紫杉醇新辅助化疗对食管癌患者心脏功能的影响

卡铂、紫杉醇新辅助化疗对食管癌患者心脏功能的影响

卡铂、紫杉醇新辅助化疗对食管癌患者心脏功能的影响王庭丰;吕进;周国志【摘要】目的观察卡铂、紫杉醇联合新辅助化疗对食管癌患者心脏功能的影响.方法 46例食管癌患者术前行卡铂联合紫杉醇新辅助化疗5周.每例患者化疗前后计数心率,测量收缩压及舒张压,检测血清肌酸激酶、肌酸激酶同工酶、脑钠肽和肌钙蛋白,心脏彩超检查测左心室收缩末容积、左心室舒张末容积、左心室射血分数、左心室容量、下腔静脉血流速度.对化疗后各指标变化行单因素Logistic回归分析,并计算变化值和95%可信区间(95%CI).结果 46例食管癌患者接受卡铂联合紫杉醇联合新辅助化疗5周后收缩压平均下降18mmHg,95%CI为(-25,-10),P<0.05;舒张压平均下降6 mmHg,95%CI为(-14,-2),P<0.05;心率平均增加5次/min,95%CI 为(1,11),P<0.05;肌钙蛋白平均升高0.008 mmol/L,95%CI为(-0.002,-0.012),P<0.05;肌酸激酶平均升高42 IU/L,95%CI为(18,71),P<0.05;左心室容量平均下降54 mL,95%CI为(-72,-39),P<0.05.结论接受卡铂、紫杉醇联合新辅助化疗的食管癌患者,血清心肌肌酸激酶上升,收缩压及舒张压降低,心室容量变小.%Objective To evaluate the effects of carboplatin combined with paclitaxel during neoadjuvant chemothera-py on cardiac function of patients with esophageal cancer.Methods Totally 46 patients with esophageal cancer received the neoadjuvant chemotherapy with carboplatin and paclitaxel for 5 weeks before the operation.We recorded the heart rate, measured the systolic blood pressure and diastolic blood pressure, detected the blood creatine kinase, creatine kinase isoenzyme, brain natriuretic peptide and troponin, and examined the left ventricular end-systolic volume, left ventricular end-diastolic volume, left ventricularejection fraction, ventricular volume and blood flow velocity of inferior vena cava be-fore and after chemotherapy.Univariate Logistic regression analysis was conducted on the index changes after chemothera-py, and the change value and 95%confidence interval (95%CI) were calculated.Results After 46 patients with esopha-geal cancer received the neoadjuvant chemotherapy with carboplatin and paclitaxel for 5 weeks, the systolic blood pressure dropped an average of 18 mmHg, 95%CI (25, -10), P<0.05;diastolic blood pressure dropped an average of 6 mmHg, 95%CI (-14, -2), P<0.05;the heart rate increased an average of 5/min, 95%CI(1, 11), P<0.05;troponin in-creased an average of 0.008 mmol/L, 95%CI(-0.002, -0.012), P<0.05;creatine kinase increased an average of 42 IU/L, 95%CI(18, 71), P<0.05; and ventricular volume dropped an average of 54 mL,95%CI( -72, -39), P<0.05.No significant differences were found in the rest of indexes before and after surgery.Conclusion The myocardial creatine kinase increased, systolic blood pressure and diastolic blood pressure decreased and the ventricular size became smaller in patients with esophageal cancer receiving neoadjuvant chemotherapy of carboplatin and paclitaxel.【期刊名称】《山东医药》【年(卷),期】2016(056)006【总页数】3页(P7-9)【关键词】食管癌;卡铂;紫杉醇;新辅助化疗;心脏功能【作者】王庭丰;吕进;周国志【作者单位】滁州市第一人民医院,安徽滁州244000;南京医科大学附属南京医院;南京医科大学附属明德医院【正文语种】中文【中图分类】R735.1食管癌发病率位居恶性肿瘤的第8位[1]。

非小细胞肺癌患者血浆EGFR突变表达检测及其临床意义

非小细胞肺癌患者血浆EGFR突变表达检测及其临床意义

非小细胞肺癌患者血浆EGFR突变表达检测及其临床意义朱美琴;夏俊贤;徐敏;陈亦欣;申维玺【摘要】目的:检测非小细胞肺癌患者血浆表皮生长因子受体( EGFR)基因突变表达情况,探讨其临床意义。

方法采用荧光定量PCR法检测90例非小细胞肺癌患者组织及血浆EGFR的基因突变表达情况,分析两者的一致性,并分析血浆EGFR与患者预后的关系。

结果非小细胞肺癌患者的血浆与肿瘤组织中EGFR突变表达是一致的,血浆EGFR突变表达与非小细胞肺癌的病理类型、肿瘤大小及淋巴结转移有关,但血浆EGFR突变表达与非小细胞肺癌患者的疾病进展时间、生存时间无关。

结论非小细胞肺癌患者血浆EGFR的检测有可能替代肿瘤组织中EGFR的检测,为无法取得肿瘤组织或取得肿瘤组织困难的患者提供一种更快捷、简便的替代检测方法,但血浆EGFR尚不能确立为独立的预后指标。

%Objective Toanalyzetheexpressionofplasmaepidermalgrowthfactorreceptor(EGFR)and the clinicalsignificanceinthepatientswithnon-small-celllungcarcinoma.Methods FluorescentquantitationPCR method was used to detect the EGFR gene expressions in the tumor tissues and plasma of 90 patients with non-small-cell lung carcinoma. The expression consistency of EGFR in plasma and tumor tissue was analyzed. The relationship betweentheEGFRgeneexpressionandtheprognosiswereanalyzedretrospectiv ely.Results Forthepatientswith non-small-cell lung carcinoma,the EGFR positive expression in the plasma was consistent with that in the tumor tis-sue,the EGFR positive expression in the plasma was related with the pathological type,tumor size and lymph node metastasis of patients with non-small-cell lung carcinoma,but there was no correlation betweenplasma EGFR and timetoprogressionandsurvivaltime.Conclusion DetectionofEGFRexpressioninplasmamayreplacethatinthe tumortissue,providing a quicker and easier examination method for the patients lacking biopsy tissue,but the clini-cal utility of plasma EGFR as a prognostic indicator has not yet been established.【期刊名称】《肿瘤基础与临床》【年(卷),期】2015(000)003【总页数】4页(P190-192,193)【关键词】非小细胞肺癌;血浆;表皮生长因子受体;荧光定量PCR;预后【作者】朱美琴;夏俊贤;徐敏;陈亦欣;申维玺【作者单位】暨南大学第二临床医学院深圳市人民医院肿瘤内科,广东深圳518020;暨南大学第二临床医学院深圳市人民医院肿瘤内科,广东深圳518020;暨南大学第二临床医学院深圳市人民医院肿瘤内科,广东深圳518020;暨南大学第二临床医学院深圳市人民医院肿瘤内科,广东深圳518020;暨南大学第二临床医学院深圳市人民医院肿瘤内科,广东深圳518020【正文语种】中文【中图分类】R734.2通信作者:申维玺(1958-),男,主任医师,主要从事恶性肿瘤的综合治疗相关研究。

EGFR外显子19缺失突变促恶性甲状腺肿瘤侵袭迁移作用的研究


功能分析结果显示,EGFR外 显 子 19缺失突变会使细胞具有迁移侵袭行为。RNA-seq分 析 结 果 显 示 ,EGFR外 显 子 19缺失突
变后致癌基因KRAS通 路 、p53通 路 、EGFR下游相关信号通路PI3K-AKT、上 皮 间 质 转 化 (E M T ) 通 路 等 显 著 富 集 。结论
基金项目:国家自然科学基金资助项目(81473240, 81773749)
收稿日期:2021-02-26
作者简介:张晶晶(1995—),女,山东青岛人,硕士,主要研究方向:肿瘤药理学。
通讯作者:张 煩 ,E-mail: zhangyi@
2
Chin JHetnorh.2021;31(1)
中 _ 血 液 流 变 学 杂 志 .2021;31(1)
1
doi:10.3969/j.issn. 1009-881X.2021.01.001
EGFR外显子19缺失突变促恶性甲状腺肿瘤 侵袭迁移作用的研究
张晶晶,夏玉娟,董顺利,张 熠
( 苏州大学药学院,江 苏 苏 州 215123)
摘 要 :目 的 研 究 表 皮 生 长 因 子 受 体 ( EGFR ) 外 显 子 19缺 失 突 变 ( EGFR exon 19 deletion ) 在恶性甲状腺肿瘤中促侵袭
本研究旨在探讨EGFR外 显 子 19缺失突变在甲 状腺癌中的作用,研究 外 显 子 19缺失突变的侵袭性 行 为 ,分析其在甲状腺癌中的可能作用通路,讨论 EGFR外 显 子 19缺失突变是否可以成为甲状腺癌患 者有效治疗的耙标。
1 材料与方法
1.1细 胞 株 甲 腺 滤 泡 上 皮 细 胞 株 (H TFEC ) 和稳 定转染EGFR外显 子 19缺 失 突 变 的 细 胞 株 (HTFECex l9 d el) 培养基为含10%胎牛血清、100U/mL青霉 素 和 链 霉 素 (双 抗 )和含有0.4 |x g /mL嘌呤霉素的 DMEM培 养 基 (含 谷 氨 酰 胺 ),在37 I ,5 % C0 2 饱和湿度的恒温培养箱中培养,2 〜3 d换 液 ,在倒 置 显 微 镜 下 观 察 细 胞 的 生 长 情 况 ,取 对 数 生 长 期 的 细胞用于实验。 1.2实验方法 1.2.1划痕实验:对六孔板底部进行标记,待细胞密 度长至9 0 % 左 右 时 ,10 p L 移液枪枪头对细胞进行 竖 直 划 痕 ,PBS洗涤细胞后加入无血清的细胞培养 液 ,于倒置显微镜下拍摄并记录0 h的初始细胞划痕 面 积 。将细胞放在5 % C0 2,37 t 的培养箱中继续 培养 。之后于指定时刻内,再次用倒置显微镜进行 拍 摄 。以 伤 口 修 复 面 积 百 分 比 (% ) = (初始细胞划 痕面积一某时刻的面积)/原 始 面 积 X 1 0 0 % , 测定细

EGFR基因突变荧光PCR检测试剂盒说明书

人类EGFR基因突变荧光PCR检测试剂盒说明书【产品名称】通用名称:人类EGFR基因突变荧光PCR检测试剂盒英文名称:Shuwen® Human EGFR Gene Mutation Detection Kit for Real-Time PCR【包装规格】7测试/盒【预期用途】EGFR是一种细胞膜表面的糖蛋白受体,具有酪氨酸激酶(Tyrosine Kinase,TK)活性,是原癌基因c-erbB-1(HER-1)的表达产物。

EGFR 的主要信号转导途径有:PI3K-PDK 通路,RAS-RAF-MEK-ERK-MAPK 通路,PLC-γ 通路,JAK-STAT 通路。

通过这些途径,将胞外信号转化为胞内信号,从而有效应对外界的信号刺激,调节细胞的生长、增殖、分化,抑制细胞的凋亡。

EGFR异常调节通过多种机制促进细胞恶性转化,包括受体的过度表达、突变、生长因子-受体自分泌环的活化以及特定的磷酸酶失活,其中涉及肿瘤发生和进展的机制中最常见的是EGFR的基因突变和过度表达。

EGFR基因位于7号染色体短臂7pl2-14区,由28个外显子组成。

其突变主要发生在EGFR酪氨酸激酶的ATP结合位点的编码区(第18-20外显子),研究表明,EGFR酪氨酸激酶抑制剂(例如吉非替尼、厄洛替尼和埃可替尼等)疗效与EGFR基因的突变有密切的相关性。

目前已经报道大约有30种突变与吉非替尼的药物反应相关,主要是19外显子上的缺失突变和21外显子上的L858R的点突变。

外显子19上747-750位氨基酸的大约20种缺失约占所有突变的45%,其中以两种delE746-A750(2235_2249del15和2236_2250del15)最为常见,占到外显子19缺失总数的75%;外显子21上L858R的点突变占所有突变的45%左右;外显子18的3种点突变(G719X)约占5%;外显子20的突变占1%左右。

另外研究发现外显子20上的T790M突变与酪氨酸激酶抑制剂药物的耐药性相关。

肿瘤进展的microRNA调控机制及靶向治疗策略

肿瘤进展的microRNA调控机制及靶向治疗策略一、项目简介:肿瘤是威胁人类健康的重大疾病,其持续进展是导致患者死亡的主要原因。

肿瘤的进展过程受到基因控制,而微小RNA(microRNA,miRNA)在其中的作用备受关注。

miRNA通过靶向结合特定mRNA,引起后者降解或抑制蛋白质的翻译,从而对肿瘤相关基因的表达发挥关键调控作用。

因此,鉴定肿瘤进展过程中的关键miRNA,进而揭示其调控的信号通路,对于肿瘤的靶向治疗具有重要意义。

本项目围绕肿瘤进展中的主要结点分子,阐明了miRNA在其中的作用及其构成的调控网络,为肿瘤的治疗提供了新的有效靶点。

(1)在核心癌蛋白c-Myc 介导的肿瘤进展中,我们发现c-Myc能够结合到miR-101的启动子区并募集以EZH2为核心的PRC2复合物,进而催化组蛋白发生H3K27me3的修饰,导致miR-101的表观遗传学沉默;miR-101通过负性调控下游靶基因STMN1、CXCR7和JUNB 的表达来控制细胞的增殖、转移、血管新生等过程;miR-101还能负性调控PRC2复合物中的两个组分——EZH2和EED,从而在miR-101与PRC2之间形成一个双负反馈环路,该环路的失衡是导致肝癌细胞中miR-101完全沉默以及下游信号通路出现异常的关键原因。

而在其他肿瘤中,c-Myc还受到miR-200 家族和miR-106b-93-25簇的靶向抑制。

上述主要研究结果发表在Hepatology、Endocrinology等杂志,并获杂志同期专文评述。

(2)在干细胞因子Oct4介导的肿瘤进展中,发现Oct4是miR-145的靶基因,肝癌细胞中高表达的假基因Oct4-pg4的转录产物通过与Oct4的mRNA竞争性结合miR-145,解除了后者对Oct4的靶向抑制作用,从而促进肝癌进展。

研究结果发表在Carcinogenesis 杂志。

(3)在HER2阳性进展性乳腺癌中,发现miR-200c的失调是导致肿瘤对治疗性HER2单抗Trastuzumab耐药的重要机制。

选择性EGFR酪氨酸激酶抑制剂吉非替尼对宫颈癌离体细胞的放射增敏作用

选择性EGFR酪氨酸激酶抑制剂吉非替尼对宫颈癌离体细胞的放射增敏作用刘俊丽,陈元,蔡煜,张敏【摘要】目的探讨表皮生长因子受体酪氨酸激酶抑制剂吉非替尼对宫颈癌离体细胞的放射增敏作用。

方式以宫颈鳞癌Siha细胞,腺癌HeLa细胞为研究对象,利用MTT法检测吉非替尼对Siha和HeLa细胞的增殖抑制作用;利用集落形成实验检测吉非替尼对Siha、HeLa细胞的放射增敏效应。

结果吉非替尼能够抑制Siha、HeLa细胞的增殖,其IC20值别离是μmol/L、μmol/L,而且抑制作用呈剂量依托性;吉非替尼作用于Siha、HeLa细胞72h后,放射增敏比SER别离为、。

结论吉非替尼对宫颈癌Siha、HeLa细胞具有明显的放射增敏作用。

【关键词】表皮生长因子受体;吉非替尼;宫颈癌;放射增敏 1材料与方式药物及试剂吉非替尼(Gefitinib,商品名IRESSA) 由AstraZeneca公司(Macclesfield, United Kingdom)提供,RPMI1640购自Gibco公司,胎牛血清购自浙江民海公司。

细胞及培育宫颈鳞癌Siha细胞,腺癌HeLa细胞为同济医院肿瘤科实验室冻存。

细胞在标准状态下(5% CO二、 37℃)单层贴壁培育于含10%胎牛血清,1%双抗RPMI1640培育基中。

甲基偶氮唑蓝(MTT)实验取对数生长期细胞制成×104/ml细胞悬液,接种于96孔板中,每孔200μl(即3×103个细胞/孔)。

置于培育箱中培育。

待细胞贴壁2h后吸弃旧培育液,加入各受试物继续培育24h;然后每孔加MTT液20μl(5mg/μl),继续孵育4h,吸弃每孔培育液,加入150μl DMSO, 用酶联仪以波长570nm测定各孔A值。

实验设药物处置组、细胞对照组和空白对照组,每组均设3个复孔。

药物处置组在铺孔10h后加入含不同浓度药物的20μl培育液;细胞对照组加入20μl培育液;空白对照组在铺孔时不加细胞悬液,只加200μl培育液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SAGE-Hindawi Access to ResearchPathology Research InternationalVolume2011,Article ID932932,6pagesdoi:10.4061/2011/932932Review ArticleEGFR Signaling in Colorectal CarcinomaAlyssa M.KrasinskasDepartment of Pathology,University of Pittsburgh Medical Center,Presbyterian Hospital,A610,200Lothrop Street,Pittsburgh,PA15213-2546,USACorrespondence should be addressed to Alyssa M.Krasinskas,krasinskasam@Received18October2010;Accepted5January2011Academic Editor:Rhonda K.YantissCopyright©2011Alyssa M.Krasinskas.This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use,distribution,and reproduction in any medium,provided the original work is properly cited.The epidermal growth factor receptor(EGFR)and its downstream signaling pathways are involved in the development and progression of several human tumors,including colorectal cancer.Much attention has been given to the EGFR pathway as of lately because both EGFR and some downstream components serve as targets for anticancer therapy.In addition to playing a critical role in targeted therapy,alterations in this pathway can have prognostic implications.The EGFR pathway and its impact on colorectal carcinogenesis and prognosis are the emphasis of this paper.Since prognosis is tightly related to response to various therapies,the predictive value of the components of this pathway will be briefly discussed,but this is not the focus of this paper.1.IntroductionThe epidermal growth factor receptor(EGFR)and its downstream signaling pathways regulate key cellular events that drive the progression of many neoplasms.EGFR is expressed in a variety of human tumors,including gliomas and carcinomas of the lung,colon,head and neck,pancreas, breast,ovary,bladder,and kidney.Mutations,gene ampli-fication,and protein overexpression of various elements of this pathway not only contribute to carcinogenesis but also impact prognosis and provide specific targets for therapeutic intervention.The importance of EGFR and its signaling pathway in colorectal carcinogenesis is the topic of this paper.Since prognosis is tightly related to response to various therapies,the predictive value of the components of this pathway will be discussed,but only briefly.There is another paper in this series,“Impact of KRas mutations on management of colorectal cancer”by Sullivan and Kozuch, which provides an in-depth review of the predictive value of KRas and other members of the EGFR signaling pathway. 2.EGFR and the EGFR Signaling Pathway EGFR is a170-kDa transmembrane tyrosine kinase receptor that belongs to the ErbB family of cell membrane receptors.In addition to EGFR(also known as HER1and ErbB-1), other receptors in this family include HER2/c-neu(ErbB-2), Her3(ErbB-3),and Her4(ErbB-4).All of these receptors contain an extracellular ligand-binding region,a single membrane-spanning region,and a cytoplasmic tyrosine-kinase-containing domain.In normal cells,the EGFR signaling cascade begins with ligand activation of EGFR(Figure1).Up to eleven ligands can bind the ErbB family of receptors,including EGF and transforming growth factoralpha[1].Ligand binding induces dimerization of the receptor with formation of homodimers and heterodimers,which leads to the activation of tyrosine kinase.The intracellular tyrosine kinase residues then become autophosphorylated,inducing activation of multiple signal transduction pathways.Two main intra-cellular pathways activated by EGFR are the mitogen-activated protein kinase(MAPK)pathway and the phos-phatidylinositol3-kinase-(PI3K-)protein kinase B(AKT) pathway.These pathways lead to the activation of various transcription factors that then impact cellular responses such as proliferation,migration,differentiation,and apoptosis [2].Signaling through the EGFR pathway is a complex process that requires tight regulation[2].Thefirst level of complexity is encountered at the receptor level,whereLigandEGFRPTENP I P3P I P2PI3KP PRasRafMEKMAPKAKTCell survivalInvasion ProliferationMetastasisAngiogenesisFigure 1:EGFR signaling pathway.Ligand binding induces dimerization and activates the EGFR.Subsequent autophosphorylation of tyrosine residues activates downstream signaling.In the Ras-Raf-MEK-MAPK,one axis of the EGFR signaling cascade,an adaptor protein complex composed of growth factor receptor-bound protein 2adapter protein (Grb2),which harbors a tyrosine phosphate-docking site,and son of sevenless (SOS),a Ras GDP/GTP exchange factor,then activates the Ras GTPase.After activation,Ras (i.e.,KRas)recruits and activates the serine protein Raf (i.e.,B-Raf),and subsequent phosphorylation and activation of MEK and then MAPK occurs,resulting in activation of transcription factors in the cell nucleus.The Ras-Raf-MAPK signaling pathway is thought to control cell growth,di fferentiation,and survival (?apoptosis).The other axis of the EGFR signaling cascade that is important in colorectal carcinogenesis is the PI3K-AKT pathway.Once the EFGR tyrosine residues are phosphorylated,PI3K is translocated to the cell membrane and binds to tyrosine phosphate (through its adaptor subunit p85)which triggers the PI3K catalytic subunit p110to produce phosphatidylinositol-3,4,5-triphosphate (PIP3).PI3K then promotes AKT activation.Activated AKT (p-AKT),present within the cytoplasm,then activates various targets that result in cell growth,proliferation,and survival (paralleling the Ras-Raf-MEK-MAPK signaling pathway).Importantly,these two axes are closely related and have some overlap.For example,the p110subunit of PI3K can also be activated via interaction with Ras.Of note,phosphatase with tensin homology (PTEN)is a phosphatase that converts PIP3back to phosphatidylinositol (4,5)bisphosphate (PIP2),thereby negatively regulating the PI3K-AKT pathway.multiple ligands are shared and lateral signaling occurs between members of the ErbB family.Then there are positive and negative feedback loops built into the pathways and di fferential activation of transcription factors,depending upon the cell type.When this tightly regulated system goes awry,it can contribute to malignant transformation and tumor progression through increased cell proliferation,prolonged survival,angiogenesis,antiapoptosis,invasion,and metastasis [3,4].3.The EGFR Pathway and Colorectal Carcinogenesis (Table 1)3.1.EGFR Protein Expression.EGFR expression (or overex-pression),typically determined by immunohistochemistry,has been found to be associated with tumor progression and poor survival in various malignancies,such as carcinomasof the head and neck [5].However,the significance of EGFR protein expression is controversial in other tumors,such as lung carcinomas [6].Although EGFR has been reported to be overexpressed in anywhere from 25%to 82%of colorectal cancers [4],some recent studies report protein overexpression (defined as 2+and/or 3+staining or in >50%of cells)in 35to 49%of cases [7–9].However,the clinical significance of EGFR overexpression in colorectal cancer is uncertain.While one study of 249colorectal cancers demonstrated an association of EGFR overexpression with tumor grade (poor di fferentiation)(P =.014)[8],another group found no association with grade in 134tumors [9].Similarly,some studies have found an association between EGFR overexpression (defined as 2+or 3+intensity)and reduced survival [7,9],while others have not [4].Due to the known expression of EGFR in colorectal cancer,a phase II trial of cetuximab,an anti-EGFR mon-oclonal antibody,in patients with refractory EGFR-positiveTable1:Components of the EGFR signaling pathway important in colorectal cancer.Component (gene/protein)Protein function Defect in CRC FrequencyImpactPrognosticPredictive(to anti-EGFR therapy)EGFR/EGFR Transmembrane tyrosinekinase receptorProtein expression25–90%Controversial No correlationMutation Rare Unknown UnknownIncreased copy number0–50%∗Uncertain UncertainKRas/KRas GDP-/GTP-bindingprotein;facilitatesligand-dependent signalingActivating mutation(codons12,13,61,146);leads to activation ofMAPK pathway30–40%ControversialNo response(if KRas is mutated)BRAF/B-Raf Serine-threonine proteinkinase downstream of KRasActivating mutation(V600E)5–12%Poor progno-sis in MSStumorsNo response(if BRAF is mutated)PIK3CA/PI3K A key signal transducer inthe PI3K-AKT pathwayActivating mutation(exons9and20)14–18%Poor rognosisin KRas wttumorsNo response(if exon20is mutated)PTEN/PTEN A protein tyrosinephosphatase enzyme;inactivates PI3K pathwayLoss of protein expression;mutation;LOH13–19%Poor progno-sis in KRas wttumorsNo response(possibly)CRC:colorectal cancer;LOH:loss of heterozygosity;wt:wild-type.∗Low%for high(>10copies)amplification;higher%for low number of copies(3–5copies).(assessed by immunohistochemistry)colorectal cancer was undertaken[10].The results of this trial,reported in2004, were promising.It was soon discovered,however,that there was no correlation between EGFR expression in the tumor and response to therapy[11,12].In the study by Chung et al.,four of16(25%)patients with EGFR-negative tumors who received cetuximab-plus-irinotecan therapy achieved a partial response with a greater than50%reduction in the size of measurable lesions[11].This response rate is nearly identical to the23%response rate seen in a separate cetuximab-plus-irinotecan clinical trial in EGFR-positive patients[12].As a result,cetuximab is now administered as indicated without the need for EGFR testing.The wide range of EGFR expression in colorectal cancer reported in the literature,as well as the uncertain significance of EGFR expression as a prognostic indicator,may be related to the methodology used to detect EGFR.Most studies use immunohistochemistry to detect EGFR expression in colorectal cancers.As demonstrated by the experience of HER2expression in breast cancer,immunohistochemistry is highly dependent on the antibody clone that is used,staining protocols,selection of scoring methods,and selection of cutoffvalues.Until a standard method of EGFR staining and reporting is adopted,the significance of EGFR protein expression in colorectal cancer remains controversial.3.2.EGFR Mutations,Gene Amplification,and Copy Number. Mutations affecting the extracellular domain of EGFR, often accompanied by gene amplification,are frequent in glioblastomas[13],while mutations in the tyrosine kinase domain of EGFR,also frequently associated with increased EGFR gene copy numbers,are clinically relevant in lung adenocarcinoma[6,14–16].Unlike lung cancer and other tumors,EGFR gene mutations are uncommon in colorectal cancers[17,18].The significance of EGFR gene amplification/increased EGFR copy number is more difficult to summarize.Some studies report that EGFR gene amplification(assessed by in situ hybridization methods)is uncommon in colorectal cancer[19,20].In contrast,in recent studies on chemore-fractory colon cancers,it appears that modest increases in copy number(three-tofivefold)are present in up to50%of cases[21].It appears,however,that increased EGFR protein expression does not always translate into increased EGFR gene dosage[19,21,22].For example,a study by Shia et al. found that only a small fraction(17of124or14%)of EGFR-positive(defined as1+,2+,or3+)colorectal carcinomas detected by immunohistochemistry were associated with EGFR gene amplification(defined as>5gene copies/nucleus) [19].Similarly,the predictive significance of EGFR gene amplification is also confusing and uncertain.One study of 47patients with metastatic colorectal cancer treated with a cetuximab-based regimen showed that EGFR gene copy gain,as assessed byfluorescence in situ hybridization,had no correlation with objective response rate,disease control rate,progression-free survival,or overall survival[23]. Conversely,another study of173patients with KRas wild-type metastatic colorectal cancer treated with a cetuximab-based regimen found that EGFR amplification/increased EGFR copy number,present in17.7%of patients,was associated with response to anti-EGFR therapy[24].These conflicting results may be related to the fact that there are no established guidelines for EGFR gene amplification.But since there are no guidelines,testing for EGFR gene amplification in colorectal cancer is not routinely performed.In addition to molecular alterations of the EGFR gene, activation of EGFR downstream effectors can lead to tumor formation/progression.Specific alterations can impact prog-nosis and predict response to anti-EGFR therapy.3.3.KRas Mutations.The KRas proto-oncogene encodes a 21-kDa guanosine5 -triphosphate-(GTP-)binding protein at the beginning of the MAPK signaling pathway.Somatic KRas mutations are found in many cancers,including30%–40%of colorectal cancers,and are an early event in carcino-genesis[25–29].KRas mutations,most commonly codon 12/13missense mutations,lead to constitutive activation of the KRas protein by abrogating GTPase activity.These mutations result in unregulated downstream signaling that will not be blocked by antibodies that target the EGFR receptor.The prognostic significance of KRas mutations is contro-versial.KRas mutation status is associated with shorter sur-vival in some studies[28,30–32],but not others[29,32,33]. The results of one study,which showed increased mortality with codon13G-A mutations but not with KRas mutations in general,suggest that prognosis may be related to specific mutations in the KRas gene[28].Although not predictive of outcome with standard chemotherapy,KRas mutation status is a strong predictive marker of resistance to EGFR-targeted therapy in patients with metastatic colorectal cancer (i.e.,KRas mutations predict a lack of response to anti-EGFR monoclonal antibodies cetuximab and panitumumab)[34–39];this topic is discussed in detail in another paper in this series,“Impact of KRas mutations on management of colorectal cancer”by Sullivan and Kozuch.3.4.BRAF Mutations.The BRAF gene encodes a serine-threonine protein kinase that is downstream of KRas in the MAPK signaling pathway.BRAF mutations occur in5–22%of all colorectal cancers[40,41].When separated by microsatellite instability status,BRAF muta-tions are present in40–52%of colorectal cancers that arise through the microsatellite instability pathway(MSI) pathway(microsatellite unstable tumors)[41–44],but only 5%of cancers are microsatellite stable[42].The most frequently reported BRAF mutation is a valine-to-glutamic acid amino acid(V600E)substitution[45].BRAF mutations are mutually exclusive with KRas mutations[41].Unlike KRas mutations,BRAF mutations do have an impact on prognosis and survival.In some studies,the effect is dependent upon the microsatellite status of the colorectal cancer.Patients with a BRAF mutation in a microsatellite-stable colon cancer have significantly poorer survival than those without the mutation,but the BRAF status does not affect survival of patients with microsatellite-unstable tumors[29,42].In patients with metastatic KRas wild type tumors,BRAF mutations have been associated with shorter progression-free and shorter overall survival [24].BRAF status also predicts response to anti-EGFR therapy.Of metastatic colorectal cancers that are found to be KRas wild type at codons12/13,5%to15%can harbor BRAF mutations and show resistance to anti-EGFR therapy [46,47].The predictive role of BRAF mutations is further covered in another article in this series,“Impact of KRas mutations on management of colorectal cancer.”3.5.The PI3K Pathway-PIK3CA Mutations and Expression of PTEN and p-AKT.The PI3K-AKT pathway can be dereg-ulated by activating mutations in the PIK3CA gene(p110 subunit),by inactivation(often by epigenetic mechanisms) of the phosphatase and tensin homolog(PTEN)gene,or by activation of AKT[1,48].The PIK3CA gene encodes phosphatidylinositol3-kinase(PI3K),a key signal transducer in the PI3K-AKT pathway.Mutations in PIK3CA occur in 14%to18%of colon cancers,and most mutations involve hotspots on exons9and20[47,49].Interestingly,there is a strong association between PIK3CA exon9mutations and KRas mutations[47].As a prognostic marker,PIK3CA mutations are associated with shorter cancer-specific sur-vival,but this effect may be limited to patients with KRas wild-type tumors[49].Briefly,as a predictive marker,only PIK3CA exon20mutations appear to be associated with worse outcome after cetuximab[47].The PTEN gene encodes a protein tyrosine phos-phatase enzyme(PTEN)that dephosphorylates phosphat-idylinositol-3,4,5triphosphate(PIP3)and thereby inhibits PI3K function[1].Loss of PTEN results in constitutive activation of the PI3K-AKT pathway.PTEN mutations and loss of heterozygosity(LOH)of the PTEN locus have been reported in13%–18%and17%–19%of colon cancers, respectively[50,51].It appears that loss of PTEN has prognostic value.Loss of PTEN protein expression(assessed by IHC)is associated with shorter overall survival in patients with KRas wild-type tumors[24].It appears that there is an association with PTEN mutations/LOH with MSI status, but the current published results are conflicting[50,51]. PTEN protein inactivation may also be a negative predictor of response to anti-EGFR therapy[22,52].AKT is a major downstream effector of PI3K.A recent study by Baba et al.examined the role of activated(phos-phorylated)AKT expression in a large cohort of colorectal cancers[48].They demonstrated that p-AKT expression is associated with early stage disease and good prognosis. They also showed that p-AKT expression is associated with PIK3CA mutation,as expected from their relationship in the EGFR pathway,but that the prognostic effect of p-AKT expression was independent of PIK3CA mutation.It is possible that p-AKT expression could serve as positive prognostic marker in patients with colorectal cancer.In summary,the EGFR signaling pathway is a complex and tightly regulated process that is involved in growth, proliferation,and survival of normal cells.When this system goes awry and unchecked,it can lead to growth, proliferation,survival,and metastasis of neoplastic cells. Alterations within the EGFR signaling cascade,such as gene mutations,gene amplification,and protein overexpression, have been shown to contribute to colorectal carcinogenesis. Some alterations also portend a poor prognosis in patients with colorectal cancer.Due to the complex interaction of EGFR and its downstream regulators,the study of individualcomponents of this pathway often yields conflicting results, as noted in this paper.Hence,there are still many questions that need to be answered before we can fully understand the impact of the EGFR signaling pathway on colorectal carcinogenesis and the prognosis of patients with colorectal cancer.References[1]N.E.Hynes and ne,“ERBB receptors and cancer:thecomplexity of targeted inhibitors,”Nature Reviews Cancer,vol.5,no.5,pp.341–354,2005.[2]A.Citri and Y.Yarden,“EGF-ERBB signalling:towards thesystems level,”Nature Reviews Molecular Cell Biology,vol.7, no.7,pp.505–516,2006.[3]T.Mitsudomi and Y.Yatabe,“Epidermal growth factorreceptor in relation to tumor development:EGFR gene and cancer,”FEBS Journal,vol.277,no.2,pp.301–308,2010. [4]J.P.Spano,R.Fagard,J.C.Soria,O.Rixe,D.Khayat,and G.Milano,“Epidermal growth factor receptor signaling in col-orectal cancer:preclinical data and therapeutic perspectives,”Annals of Oncology,vol.16,no.2,pp.189–194,2005.[5]S.S.Chang and J.Califano,“Current status of biomarkers inhead and neck cancer,”Journal of Surgical Oncology,vol.97, no.8,pp.640–643,2008.[6]S.Dacic,“EGFR assays in lung cancer,”Advances in AnatomicPathology,vol.15,no.4,pp.241–247,2008.[7]N.S.Goldstein and M.Armin,“Epidermal growth factorreceptor immunohistochemical reactivity in patients with American Joint Committee on Cancer Stage IV colon adeno-carcinoma:implications for a standardized scoring system,”Cancer,vol.92,pp.1331–1346,2001.[8]J.A.McKay,L.J.Murray,S.Curran et al.,“Evaluation ofthe epidermal growth factor receptor(EGFR)in colorectal tumours and lymph node metastases,”European Journal of Cancer,vol.38,no.17,pp.2258–2264,2002.[9]M.B.Resnick,J.Routhier,T.Konkin,E.Sabo,and V.E.Pricolo,“Epidermal growth factor receptor,c-MET,β-catenin, and p53expression as prognostic indicators in stage II colon cancer:a tissue microarray study,”Clinical Cancer Research, vol.10,no.9,pp.3069–3075,2004.[10]L.B.Saltz,N.J.Meropol,P.J.Loehrer Sr.,M.N.Needle,J.Kopit,and R.J.Mayer,“Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor,”Journal of Clinical Oncology,vol.22, no.7,pp.1201–1208,2004.[11]K.Y.Chung,J.Shia,N. E.Kemeny et al.,“Cetuximabshows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry,”Journal of Clinical Oncology,vol.23, no.9,pp.1803–1810,2005.[12]D.Cunningham,Y.Humblet,S.Siena et al.,“Cetuximabmonotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer,”New England Journal of Medicine,vol.351,no.4,pp.337–345,2004.[13]L.Frederick,X.Y.Wang,G.Eley,and C.D.James,“Diversityand frequency of epidermal growth factor receptor mutations in human glioblastomas,”Cancer Research,vol.60,no.5,pp.1383–1387,2000.[14]T.J.Lynch, D.W.Bell,R.Sordella et al.,“Activatingmutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib,”NewEngland Journal of Medicine,vol.350,no.21,pp.2129–2139, 2004.[15]J.G.Paez,P.A.J¨a nne,J.C.Lee et al.,“EGFR mutations in lung,cancer:correlation with clinical response to gefitinib therapy,”Science,vol.304,no.5676,pp.1497–1500,2004.[16]W.Pao,ler,M.Zakowski et al.,“EGF receptor genemutations are common in lung cancers from”never smokers”and are associated with sensitivity of tumors to gefitinib and erlotinib,”Proceedings of the National Academy of Sciences of the United States of America,vol.101,no.36,pp.13306–13311, 2004.[17]J.W.Lee,Y.H.Soung,S.Y.Kim et al.,“Absence of EGFRmutation in the kinase domain in common human cancers besides non-small cell lung cancer,”International Journal of Cancer,vol.113,no.3,pp.510–511,2005.[18]T.D.Barber,B.Vogelstein,K.W.Kinzler,and V.E.Velculescu,“Somatic mutations of EGFR in colorectal cancers and glioblastomas,”New England Journal of Medicine,vol.351,no.27,p.2883,2004.[19]J.Shia,D.S.Klimstra,A.R.Li et al.,“Epidermal growthfactor receptor expression and gene amplification in colorectal carcinoma:an immunohistochemical and chromogenic in situ hybridization study,”Modern Pathology,vol.18,no.10,pp.1350–1356,2005.[20]K.L.Spindler,J.Lindebjerg,J.N.Nielsen et al.,“Epidermalgrowth factor receptor analyses in colorectal cancer:a com-parison of methods,”International Journal of Oncology,vol.29, no.5,pp.1159–1165,2006.[21]F.Cappuzzo,G.Finocchiaro,E.Rossi et al.,“EGFR FISH assaypredicts for response to cetuximab in chemotherapy refractory colorectal cancer patients,”Annals of Oncology,vol.19,no.4, pp.717–723,2008.[22]A.Bardelli and S.Siena,“Molecular mechanisms of resistanceto cetuximab and panitumumab in colorectal cancer,”Journal of Clinical Oncology,vol.28,no.7,pp.1254–1261,2010. [23]A.Italiano,P.Follana,F.X.Caroli et al.,“Cetuximab showsactivity in colorectal cancer patients with tumors for which FISH analysis does not detect an increase in EGFR gene copy number,”Annals of Surgical Oncology,vol.15,no.2,pp.649–654,2008.[24]urent-Puig, A.Cayre,G.Manceau et al.,“Analysisof PTEN,BRAF,and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer,”Journal of Clinical Oncology,vol.27,no.35,pp.5924–5930,2009.[25]G.C.Burmer and L.A.Loeb,“Mutations in the KRAS2onco-gene during progressive stages of human colon carcinoma,”Proceedings of the National Academy of Sciences of the United States of America,vol.86,no.7,pp.2403–2407,1989. [26]A.Leslie,F.A.Carey,N.R.Pratt,and R.J.C.Steele,“Thecolorectal adenoma-carcinoma sequence,”British Journal of Surgery,vol.89,no.7,pp.845–860,2002.[27]M.Brink,A.F.P.M.de Goeij,M.P.Weijenberg et al.,“K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study,”Carcinogenesis,vol.24,no.4,pp.703–710,2003.[28]W.S.Samowitz,K.Curtin,D.Schaffer,M.Robertson,M.Leppert,and M.L.Slattery,“Relationship of Ki-ras mutations in colon cancers to tumor location,stage,and survival:a population-based study,”Cancer Epidemiology Biomarkers and Prevention,vol.9,no.11,pp.1193–1197,2000.[29]A.D.Roth,S.Tejpar,M.Delorenzi et al.,“Prognostic roleof KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3,EORTC40993,SAKK60-00trial,”Journal of Clinical Oncology,vol.28, no.3,pp.466–474,2010.[30]H.J.N.Andreyev,A.R.Norman,D.Cunningham et al.,“Kirsten ras mutations in patients with colorectal cancer:the ’RASCAL II’study,”British Journal of Cancer,vol.85,no.5,pp.692–696,2001.[31]R.T.Belly,J.D.Rosenblatt,M.Steinmann et al.,“Detectionof mutated K12-ras in histologically negative lymph nodes as an indicator of poor prognosis in stage II colorectal cancer,”Clinical Colorectal Cancer,vol.1,no.2,pp.110–116,2001. [32]S.Tejpar,M.Bertagnolli, F.Bosman et al.,“Prognosticand predictive biomarkers in resected colon cancer:current status and future perspectives for integrating genomics into biomarker discovery,”Oncologist,vol.15,no.4,pp.390–404, 2010.[33]S.Ogino,J.A.Meyerhardt,N.Irahara et al.,“KRAS mutationin stage III colon cancer and clinical outcome following intergroup trial CALGB89803,”Clinical Cancer Research,vol.15,no.23,pp.7322–7329,2009.[34]R.G.Amado,M.Wolf,M.Peeters et al.,“Wild-type KRAS isrequired for panitumumab efficacy in patients with metastatic colorectal cancer,”Journal of Clinical Oncology,vol.26,no.10, pp.1626–1634,2008.[35]W.de Roock,H.Piessevaux,J.de Schutter et al.,“KRASwild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab,”Annals of Oncology,vol.19,no.3,pp.508–515,2008.[36]F.Di Fiore,F.Blanchard,F.Charbonnier et al.,“Clinicalrelevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy,”British Journal of Cancer,vol.96,no.8,pp.1166–1169,2007. [37]C.S.Karapetis,S.Khambata-Ford,D.J.Jonker et al.,“K-rasmutations and benefit from cetuximab in advanced colorectal cancer,”New England Journal of Medicine,vol.359,no.17,pp.1757–1765,2008.[38]A.Li`e vre,J.B.Bachet,V.Boige et al.,“KRAS mutations asan independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab,”Journal of Clinical Oncology,vol.26,no.3,pp.374–379,2008.[39]A.Li`e vre,J.B.Bachet,D.Le Corre et al.,“KRAS mutationstatus is predictive of response to cetuximab therapy in colorectal cancer,”Cancer Research,vol.66,no.8,pp.3992–3995,2006.[40]M.J.Garnett and R.Marais,“Guilty as charged:B-RAF isa human oncogene,”Cancer Cell,vol.6,no.4,pp.313–319,2004.[41]H.Rajagopalan,A.Bardelli,C.Lengauer,K.W.Kinzler,B.Vogelstein,and V.E.Velculescu,“RAF/RAS oncogenes and mismatch-repair status,”Nature,vol.418,no.6901,article 934,2002.[42]W.S.Samowitz,C.Sweeney,J.Herrick et al.,“Poor survivalassociated with the BRAF V600E mutation in microsatellite-stable colon cancers,”Cancer Research,vol.65,no.14,pp.6063–6070,2005.[43]E.Domingo,iho,M.Ollikainen et al.,“BRAF screeningas a low-cost effective strategy for simplifying HNPCC genetic testing,”Journal of Medical Genetics,vol.41,no.9,pp.664–668,2004.[44]M.B.Loughrey,P.M.Waring,A.Tan et al.,“Incorporationof somatic BRAF mutation testing into an algorithm for the investigation of hereditary non-polyposis colorectal cancer,”Familial Cancer,vol.6,no.3,pp.301–310,2007.[45]H.Davies,G.R.Bignell,C.Cox et al.,“Mutations of the BRAFgene in human cancer,”Nature,vol.417,no.6892,pp.949–954,2002.[46]F.Loupakis,A.Ruzzo,C.Cremolini et al.,“KRAS codon61,146and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon12and13wild-type metastatic colorectal cancer,”British Journal of Cancer,vol.101,no.4,pp.715–721,2009.[47]W.de Roock, B.Claes, D.Bernasconi et al.,“Effects ofKRAS,BRAF,NRAS,and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer:a retrospective consortium anal-ysis,”Lancet Oncology,vol.11,pp.753–762,2010.[48]Y.Baba,K.Nosho,K.Shima et al.,“Phosphorylated AKTexpression is associated with PIK3CA mutation,low stage,and favorable outcome in717colorectal cancers,”Cancer.In press.[49]S.Ogino,K.Nosho,G.J.Kirkner et al.,“PIK3CA mutation isassociated with poor prognosis among patients with curatively resected colon cancer,”Journal of Clinical Oncology,vol.27,no.9,pp.1477–1484,2009.[50]X.P.Zhou,A.Loukola,R.Salovaara et al.,“PTEN mutationalspectra,expression levels,and subcellular localization in microsatellite stable and unstable colorectal cancers,”Ameri-can Journal of Pathology,vol.161,no.2,pp.439–447,2002. [51]N.T.Nassif,G.P.Lobo,X.Wu et al.,“PTEN mutations arecommon in sporadic microsatellite stable colorectal cancer,”Oncogene,vol.23,no.2,pp.617–628,2004.[52]P.M.Wilson,Bonte,and H.J.Lenz,“Molecularmarkers in the treatment of metastatic colorectal cancer,”Cancer Journal,vol.16,no.3,pp.262–272,2010.。

相关文档
最新文档