解方程例1例2

合集下载

一元一次方程典型例题

一元一次方程典型例题

典型例题例1. 已知方程2x m-3+3x=5是一元一次方程,则m= .例2. 已知2x=-是方程ax2-(2a-3)x+5=0的解,求a的值. 例3. 解方程2(x+1)-3(4x-3)=9(1-x).例4. 解方程175321416181=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛+-x.例5. 解方程4 1.550.8 1.20.50.20.1x x x----=.例6. 解方程1. 6122030x x x x+++=例7. 参加某保险公司的医疗保险,住院治疗的病人可享受分段报销,•保险公司制度的报销细则如下表,某人今年住院治疗后得到保险公司报销的金额是1260元,那么此人的实际医疗费是()A. 2600元B. 2200元C. 2575元D. 2525元例8. 我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某户居民今年5月缴纳了17元水费,那么这户居民今年5月的用水量为__________立方米.例9. 足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分,一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分,请问:⑴前8场比赛中,这支球队共胜了多少场?⑵这支球队打满14场比赛,最高能得多少分?⑶通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?例10. 国家为了鼓励青少年成才,特别是贫困家庭的孩子能上得起大学,设置了教育储蓄,其优惠在于,目前暂不征收利息税. 为了准备小雷5年后上大学的学费6000元,他的父母现在就参加了教育储蓄,小雷和他父母讨论了以下两种方案:⑴先存一个2年期,2年后将本息和再转存一个3年期;⑵直接存入一个5年期.你认为以上两种方案,哪种开始存入的本金较少?[教育储蓄(整存整取)年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%. ]例11. 扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示. 如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.例12. 某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.例13. 某市参加省初中数学竞赛的选手平均分数为78分,其中参赛的男选手比女选手多50%,而女选手的平均分比男选手的平均分数高10%,那么女选手的平均分数为____________.四、数学思想方法的学习1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;⑵是要判断方程的解是否符合题目中的实际意义.【模拟试题】一、选择题:1. 几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( )A 、28B 、33C 、45D 、572. 已知y=1是方程2-y y m 2)(31=-的解,则关于x 的方程m (x+4)=m (2x+4)的解是( )A 、x=1 B 、x=-1 C 、x=0 D 、方程无解3 某种商品的进价为1200元,标价为1750元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5﹪,则至多可打( )A 、6折B 、7折C 、8折D 、9折4. 下列说法中,正确的是( )A 、代数式是方程B 、方程是代数式C 、等式是方程D 、方程是等式5. 一个数的31与2的差等于这个数的一半.这个数是( )A 、12B 、–12C 、18D 、–186. 母亲26岁结婚,第二年生了儿子,若干年后,母亲的年龄是儿子的3倍. 此时母亲的年龄为( )A 、39岁B 、42岁C 、45岁D 、48岁7. A 、B 两地相距240千米,火车按原来的速度行驶需要4小时到达目的地,火车提速后,速度比原来加快30%,那么提速后只需要( )即可到达目的地。

《解方程》典型例题

《解方程》典型例题

《解方程》典型例题例1 解方程:89210+-=+-x x例2 解方程:)2(3)3(2+=-x x例3 解方程:7722121-=--x x例4 解方程:6233)5(54--+=--+x x x x例5 解方程:5303.02.05.05.01.24.0=--+x x例6 下面解题过程正确吗?如果正确,请指出每一步的依据;如果不正确,请指出错在哪里,并给出正确的解答.(1)解方程413x x += 两边都乘以12,得 134=-x x ∴1=x (2)解方程83243212x x --+= 去分母,得 x x 326220--+=移项,得 202623--=-x x合并同类项,得 16-=x例7 如果一个正整数的2倍加上18等于这个正整数与3之和的n 倍,试求正整数n 的值.例8 解方程234=-+-x x例9 解方程.132=-+-x x参考答案例1 分析 这个方程可以先移项,再合并同类项.解 移项,得.28910-=+-x x合并同类项,得6=-x把系数化为1,得6-=x说明:初学解方程者应该进行检验,就是把求得的方程的解代入原方程中,看方程的左右两边是否相等,如果相等则是方程的解,否则就不是方程的解.则说明我们的解题过程有误.当熟练之后可以不进行检验,以后我们会知道一元二次方程不会产生增根.例2 分析 这个方程含有括号,我们应先去掉括号,然后再进行合并同类项等.解 去括号,得.6362+=-x x移项,得6632+=-x x合并同类项,得12=-x把系数化为1,得.12-=x说明:在去括号时要注意符号的变化,同时还应该注意要用括号前的数去乘括号内的每一项,避免出现漏乘的现象.例3 分析 该方程中含有分母,一般我们是要先去掉分母,然后再按其他步骤进行.解 去分母,得217)2(3)2(21⨯-⨯=--x x去括号,得1476221-=+-x x移项,得2211476---=--x x合并同类项,得1707-=-x把系数化为1,得.7224=x 说明:初学者在去括号时,如果分子是两项的,应该用括号把分子括上以避免出现符号的错误.例4 分析 在这个方程中既有括号又有分母,先做哪一步这应因题而定.解 去分母,得)2(5)3(10)5(30)4(6--+=--+x x x x去括号,得105301015030246+-+=+-+x x x x移项,得150241*********--+=+--x x x x合并同类项,得13429-=-x把系数化为1,得.29184=x 说明:要灵活应用解方程的步骤,在熟练之后这些解方程的步骤可以省略不写.例5 分析 在这个方程中既有小数又有分数,一般是先把分子分母中的小数都化成整数再进行计算.解 原方程可化为:53320505214=--+x x 去分母,得9)2050(5)214(3=--+x x去括号,得91002506312=+-+x x移项并合并同类项,得196112=x把系数化为1,得431=x 说明:在解方程时解方程的步骤可以灵活使用,如在去括号后发现项比较多时,并有同类项可以合并,也可以先合并一次同类项然后再移项.例6 分析 第(1)小题方程中有两项有分母,另一项没有分母,在去分母时应注意不要漏乘没有分母的项.第(2)小题的各项,尤其是右边两项比较复杂,去分母时必须小心谨慎,防止出错.解 (1)错,错在去分母时漏乘了方程中间的“1”,正确解答如下: 去分母,得 x x 3124+=移项 12 1234==-x x x(2)错,错在将方程的两边乘以8后,832x --这一项应化为)32(x --而不是x 32--,正确解答如下:去分母,得 )32()3(220x x --+=去括号,得 x x 326220+-+=移项,得 516 165=-=-x x 说明 对于比较复杂的方程,求出解后要检验一下看是不是原方程的解,这样有利于减少解方程的错误.在解方程的过程中,认真、细致是解题的关键.例7 解 设已知的正整数为a ,依题意得)3(182+=+a n a ,即n a n 318)2(-=-, ∴.2)6(3--=n n a 因为a 和n 都是正整数,所以.62<<n当3=n 时,9=a ,36)39(31892=+⨯=+⨯;当4=n 时,3=a ,24)33(41832=+⨯=+⨯;当5=n 时,1=a ,.20)31(51812=+⨯=+⨯答:3=n ,或4=n ,或.5=n说明: 本例的解法用到了分类讨论.例8 分析 对于4-x 来说,当4>x 时,44-=-x x ,当4<x 时,x x -=-44,这二者之间的区别显然是很大的,不能混为一谈.同样,3-x 这个式子在3>x 时与在3<x 时也有很大区别.注意到以上情况,是因为我们感到只有把题目中的绝对值符号去掉,才能解出方程.因此,对本题,可以分为434≤≤>x x 、和3<x 三种情况去掉绝对值符号来解.解 当4>x 时,原方程可化为2)3()4(=-+-x x , 解得.29=x 当43≤≤x 时,原方程可化为2)3()4(=-+-x x ,这个方程无解.当3<x 时,原方程可化为2)3()4(=-+-x x解得.25=x 所以,原方程的解是29=x ,或.25=x 说明:①从上面解题过程可以看出,带绝对值符号的方程,可以转化为不带绝对值符号的方程来解,而分类思想是实现这样的转化的法宝.②上面解题过程有读者不易察觉的一步,这就是检验.本题检验的具体做法是:在以4>x 为前提,求得29=x 之后,要看一看29是否与4>x 相符.在以3<x 为前提,解出25=x 之后,再看一看25与3<x 是否相符. ③解带有绝对值符号的方程,检验一步不要求书写,但不能以为这一步可有可无.例9 分析 对这类方程的常规解法,用分类讨论去绝对值.从绝对值的几何意义出发,2-x 和3-x 分别表示数轴上表示x 的点到表示2的点与表示3的点之间的距离.如图所示,设数轴上表示2的点为A ,表示3的点为B ,那么示x 的点不会在点A 的左边或点B 的右边.解 方程132=-+-x x 的几何意义是数轴上表示x 的点到表示2的点的距离与表示3的点的距离之和为1.设数轴上表示2的点为A,表示3的点为B,则线段AB上的点都符合要求,线段AB之外的点均不符合要求.所以,这个方程的解是3≤x.2≤说明:从解方程来说,上面解法并不很重要,但从体会数学中的数形结合思想来说,则值得同学们拍案叫绝.这也是解不定方程的实例.。

初三一元二次方程的解法

初三一元二次方程的解法

一元二次方程的解法一、结构特殊的直接开平方法利用平方根的定义,直接开平方求一元二次方程的根的方法叫做直接开平方法.直接开平方法的理论依据是平方根的定义.形如2(0)x a a =≥或2()(0)ax b c c +=≥的方程可以直接运用“直接开平方法”求解.例1.解方程2256x =.解:∵2256x =,∴25616x =±=±.∴121616x x ==-,.例2.解方程2536x -=(). 解:∵2536x -=(),∴56x -=±.∴12111x x ==-,. 有的方程可以通过整理,变形化为形如2(0)x a a =≥或2()(0)ax b c c +=≥的形式后,再采用直接开平方法来解.例3.解方程290x -=.解:∵290x -=,∴29x =.∴1233x x ==-,.例4.解方程21120x +-=(). 解:∵21120x +-=(),∴2112x +=().∴123x +=±. ∴12231231x x =-=--,.通过以上例子,我们可以归纳出运用“直接开平方法”解一元二次方程的一般步骤: 1.将方程化为2(0)x a a =≥或2()(0)ax b c c +=≥的形式; 2.两边开平方,得x a =±或b cx a-±=. 这里要特别注意00a c ≥或≥的条件.若00a c <<或,则方程无实数根,只有当00a c ≥或≥时,方程才有实数根,而运用“直接开平方法”解应用题的关键是将方程化为2(0)x a a =≥或2()(0)ax b c c +=≥的形式.练习:用直接开平方法一元二次方程:1.9x 2-25=0;2.(3x+2)2-4=0; 4.(2x+3)2=3(4x+3) .二、法力无边的配方法把一个式子或一个式子的某一部分化成完全平方式或几个完全平方式的和、差形式,这种方法叫“配方法”.“直接开平方法”告我们根据完全平方公式2222a ab b a b ±+=±()可以将一元二次方程化为形如2()(0)ax b c c +=≥的形式后求解,这就自然而然地导出了另一种解一元二次方程的解法 —— “配方法”.它的理论依据是完全平方公式2222a ab b a b ±+=±().例5.解方程2210x x +-=.解:方程两边都除以2,得21022x x +-=,移项,得2122x x +=, 配方,得2111216216x x ++=+,即219416x +=().开方,得12112x x ==-,.通过本例可以归纳出用“配方法”解一元二次方程的一般步骤: 1.方程两边同除以二次项系数,化二次项系数为1;2.移项,使方程左边为二次项和一次项,右边为常数项;3.配方,方程两边都加上一次项系数一半的平方,把原方程化为2()ax b c +=的形式; 4.若0c ≥,用“直接开平方法”解出;若0c <,则原方程无实数根即原方程无解. “配方法”是一种重要的数学方法,它不仅可应用于解一元二次方程,而且在数学的其它领域中也有着广泛的应用.练习:用配方法解一元二次方程:1.x 2-4x -3=0; 2.6x 2+x =35;3.4x 2+4x+1=7; 4.2x 2-3x -3=0.三、神通广大的公式法公式法是解一元二次方程的一般方法,它是直接利用了“配方法”的结果,求根公式为224(40)2b b ac x b ac a-±-=-≥.例6.解方程28103x x +=.解:把该方程化为一般形式: 281030x x +-=.∵8103a b c ===-,,,22410483196b ac -=-⨯⨯-=(), ∴2410196101422816b b ac x a -±--±-±===⨯.∴121342x x ==-,.通过本例可以看出,用公式法解一元二次方程的一般步骤是: 1.将方程化为一般形式:200ax bx c a ++=≠();2.正确确定a b c ,,的值;3.代入公式242b b acx a -±-=求解,若240b ac -≥则方程有实数根,若240b ac -<则方程无实数解即无解.练习:用公式法解一元二次方程:2.2x 2+7x -4=0; 3 .2y 2 -y=5 4.3x 2+5(2x+1)=0四、简便易行的因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,它是解一元二次方程的基本方法,它的理论依据是两个因式的积等于零的充分必要条件是这两个因式至少要有一个等于零,即0a b =,则00a b ==或,这种方法简便易行.是最常用的一种方法.例7.解方程23520x x --=.解:方程左边因式分解,得3120x x +-=()(),∴31020x x +=-=,,∴12123x x =-=,.用因式分解法解一元二次方程的一般步骤是: 1.将方程的右边化为零;2.将方程的左边分解为两个一次因式的积; 3.令每个因式分别为零,得到两个一元一次方程; 4.解这两个一元一次方程,它们的解就是原方程的解.用因式分解法解一元二次方程的关键是: 1.要将方程右边化为零; 2.要熟练掌握因式分解的方法. 练习:用因式分解法解一元二次方程:1. )7(5)7(2+=+x x x2.223)(x 3)-(4x +=3.0822=--x x 4.06)23(2=---x x这四种方法既有区别又有联系.公式法比配方法简单,它直接由配方法导出的求根公式求解,但不如直接开平方法和因式分解法快捷,具体解方程时,要根据题目的特点,选择适当的方法求解.一般顺序为:先特殊后一般.直接开平方法→因式分解法→公式法.没有特别说明,一般不用配方法.遇到特殊结构或次数较高的方程,就需用到下面要讲的“换元法”.五、出奇制胜的换元法把一个数学式子或者其中的一部分看作一个整体,用一个中间变量去代替,从而达到繁为简,化难为易的目的,这种方法叫“换元法”,有些一元二次方程数式结构复杂,或次数较高,或字母个数过多,用常规的四种一元二次方程的解法计算既繁琐也困难,甚至根本无法求解,这时用“换元法”就会出奇制胜.例8.解方程25425430x x -+--=()().解:设54x y -=,则原方程可化为2230y y +-=,130y y -+=()(),1030y y -=+=或,∴13y y ==-或,即541543x x -=-=-或.∴12115x x ==,.例9. 解方程42440x x -+=.解:设2x y =,则原方程变为2440y y -+=,解之,得2y =.∴22x =,∴2x =±. 练习:用适当的方法解关于x 的方程1、095162=-+)(x 2、8)4(2=-x 3、8)32)(2(=++y y4、02x 3x 2=+-5、04x 3x 22=-+ 6、y 249y 162=+;7、0x 7)1x (52=-+ 8、(3 x-1)2-9x+3=4 9、(x-5)2+x 2=510、)7(5)7(2+=+x x x 11、01224=--x x 12、012222=--x x13、012)(8)(222=+---x x x x 14、02)32(3)32(2=++-+x xx x六、一元二次方程根的两个特性例1、先阅读,再填空解题:(1)方程:x 2-4x-12=0 的根是:x 1=6, x 2=-2,则x 1+x 2=4,x 1·x 2=-12; (2)方程2x 2-7x+3=0的根是:x 1=12, x 2=3,则x 1+x 2=72,x 1·x 2=32;(3)方程3x 2+6x-2=0的根是:x 1= , x 2= .则x 1+x 2= ,x 1·x 2= ; 根据以上(1)(2)(3)你能否猜出:如果关于x 的一元二次方程ax 2+bx+c=0(a ≠0且a 、b 、c 为常数)的两根为x 1、x 2,那么x 1+x 2、x 1x 2与系数a 、b 、c 有什么关系?请写出来你的猜想并说明理由。

50道一元二次方程带解题过程

50道一元二次方程带解题过程

(1)x(x-2)+x-2=0;




(2)5x²-2x- =x²-2x+ .
解:(1)因式分解,得
(2)移项、合并同类项,得
(x-2)(x+1)=0.
于是得
x-2=0或x+1=0,
4x²-1=0
因式分解,得 (2x+1)(2x-1)=0.

2x+1=0或2x-1=0,
解得
解得
x1=2,x2=-1.
用配方法解下列方程:
解:(1)移项,得
x2+10x=-9.
(1)x²+10x+9=0 ;
配方,得
x2+10x+5²=-9+5²,
(2)x²+6x-4=0;
(3)x²+4x+9=2x+11.
(x+5)²=16.
由此可得
x+5=±4,
x1=-1,x2=-9.
随堂练习
用配方法解下列方程:
解:(2)移项,得
(3)3x²-6x=-3;
因式分解,得
(4)4x²-121=0;
( x-4-5 + 2x )( x-4 + 5-2x ) = 0.
(5)3x(2x+1)=4x+2;
则有 3x-9 = 0 或 1-x = 0 ,
(6)(x-4)²=(5-2x)².
x1 = 3, x2 = 1.
练习
快速回答:下列各方程的根分别是多少?
之间有什么关系?


( )²
4.x²+px+____=(x+__)²
.

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全小编寄语:同学们对于二元一次方程的解法了解多少呢,自己又掌握了几种?下面小编为大家精心整理了二元一次方程的解法,供大家参考。

1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n0)的方程,其解为x=根号下n+m. 例1.解方程〔1〕(3x+1)2=7〔2〕9x2-24x+16=11分析:〔1〕此方程显然用直接开平方法好做,〔2〕方程左边是完全平方式(3x-4)2,右边=110,所以此方程也可用直接开平方法解。

〔1〕解:(3x+1)2=7(3x+1)2=53x+1=(注意不要丢解)x=原方程的解为x1=,x2=〔2〕解:9x2-24x+16=11(3x-4)2=113x-4=x=原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=当b^2-4ac0时,x+=x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方〕解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=x=原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac0时,把各项系数a,b,c的值代入求根公式x=[-b(b^2-4ac)^(1/2)]/(2a),(b^2-4ac0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0a=2,b=-8,c=5b^2-4ac=(-8)2-425=64-40=240x=[(-b(b^2-4ac)^(1/2)]/(2a)原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

小学五年级数学上册第五单元解方程例1~例3导学及练习

小学五年级数学上册第五单元解方程例1~例3导学及练习
3
解:x÷7×7=0.3×7 x=2.1
小诊所。
说说解方程的过程对吗?如有 问题,请你把它改正过来。
x÷1.5=1.5
解:
x=1.5÷1.5
x=1
x÷1.5=1.5 解: x=1.5×1.5
x=2.25
列方程并解答。
方程1: 12x=18
方程2: 18÷x=12
方程1:
12x=18 解: 12x÷12=18÷12
12.6元
3x=12.6 解:3x÷3=12.6÷3
x=4.2
教材P68做一做2
x+1.2=4 4-x=1.2
3x=8.4 8.4÷x=3
作业:第70页练习十五,第1题。 第71页练习十五,第7题。
简易方程
解方程 例2
教材P68做一做2-1
列方程并解答。
解: x+1.2=4 x+1.2-1.2=4-1.2 x=2.8
在解方程过程中你 运用了什么知识?
解方程 3x=18。
3x=18 解:3x÷3=18÷3
x=6
问题:你能运用等式的性质解方程吗?请你试一试、写一写。
3x=18 解:3x÷3=18÷3
x=6
问题:1. 你能借助天平解释一下解方程的过程吗? 2. 为什么方程两边要同时除以3?
解方程:3x=18 3x÷(3)=18÷( 3)
方程两边同时除以一 个不等于0的数,左 右两边仍然相等。
x xx
反思检验
3x=18 方程左边=3x
=3×6 =18 =方程右边
所以,x=6是方程的解。
教材P68做一做1
x=1.5
x=1.5是方程的解吗?
方程左边=12x =12×1.5 =18 =方程右边

初中数学一元一次、二元一次、一元二次解方程例题

初中数学一元一次、二元一次、一元二次解方程例题

一元一次方程例题解析例题1:解方程2x + 3 = 7解析:首先,从等式的两边减去3,得到2x = 4。

然后,将等式两边除以2,得到x = 2。

所以,x的解为2。

例题2:解方程5x - 7 = 12解析:首先,将等式的两边加上7,得到5x = 19。

然后,将等式两边除以5,得到x = 3.8。

所以,x的解为3.8。

例题3:解方程3x + 4 = 10解析:首先,从等式的两边减去4,得到3x = 6。

然后,将等式两边除以3,得到x = 2。

所以,x的解为2。

例题4:解方程7x - 5 = 19解析:首先,将等式的两边加上5,得到7x = 24。

然后,将等式两边除以7,得到x = 3.4。

所以,x的解为3.4。

例题5:解方程4x + 6 = 18解析:首先,从等式的两边减去6,得到4x = 12。

然后,将等式两边除以4,得到x = 3。

所以,x的解为3。

例题6:解方程9x - 7 = 25解析:首先,将等式的两边加上7,得到9x = 32。

然后,将等式两边除以9,得到x = 3.56。

所以,x的解为3.56。

例题7:解方程8x - 9 = 17解析:首先,将等式的两边加上9,得到8x = 26。

然后,将等式两边除以8,得到x = 3.25。

所以,x的解为3.25。

例题8:解方程6x + 7 = 19解析:首先,从等式的两边减去7,得到6x = 12。

然后,将等式两边除以6,得到x = 2。

所以,x的解为2。

例题9:解方程10x - 8 = 24解析:首先,将等式的两边加上8,得到10x = 32。

然后,将等式两边除以10,得到x = 3.2。

所以,x的解为3.2。

例题10:解方程11x - 9 = 30解析:首先,将等式的两边加上9,得到11x = 39。

然后,将等式两边除以11,得到x = 3.54。

所以,x的解为3.54。

例题11:解方程12x - 10 = 28解析:首先,将等式的两边加上10,得到12x = 38。

一元二次方程10道例题

一元二次方程10道例题

一元二次方程10道例题一、直接开平方法例1:解方程(x - 3)^2=16解析:对于方程(x - 3)^2 = 16,根据直接开平方法,我们得到:x-3=±4当x - 3=4时,x=4 + 3=7;当x-3=-4时,x=- 4+3=-1。

所以方程的解为x_1 = 7,x_2=-1。

二、配方法例2:解方程x^2+6x - 7 = 0解析:在方程x^2+6x-7 = 0中,1. 移项得x^2+6x=7。

2. 配方:在等式两边加上一次项系数一半的平方,即x^2+6x + 9=7 + 9,得到(x + 3)^2=16。

3. 然后用直接开平方法,x+3=±4。

- 当x+3 = 4时,x=1。

- 当x + 3=-4时,x=-7。

所以方程的解为x_1=1,x_2 = - 7。

三、公式法例3:解方程2x^2-5x+3=0解析:对于一元二次方程ax^2+bx + c=0(a≠0),其求根公式为x=(-b±√(b^2 - 4ac))/(2a)。

在方程2x^2-5x + 3=0中,a = 2,b=-5,c = 3。

1. 先计算判别式Δ=b^2-4ac=(-5)^2-4×2×3=25 - 24 = 1。

2. 把a、b、Δ的值代入求根公式,得到x=(5±√(1))/(4)。

- 当取正号时,x=(5 + 1)/(4)=(3)/(2)。

- 当取负号时,x=(5-1)/(4)=1。

所以方程的解为x_1=(3)/(2),x_2 = 1。

四、因式分解法例4:解方程x^2-3x+2=0解析:1. 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)=0。

2. 则有x-1=0或者x - 2=0。

- 当x-1=0时,x = 1。

- 当x-2=0时,x=2。

所以方程的解为x_1=1,x_2=2。

例5:解方程6x^2+x - 1=0解析:1. 对6x^2+x - 1进行因式分解,得到(2x + 1)(3x - 1)=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解方程例1例2教学设计
教学内容:
新课标人教版五年级上册第67~68页解方程例1、例2以及相应的做一做和练习十五1-4题
教学目标:
知识技能:通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。

过程方法:通过探究较简单的方程的解法,进一步提高学生分析、迁移的能力。

情感态度价值观:培养学生利用已有知识解决问题的意识和自觉检验的习惯。

重点:会用等式的的性质解方程。

难点:理解算理。

教学过程:
一、创设情境,生成问题
同学们,还记得上节课我们一起玩过的跷跷板游戏吗?谁来说说你从中获得了什么知识?(引导学生回忆等式的性质即跷跷板平衡原理)。

同学们在游戏中的收获可真不少,还想不想玩游戏?(想)好,现在我们就一起玩个猜球游戏:
师出示一个不透明的乒乓球盒,让学生猜里面有几个球?(学
生可以任意猜)
师:盒子里面有几个球,1个?2个?.......你能准确说出盒子里有几个吗?
生:不能!
师引导学生可以用字母X来表示球的个数。

师:要想准确知道有几个球,再给同学们一些信息。

(师课件出示一个不透明盒子和3个球,右边透明盒子里有9个球,跷跷板平衡)
设问:能用一个方程来表示吗?(板书X+3=9)
师:现在你知道X的值是多少吗?
(设计意图:先通过回味上节课的天平游戏旨在对等式的性质即天平平衡原理作必要的知识回顾,同时自然而然的引出猜球游戏,并在游戏中生疑,层层设问,步步为营,为下面的学习创设良好的问题情境,使学生兴趣盎然的投入到学习活动中去
二、探索交流,解决问题。

(一)探究利用等式的性质解方程
1、独立思考:盒子里有几个球?也就是X所表示的数值是多少?(由于数据较小,学生能够独立思考出结果)
2、小组内交流;你是怎样想的?(教师巡视,注意选取有代表性的作品到黑板上板书)
(这里给与学生一定的思考和交流的时间,重点让学生说说自己的思考过程)。

3、全班交流:X的值是多少?你是怎样想的?
学生可能有以下几种想法:
(1)利用加减法的关系:9-3=6。

(2)想6+3=9,所以X=6。

(3)把9分成6+3,想X+3=6+3,所以X=6。

(4)在方程两边同时减去一个3,就得到X=6
师:同学们的想法真不少。

我们看前三个同学都是利用加减法的关系或数的分成想出了答案。

第四个同学的想法有什么不同?他的想法对吗?我们可以来验证一下。

4、操作验证:师画出课件演示中的跷跷板实物(跷跷板左边一个不透明盒子和3个球,右边透明盒子里有9个球,跷跷板平衡。

注意两个盒子的质量相等)
师问:现在谁来试一试?想想左右两边同时拿去三个乒乓球天平会怎么样?(学生拭目以待,跃跃欲试)学生操作演示,跷跷板平衡。

(设计意图:通过操作演示使学生进一步理解等式的性质,初步体会到可以用等式的性质解方程)
(二)指导解方程的书写格式
师:通过操作我们发现他的想法是对的!以后我们就用等式的性质来求方程中未知数的值。

这个演算过程如何书写呢?
让学生先同桌交流发表自己的看法,然后师边示范边强调:首
先在方程的第二行起写一个“解”字,利用等式的性质两边同时减去一个3,为了美观注意每步等号要对齐。

师板书如下:
X+3=9
解:x+3-3=9-3
x=6
重点问:左右两边同时减去的为什么是3,而不是其它数呢?学生纷纷说出想法。

师结:方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。

因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

师:我们要想知道算的对不对,不能每次都用跷跷板来验证吧,尤其是遇到较大的数。

(学生点头认同)
师:那怎麽办呢?
生:可以验算!
师:怎么验算?
学生可以交流,根据学生的回答老师板书验算方法:
验算:方程的左边=X+3
=6+3
=9
=方程的右边
所以,X=6是方程的解。

(三)揭示方程的解和解方程两个概念。

师:像上面X=6这样使方程左右两边相等的未知数的值,叫方程的解。

而求方程的解的过程叫做解方程。

同时课件出示两个概念,让学生说说两个概念有什么不同?
师明确:方程的解是一个具体的数值,而解方程是一个过程,解方程的目的就是求方程的解。

(设计意图:这里根据学生已有的知识衔接,将教材稍作处理先教学方程的解法,再揭示方程的解和解方程两个概念,使整个教学流程顺畅自然,水到渠成,更易于学生对知识的理解和掌握。

)(四)独立尝试解方程(例2)
师:同学们已掌握了解方程的方法,看这个方程你会解吗?
课件出示信息图,让学生看图列出方程3X=18,
师抛出问题:这个方程如何解呢?要根据方程的哪个性质来解?
师:谁愿意来板演?(其他学生练习本上做)
教师针对学生做题情况,重点强调:根据“方程的两边同时除以一个不等于0的数,左右两边仍然相等”来解方程。

(设计意图:本环节老师抛出问题后就放手给学生做,给学生提供独立探索的机会,体验独立解方程的全过程,充分体现让学生自主学习这一教学理念。


三、巩固应用内化提高
1、慧眼识珠
从后面括号中找哪个是x的值是方程的解?
(1)x+32=76(x=44,x=108)
(2)12-x=4(x=16,x=8)
2、x=2是方程5x=15的解吗?x=3呢
四、回顾整理,反思提升。

今天你有哪些收获?你学会了什么?
五、作业练习十五第二题
板书设计:
解方程
例1X+3=9例23x=18 解:x+3-3=9-3解:3x÷3=18÷3
x=6x=6
验算:方程的左边=X+3验算:方程的左边=3x
=6+3=3×6
=9=18
=方程的右边=方程的右边所以,X=6是方程的解。

所以,X=6是方程的解。

相关文档
最新文档