第四章恒定磁场题解
恒定磁场部分例题及思考题

ω
3.长直圆柱形铜导线半径为 R1 , 外面一层相 对磁导率为 µr的圆桶形磁介质外半径R2 , 设导线内有均匀分布电流I 通过,铜的相对 磁导率 = 1 ,求导线和磁介质内外的磁场 强度和磁感应强度的分布
r oR
R2
1
µ 0 = 4π ×10 N ⋅ A
−7
−2
例:R,I的半圆形闭合线圈,绕直径为轴旋转, 均匀磁场,求线圈受的磁力矩。 a. Ⅰ法 均匀场 M = m × B
M = I(
πR 2
2
)B
y
方向:沿oy轴正方向
b. Ⅱ法 一般方法 (对非均匀场也适用)
en
x
Idl → dF → dM → M = ∫ dM
µ 0 I1 B1 = 2πr
d F2 µ 0 I1 I 2 d F1 = = d l2 2πr d l1
I1 d l1
B2
B1
d F1 d F2
I 2 d l2
国际单位制中电流单位安培的定义
I1
I2
r
在真空中两平行长直导线相距 1 m ,通有大小 相等、方向相同的电流,当两导线每单位长度上的 吸引力为 2 × 10 −7 N ⋅ m −1 时,规定这时的电流为 1 A 可得
I 2πr
r = 0.4 mm
I m = 2πrH c = 0.4A
思考题: 1. 宽度为b的长金属薄板,电流为I,求 (1)在薄板平面上,距板的一边为r的P点 的磁感强度; (2)板的中心线正上方Q点的磁感强度
I p
b
r
2. 有一长为 b,电荷线密度为 λ 的带电线 段 AB ,绕垂直轴 OO′ 在水平面内匀角速 转动,设 A 点距轴为a ,角速度 ω , 求带电 线段在O点产生的磁感强度和磁矩
大学物理恒定磁场知识点及试题带答案

恒定磁场一、基本要求1、了解电流密度的概念。
2、掌握磁感应强度的概念及毕奥—萨伐尔定律,能利用叠加原理结合对称性分析,计算一些简单问题中的磁感应强度。
3、理解稳恒磁场的两个基本规律:磁高斯定理和安培环路定理。
掌握应用安培环路定理计算磁感应强度的条件和方法,并能熟练应用。
4、掌握洛伦兹力公式,能分析运动电荷在磁场中的受力和运动。
掌握安培力公式,理解磁矩的概念,能计算简单几何形状的载流导线和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。
二、主要内容 1、稳恒电流电流:电荷的定向运动。
电流强度:单位时间通过导体某一横截面的电量,即dtdq I =。
电流密度)(δ:通过与该点的电荷移动方向相垂直的单位面积的电流强度,方向与该点的正电荷移动方向一致。
电流密度是描述电流分布细节的物理量,单位是2/m A 。
电流强度⎰⋅=SS d Iδ。
2、磁场在运动的电荷(电流)周围,除了形成电场外,还形成磁场。
磁场的基本性质之一是它对置于其中的运动电荷或电流有作用力。
和电场一样,磁场也是一种物质。
3、磁感应强度磁感应强度B是描述磁场性质的物理量。
当电荷在磁场中沿不同方向运动时,磁场对它的作用力不同,沿某方向运动时不受力,与该方向垂直运动时受力最大,定义B 的方向与该方向平行,由v q F⨯max 决定。
B 的大小定义为qvF B max=。
如右图所示。
B 的单位为T (特斯拉)。
4、毕奥—萨伐尔定律电流元:电流元l Id是矢量,其大小等于电流I 与导线元长度dl 的乘机,方向沿电流方向。
毕奥—萨伐尔定律:电流元l Id 在P 点产生的磁感应强度为 30r rl Id B d⨯=μ式中0μ为真空磁导率,A m T /10470⋅⨯=-πμ,r由电流元所在处到P 点的矢量。
运动电荷的磁场:304rrqv B πμ ⨯= 本章判断磁场方向的方法与高中所学方法相同。
几种特殊形状载流导线的磁场()012 cos cos 4I B aμθθπ=- a I B πμ20= a I B πμ40= )1(cos 40+=θπμa IB0=B5、磁场的高斯定理磁感应线:磁感应线为一些有向曲线,其上各店的切线方向为该点的磁感应强度方向,磁感应线是闭合曲线。
大学物理简明教程陈执平参考解答(完整版)7.恒定磁场习题.

7-1 如图AB 、CD 为长直导线,BC 是一段圆心为O 、半径为R 的圆弧形导线,若导线通有电流I ,求O 点的磁感应强度。
解: AB 段产生:0B 1= BC 段产生:R12IB 02μ=,方向垂直向里CD 段产生:)231(R 2I )60sin 90(sin 2R 4IB 00003-=-=πμπμ方向垂直向里 )6231(R 2I B B B B 03210ππμ+-=++=,垂直纸面向内7-2 两条无限长直载流导线垂直且不相交,它们相距最近处为cm 0.2d =,电流分别为A 0.4I 1=和A 0.6I 2=, P 点到两导线距离都是d ,求P 处的磁感应强度大小。
解: 电流I 1在P 点产生 T 100.4d2I B 5101-⨯==πμ 方向垂直向里 电流I 2在P 点产生 T 100.6d2I B 5202-⨯==πμ 方向在纸面里垂直指向电流I 1P 点 T 102.7B B B 52221-⨯=+=5.1B B tg 12==θ,91560'=θ7-3 一宽度为b 的半无限长金属板置于真空中,均匀通有电流0I 。
P 点为薄板边线延长线上的一点,与薄板边缘的距离为d 。
如图所示。
试求P 点的磁感应强度B 。
解 建立坐标轴OX ,如图所示,P 点为X 轴上的一点。
整个金属板可视为由无限多条无限长的载流导线所组成,其中取任意一条载流线,其宽度为dx ,其上载有电流dx b I dl 0=,它在P 点产生的场强为()x d b b dx I r dIdB P -+==πμπμ44000的方向垂直纸面向里。
由于每一条无限长直载流线在P 点激发的磁感强度dB 具有相同的方向,所以整个载流金属板在P 点产生的磁感应强度为各载流线在该点产生dB 的代数和,即⎰⎰-+==bP P x d b dx bI dB B 004πμbx d b b I 0001ln 4-+=πμb d d b I πμ4ln 00+=P B 方向垂直于纸面向里。
电磁场4恒定磁场

S
L
S
磁化电流体密度:
Jm M
磁化电流面密度:
JS
M
en
结论:
➢有磁介质存在时,场中任一点的 B 是自由电流和磁化 电流共同作用在真空中产生的磁场;
➢磁化电流具有与传导电流相同的磁效应。
磁偶极子与电偶极子对比
模型
电量
产生的电场与磁场
电 偶
v p P
1 4π0
pv
1 R
pv evR 4π0R2
➢电流与电流之间 存在相互作用
➢磁场对运动电荷的作用 运动电荷既能产生磁效应也 受到磁力的作用
表明: ➢电流与电流之间,磁铁与电流之间都存在力的作用 ➢磁铁和电流周围存在磁场 ➢磁力是通过磁场来传递的
运动电荷
磁场
运动电荷
存在于电流或永久磁铁周围空间且能 对运动电荷和电流施加作用力的物质
(1) 安培定律
dF
Idl
0
4
I
dl
eR
l R2
点电荷q1对点电荷q2 的作用力
F
1
4 0
q2q1 R2
eR
电荷之间相互作用 力通过电场传递
F q
1
4 0
V
dV
R2
eR
qE
点电荷 库仑定律 电场强度
电流元I′dl′对电流元
Idl的作用力
F
0 4
Idl
(
I
dl
eR
)
R2
电流之间相互作用 力通过磁场传递
F
Idl
0
l
4
l
I
dl
eR
R2
Idl B
l
电流元 安培定律 磁感应强度
恒定磁场

1恒定磁场1.真空中位于'r点的点电荷q的电位的泊松方程为()2.由()可知,无界空间中的恒定磁场由恒定磁场的散度和旋度方程共同决定3.恒定磁场在自由空间中是()场4.磁通连续性定律公式物理意义:穿过任意闭和面的磁通量为()。
即进入闭和面S的磁力线数与穿出闭和面S的磁力线数(),磁力线是闭和的5.安培环路定律公式物理意义:磁感应强度B沿任意闭和路径l的线积分,()穿过路径l所围面积的总电流与的乘积6.一个载流的小闭和圆环称为()7.电流环的面积与电流的乘积,称为()8.在远离偶极子处,磁偶极子和电偶极子的场分布是()的,但在偶极子附近,二者场分布()9.磁力线是()的,电力线是间断的10.介质在磁场作用下会产生()11.磁化引起的分子电流、原子电流相当于()12.磁偶极子产生()磁场,叠加于原场之上,使磁场发生变化。
磁化的结果使介质中的合成磁场可能减弱,也可能增强13.介质磁性能分类:()磁性介质,()磁性介质,铁磁性及亚铁磁性介质14.()磁性介质:二次磁场与外加磁场方向相反,导致介质中合成磁场减弱15.()磁性介质:二次磁场与外加磁场方向相同,导致介质中合成磁场增强16.铁磁性及亚铁磁性介质:在()作用下,磁化现象非常显著17.在无传导电流的均匀介质中,束缚电流体密度为()18.只有磁场强度为零或磁场强度与介质表面相垂直的区域,束缚电流面密度为()19.磁感应强度通过某一表面的通量称为()20.与某电流交链的磁通量称为()21.导线回路的总自感等于内、外自感之()22.单位导线回路的内自感为()23.磁场问题的基本变量是场源变量和两个基本的场变量:磁感应强度和磁场强度。
实验证明:磁场的两个基本变量之间的关系为()24.磁通量连续性方程微分形式:()25.安培力可以用磁能量的空间变化率称()来计算26.自由空间中一半径为a的无限长导体圆柱,其中均匀流过电流I,求导体内外的磁感应强度27.一段长为L的导线,当其中有电流I通过时,求空间任一点的矢量磁位及磁感应强度28.磁导率为,内外半径分别为a,b的无限长空心导体圆柱,其中存在轴向均匀电流密度,求各处磁场强度和磁化电流密度。
大学物理 恒定磁场

26
测载流子电性 — 半导体类型
8.5 载流导线在磁场中受力
一、一段载流导线上的力——安培力 I 2 1个电子 受力 f qv B 1 N个电子受力 d F Nq v B 电流元 I d l B
N n d V nS d l
不对 q 做功。
v
q
B
v
B
F qE qv B
15
二、带电粒子在均匀磁场中运动
1)运动方向与磁场方向平行
Fm qv B
Fm qvBsinθ
θ 0 F 0
q
v
B
带电粒子作匀速直线运动
16
二、带电粒子在均匀磁场中运动
3)运动方向沿任意方向
v // v cos v v sin
mv sin 半径: R qB 2R 周期:T v
v
q
+
v
v// h
B
匀速圆周运动与匀速直线运动的合成 运动轨迹为螺旋线
2 m qB
2 m 螺距: h Tv // v cos qB
18
(3)地磁场内 的范艾仑辐射带
22
23
四、霍耳效应
现象:导体中通电流 I ,磁 场B 垂直于I ,在既垂直于 I ,又垂直于B 的方向出现 电势差 U 霍耳电压UH
B
h
V
+ v - - -q- - -
F
I
b
原因: 载流子q,漂移速度 v
Fm qv B
25
霍耳系数
1 RH ne
大学物理稳恒磁场理论及习题

结果:
1.
F
v,
B组
成
的
平
面.
2. F 大小正比于v, q0,sin.
q0沿磁场方向运动, F 0.
q0 垂直磁场方 向运动, F Fmax .
NIZQ 第4页
大学物理学 恒定磁场
在垂直磁场方向改变速率v,改变点电荷 电量q0 .
结论: 场中同一点, Fmax/q0v有确定值. 场中不同点, Fmax/q0v量值不同.
大学物理学 恒定磁场
从毕-萨定律导出运动电荷的磁场
S: 电流元横截面积
n: 单位体积带电粒子数
q: 每个粒子带电量
v: 沿电流方向匀速运动
电流元 Idl产生的磁场:
大学物理学 恒定磁场
一.磁场 磁感应强度
• 磁性起源于电荷的运动 磁铁的磁性: 磁性: 能吸引铁、钴、镍等物质的性质.
磁极: 磁性最强的区域, 分磁北.
磁力: 磁极间存在相互作用, 同号相斥,
异号相吸.
问题: 磁现象产生的原因是什么?
司南勺
北宋沈括发明 “指南针(罗盘
1.在任何磁场中每一条磁感线都
是环绕电流的无头无尾的闭合线, 条形磁铁周围的磁感线 即没有起点也没有终点,而且这些
闭合线都和闭合电路互相套连.
2.在任何磁场中,每一条闭合的磁
感线的方向与该闭合磁感线所包围
的电流流向服从右手螺旋法则.
直线电流的磁感线
NIZQ 第6页
大学物理学 恒定磁场
二.毕澳-萨伐尔定律
r a
sin
B
l
dB
2 1
0I
4π
a
sin 2
sin 2
a2
sin d
《恒定磁场习题》word版

恒定磁场作业班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________ 一、选择题 1.边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) ,.(B) ,. (C) ,.(D) ,. []2. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度沿图中闭合路径L 的积分等于(A) . (B) .(C) . (D) . [ ]3.一个动量为p 的电子,沿图示方向入射并能穿过一个宽度为D 、磁感强度为(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A) . (B) .(C) . (D) . [ ]4.四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) . (B) .(C) B = 0. (D) . [ ]5.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A) . (B) . (C) 0. (D) . (E) . [ ]6. 有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N= 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ ]7.四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为(μ0 =4π×10-7 N ·A -2)(A) B =0. (B) B = 0.4×10-4 T .I B 1 I B 12a bc d IO RP I(C) B = 0.8×10-4 T. (D) B =1.6×10-4 T . [ ]8.一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足: (A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r . [ ]9.有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点(如图)的磁感强度的大小为 (A) . (B) . (C)bba bI+πln20μ. (D) . [ ] 10.关于稳恒电流磁场的磁场强度,下列几种说法中哪个是正确的? (A) 仅与传导电流有关. (B) 若闭合曲线内没有包围传导电流,则曲线上各点的必为零.(C) 若闭合曲线上各点均为零,则该曲线所包围传导电流的代数和为零. (D) 以闭合曲线L为边缘的任意曲面的通量均相等. [ ]二、填空题 11.图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位垂直长度上流过的电流)为i ,则圆筒内部的磁感强度的大小为B =________,方向_______________.12.如图所示,在宽度为d 的导体薄片上有电流I 沿此导体长度方向流过,电流在导体宽度方向均匀分布.导体外在导体中线附近处P 点的磁感强度的大小为________________________.13.有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为______________,筒外空间中离轴线r 处的磁感强度为______________.14.一质量为m ,电荷为q 的粒子,以0v速度垂直进入均匀的稳恒磁场中,电荷将作半径为____________________的圆周运动.15.在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.16.有一半径为a ,流过稳恒电流为I 的1/4圆弧形载流导线bc ,按图示方式置于均匀外磁场中,则该载流导线所受的安培力大小为_______________________.17.氢原子中电子质量m ,电荷e ,它沿某一圆轨道绕原子核运动,其等效圆电流的磁矩大小p m 与电子轨道运动的动量矩大小L 之比=Lp m________________. 18.一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P点磁感强度的大小为________________.19.一根无限长直导线通有电流I ,在P 点处被弯成了一个半径为R 的圆,且P 点处无交叉和接触,则圆心O 处的磁感强度大小为_______________________________________,方向为______________________________.20.图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表______________________________的B ~H 关系曲线.b 代表______________________________的B ~H 关系曲线.c 代表______________________________的B ~H 关系曲线.三、计算题 21.真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度.22.横截面为矩形的环形螺线管,圆环内外半径分别为R1和R2,芯子材料的磁导率为μ,导线总匝数为N,绕得很密,若线圈通电流I,求.(1) 芯子中的B值和芯子截面的磁通量.(2) 在r < R1和r > R2处的B值.23.在一无限长的半圆筒形的金属薄片中,沿轴向流有电流,在垂直电流方向单位长度的电流为i = k sinθ,其中k为常量,θ 如图所示.求半圆筒轴线上的磁感强度.24.在真空中有两根相互平行的无限长直导线L1和L2,相距10 cm,通有方向相反的电流,I1 =20 A,I2 =10 A,试求与两根导线在同一平面内且在导线L2两侧并与导线L2的距离均为5.0 cm的两点的磁感强度的大小.(μ0 =4π×10-7 H·m-1)参考答案1.C2.D3.B4.C5.D6.B7.C8.B9.B 10.C11.0i2分沿轴线方向朝右1分12.3分13.0 1分2分14.3分15.4 3分16.aIB3分17.3分18.3分19.2分垂直纸面向里.1分20铁磁质1分顺磁质1分抗磁质1分21.解:令、、和分别代表长直导线1、2和通电三角框的、和边在O点产生的磁感强度.则:对O点,直导线1为半无限长通电导线,有,的方向垂直纸面向里.2分:由毕奥-萨伐尔定律,有方向垂直纸面向里.2分和:由于ab和acb并联,有根据毕奥-萨伐尔定律可求得=且方向相反.2分所以1分把,代入B1、B2,则的大小为的方向:垂直纸面向里.1分22.解:(1) 在环内作半径为r的圆形回路, 由安培环路定理得,3分在r处取微小截面d S = b d r, 通过此小截面的磁通量穿过截面的磁通量5分(2)同样在环外( r < R1和r > R2 )作圆形回路, 由于∴B = 0 2分23.解:设轴线上任意点的磁感强度为B,半圆筒半径为R.先将半圆筒面分成许多平行轴线的宽度为d l的无限长直导线,其中流过的电流为2分它在轴线上产生的磁感强度为,方向如图.2分由对称性可知:在z轴向的分量为0,在y轴的分量叠加中相互抵消,只需考虑在x轴的分量d B x.2分d B x = d B sin 2分积分:2分的方向沿x轴负方向.24.解:(1) L1中电流在两导线间的a点所产生的磁感强度T 2分L2中电流在a点所产生的磁感强度T 1分由于、的方向相同,所以a点的合磁感强度的大小T 2分(2) L中电流在两导线外侧b点所产生的磁感强度T 2分L2中电流在b点所产生的磁感强度T 1分由于和和的方向相反,所以b点的合磁感强度的大小T 2分温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 恒定磁场(注意:以下各题中凡是未标明磁媒质的空间,按真空考虑)4-1 如题4-1图所示,两条通以电流I 的半无穷长直导线垂直交于O 点。
在两导线所在平面,以O 点为圆心作半径为R 的圆。
求圆周上A 、B 、C 、D 、E 、F 各点的磁感应强度。
解 参考教材71页的例4-1,可知,图4-2所示通有电流I 的直导线在P 点产生的磁感应强度为()αθθπμe B 120cos cos 4--=rI因此,可得(设参考正方向为指出纸面)R IR R I B A πμπμ422135cos 180cos 220cos 135cos 400=⎪⎪⎪⎪⎭⎫ ⎝⎛----=οοοο ()RIR I B B πμπμ410cos 90cos 400=--=οο用类似的方法可得 R I B C πμ40=,I R B C 0212μπ-=,RI B D πμ40=,RI B E πμ20=,I R B F 0212μπ+-=4-2 xy 平面上有一正n 边形导线回路。
回路的中心在原点,n 边形顶点到原点的距离为R 。
导线中电流为I 。
1)求此载流回路在原点产生的磁感应强度;2)证明当n 趋近于无穷大时,所得磁感应强度与半径为R 的圆形载流导线回路产生的磁感应强度相同; 3)计算n 等于3时原点的磁感应强度 。
解 如图4-3中所示为正n 边形导线回路的一个边长,则所对应的圆心角为nπ2,()()()()()αααααααππμππμθπμθπμθπμθθπμθθπμe e e e e e e B ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛====---=--=n R I n r I r I r I rIr I r I tan 2sin 2cos 2cos 2cos 24cos cos 4cos cos 40010101011012011)n 条边在圆心产生的磁感应强度为 απe B ⎪⎭⎫⎝⎛=n R tan 202)当n ∞→时,圆心处的磁感应强度为 ααμππμe e B R I n R I n n 2tan 2lim00=⎪⎭⎫⎝⎛=∞→3)当n 等于3时圆心处的磁感应强度为 ααπμππμe e B R I R I 2333tan 2300=⎪⎭⎫⎝⎛=4-3 设矢量磁位的参考点为无穷远处,计算半径为R 的圆形导线回路通以电流I 时,在其轴线上产生的矢量磁位。
解 如图4-4建立坐标系,可得轴线上z 处的矢量磁位为0d 4220=+=⎰lR z Il A πμ4-4 设矢量磁位的参考点在无穷远处,计算一段长为2米的直线电流I 在其中垂线上距线电流1米处的矢量磁位。
解 据76页例4-4,可得 ()()12210cos 1sin cos 1sin ln 4θθθθπμ--=I z e A ,其中,ο451=θ,ο1352=θ,则 1212ln 42212222122ln 400-+=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫⎝⎛+=πμπμI I zz e e A4-5 在空间,下列矢量函数哪些可能是磁感应强度哪些不是回答并说明理由。
1) Ar r e (球坐标系) 2) A x y y x ()e e +3) )(y x y x A e e - 4) Ar e α(球坐标系) 5) Ar e α(圆柱坐标系)解 1) 03)(132≠==∇•A A r rr ∂∂A 2) 0 ==++∇•z A y A x A zy x ∂∂∂∂∂∂A 3) 01-1 ===++∇•z A y A x A zy x ∂∂∂∂∂∂A 4) 0sin 1)sin (sin 1)(122=++=∇•∂α∂θθ∂θ∂θ∂∂αθA r A r A r rr r A 5) 01)(1=++=∇•zA A r rA r r zr ∂∂∂α∂∂∂αA 由于0=⋅∇B ,因此以上表达式中,1)不是磁感应强度表达式,而2)~5)可能是磁感应强度表达式。
4-6 相距为d 的平行无限大平面电流,两平面分别在z d =-/2和z d =/2平行于xy 平面。
面电流密度分别为K x e 和K y e ,求由两无限大平面分割出的三个空间区域的磁感应强度。
解 如图建立坐标系,并作平行于xz 平面的闭合回线1l ,据安培环路定律,可得2K H x =和平行于yz 平面的闭合回线2l ,可得 2KH y =考虑坐标系,及H B μ=可得当2dz -<,y x K K e e B 2200μμ+-=;当22d z d <<-,y x K K e e B 2200μμ--=;当2dz -<,y x K K e e B 2200μμ+=;4-7 求厚度为d ,中心在原点,沿yz 平面平行放置,体电流密度为z J e 0的无穷大导电板产生的磁感应强度。
解 如图4-6建立坐标系,当2dx ≤,作闭合回线1l ,据安培环路定律,可得x J B 00μ=,当2dx >,作闭合回线2l ,据安培环路定律,可得200dJ B μ=,因此,可得⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=222222000000d x d J d x d x J d x dJ yyy e e e B μμμ4-8 如图4-7所示,同轴电缆通以电流I 。
求各处的磁感应强度。
解 作半径为r 的闭合回线,据安培环路定律,可得 012101222323223232220Irr R R IR r R r I R r R r R r R R r R αααμπμπμπ⎧-≤⎪⎪⎪<≤⎪=⎨⎪-<≤⎪-⎪⎪>⎩e e B e4-9 如图4-8所示,两无穷长平行圆柱面之间均匀分布着密度为J 的体电流。
求小圆柱面内空洞中的磁感应强度。
解 设小圆柱面内空洞中的任意点p 至大、小圆柱面的轴心距离分别为1r 、2r ,当空洞内也充满体电流时,可得p 点的磁感应强度为11012e B Jr μ=,空洞内的体电流密度在p 点产生的磁感应强度为22022e B Jr μ=()x d J r r Je e e B B B 2202211021μμ=-=+=4-10 内半径为R 1,外半径为R 2,厚度为h ,磁导率为μ(μμ>>0)的圆环形铁芯,其上均匀紧密绕有N 匝线圈,如图4-9所示。
线圈中电流为I 。
求铁芯中的磁感应强度和磁通以及线圈的磁链。
解 在铁芯中作与铁芯圆环同轴半径为r 的闭合回线,据安培环路定律,可得铁芯中磁感应强度为 απμe B rIN20=相应的磁通为 1200ln 2d 221R R INh r h r IN R R πμπμφ==⎰磁链为 1220ln2R R h IN N πμφψ==4-11 在无限大磁媒质分界面上,有一无穷长直线电流 I ,如图4-10所示。
求两种媒质中的磁感应强度和磁场强度。
解 设z 轴与电流的方向一致,则据安培环路定律,可得 12H r H r I ππ+=, 据边界条件,可得 2211H H μμ=解以上两式,得 ()αμμπμe H rI2121+=,()αμμπμe H r I 2122+=,()αμμπμμe B B rI212121+==4-12 如图4-11所示,无穷大铁磁媒质表面上方有一对平行直导线,导线截面半径为R 。
求这对导线单位长度的电感。
解 根据教材97页例题4-12、4-13,可得平行长线a 、b 的单为长度内自感为 πμ40=i L对于外自感,如图4-12取镜象,a 、b 之间的外磁链可视为a 、b 和c 、d 中的电流分别作用后叠加,即RR ln ln 0011ππφψ≈==,22202202244ln 24ln 2hh d I h h d I +=+==πμπμφψ 外磁链为 2220222002144ln 44ln ln h h d R d I h h d I R d I +⋅=++=+=πμπμπμψψψ 外自感为 222044ln h h d R d I L o +⋅==πμψ因此,自感为2220044ln 4hh d R d L L L o i +⋅+=+=πμπμ4-13 如图4-13所示,若在圆环轴线上放置一无穷长单匝导线,求导线与圆环线圈之间的互感。
若导线不是无穷长,而是沿轴线穿过圆环后,绕到圆环外闭合,互感有何变化若导线不沿轴线而是从任意点处穿过圆环后绕到圆环外闭合,互感有何变化解 设长直导线中有电流I ,则在铁芯线圈中产生的磁通和磁链分别为120ln 2R R Ih πμφ=,120ln 2R R NIh N πμφψ==因此,两线圈之间的互感为 120ln 2R R Nh I M πμψ==根据诺以曼公式,可知两线圈之间的互感也可视为铁芯线圈中的电流产生被直导线所链绕的磁通与电流的比值,则题设后两种情况中,直导线链绕的磁通没有发生变化,因此互感也不变。
4-14 如图4-14所示,内半径为R 1,外半径为R 2,厚度为h ,磁导率为μ(μμ>>0)的圆环形铁芯,其上均匀紧密绕有N 匝线圈。
求此线圈的自感。
若将铁芯切割掉一小段,形成空气隙,空气隙对应的圆心角度为∆α,求线圈的自感。
解 当线圈中有电流I 时,设铁芯中的磁场强度为H 、气隙中为0H ,据安培环路定律,可得 ()NI r H r =⋅⋅∆⋅+∆-ααπ02H据边界条件,可得 00H H μμ=,代入上式,得()()[]αμαπμμαμμαπ∆+∆-=⎥⎦⎤⎢⎣⎡∆⋅+∆-=22000r NIr NIH相应的磁通为 ()[]αμαπμμμμ∆+∆-==200r NIH B则铁芯及气隙中的磁通为 ()[]1200ln 2d 21R Rr NhI r h B R R αμαπμμμφ∆+∆-==⎰线圈所链绕的磁通为 ()[]12020ln 2R Rr hI N N αμαπμμμφψ∆+∆-==则电感为 ()[]12020ln 2R R r h N I L αμαπμμμψ∆+∆-==4-15 分别求如图4-15所示,两种情况中两回路之间的互感。
解 (a )如图建立坐标系,对于三角形部分,可得x bdy 2=长直导线中的电流I 在三角形线圈中产生的磁感应强度为()x a I B +=πμ20,则磁通为⎪⎭⎫ ⎝⎛+-=+=⎰a b a a b b Id xxa xb Id b ln 2d 2000πμπμφ互感为 ⎪⎭⎫⎝⎛+-===a b a a b b d I I M ln 20πμφψ(b )如图建立坐标系,对于三角形部分,可得()b x bdy --=2 长直导线中的电流I 在三角形线圈中产生的磁感应强度为 ()x a IB +=πμ20,则磁通为 ()⎪⎭⎫⎝⎛-++=+--=⎰b a b a b a b Id x x a b x b Id b ln 2d 2000πμπμφ互感为 ()⎪⎭⎫⎝⎛-++===b a b a b a b d I I M ln20πμφψ4-16 试证明真空中以速度v 运动的点电荷所产生的磁场强度和电位移矢量之间关系为H v D =⨯ 。