八年级数学上册第11章数的开方复习1教案新版华东师大版
八年级数学上册第11章数的开方11-2实数第1课时实数及其性质教案新版华东师大版

11.2实数及其性质【教学目标】知识目标:了解无理数、实数的概念和实数的分类.能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程.通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力.情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系.【重点难点】重点:了解无理数、实数的概念和实数的分类.难点:正确理解无理数的意义.【教学过程】一、【情境导入营造氛围】在小学的时候,我们就认识一个非常特殊的数:圆周率π.它约等于3.14,你还能说出它后面的数字吗?比一比,看谁记住的最多.教师简介目前π值已准确算到上千亿位.二、【检索旧知揭示矛盾】π是一个怎样的数呢?引导学生回忆有理数的分类:有理数π肯定不是整数,那么它是一个分数吗?让学生用计算器将下列有理数化成小数形式:=, -=,= 引导学生发现:任何一个有理数写成小数的形式,必定是有限小数或者无限循环小数.形成共识:π不是一个有理数.三、【实践体验感受新知】还有哪些数和π一样是无限不循环小数呢?动手操作:让学生用课前准备的计算器动手求的值,再利用平方关系验算所得的结果.关注:“你发现了什么?”学生分析议论并发表个人见解,教师给出评议后再用计算机演示计算的情形,以增强学生对“是一个无限不循环小数”的信服度.学生认识了个别无理数之后建立一般概念:无限不循环小数叫做无理数.引入无理数的概念后再回到具体的个别情形去,让学生再举例一些无理数.无理数的出现,使数系在有理数的基础上进一步扩展到实数:有理数与无理数统称为实数. 分数 如:…问:你能说出实数的分类吗?四、【练习反馈调整巩固】1.把下列各数分别填入相应的数集里. -π,-,,,0.324371, 0.5, -, , 4, -,,0.8080080008…实数集﹛…﹜无理数集﹛…﹜有理数集﹛…﹜分数集﹛…﹜负无理数集﹛…﹜2.下列各说法正确吗?请说明理由.⑴3.14是无理数;⑵无限小数都是无理数;⑶无理数都是无限小数;⑷带根号的数都是无理数;⑸无理数都是开方开不尽的数;⑹不循环小数都是无理数.五、【归纳小结】以由学生回答,教师适时补充的方式,引导学生从以下方面进行小结:1.无理数、实数的意义;2.有理数与无理数的区别;.六、板书设计:说明:本课是在学生学习了有理数及平方根、立方根以后,接触过“”、“π”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数.数学教学是数学活动的教学,学生是数学学习的主人.在数学活动中如何体现学生的主体地位、关注他们的情感体验,是本案教学措施设计的追求.针对本节课概念性强、例题不多的特点,结合八年级学生思维较活跃,但抽象思维能力还比较薄弱的心理特征,本节课主要采用了引导发现的体验教学法.在学生已有知识经验的基础上创设教学情境,重视学生的实践操作和现代信息工具的运用,教师在教学中引导学生去发现“有理数都是有限小数或无限循环小数”、“是无限不循环小数”、“边长为1的正方形对角线长为”的数学事实,体验无理数的存在与数系扩展的必要.无理数概念的引入,遵循了“特殊”→“一般”→“特殊”的认知规律,在经历数系扩展的过程中实现知识的建构,渗透“数形结合”的思想.在教学中向学生提供充分从事数学活动的机会,在观察、对比、发现、讨论、探索、归纳的过程中自始至终贯穿着思维的训练.通过小组互相讨论,在合作学习中学会交流.。
八年级数学上册第11章数的开方教案1新版华东师大版word版本

教学反思
必须手写,是检查备课的重要依据。
数的开方
教学目标
知识与技能
通过对试题讲评,应该使 学生进一步理解和掌握知识,更好的利用知识解决问题,提高能力。
过程与方法
查阅试卷,发现问题,提出问题,研究讨 论,解决问题,提高能力。
情感态度与价值观
培养学生良好的学 习品质。
教学重点
试卷中存在的问题。
教学难点
认识错误,正确改正,逐步提高。
教学内容Байду номын сангаас过程
教法学法设计
一.你对本章数的开方知识掌握的如何?请自己 估算一下自己的分数。
二.本节课 我们一起来研究我们的单元考试题。
面向全体学生提出相关的问题。明确要研究,探索的问题是什么,明确本节课的具体任务。.
三.学生查阅试卷
四.从中发现问题.
五.学生提出问题.
六 .师生研究分析问题.共 同解决问题.
七.预习下一课的内容.
华师大版八年级上数学复习课件第11章数的开方

华师大版八年级上数学复习课件第11章数的开方一、教学内容本节课我们将复习华师大版八年级上数学第11章“数的开方”。
具体内容包括:理解平方根、立方根的概念,掌握数的开方运算,应用平方根、立方根解决实际问题,以及运用二次根式的性质进行化简。
二、教学目标1. 让学生熟练掌握平方根、立方根的定义和性质,能够准确进行数的开方运算。
2. 培养学生运用平方根、立方根解决实际问题的能力,提高数学应用意识。
3. 使学生能够运用二次根式的性质进行化简,培养逻辑思维和推理能力。
三、教学难点与重点重点:平方根、立方根的定义和性质,数的开方运算,二次根式的化简。
难点:理解平方根、立方根的概念,以及运用二次根式的性质进行化简。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:学生用计算器、练习本、笔。
五、教学过程1. 实践情景引入通过一个简单的几何问题引入平方根:一个正方形的面积是25平方厘米,求这个正方形的边长。
2. 例题讲解讲解平方根、立方根的定义和性质,通过例题演示如何进行数的开方运算。
3. 随堂练习让学生完成书上第11章的相关练习题,巩固数的开方运算。
4. 应用拓展出示一些实际问题,让学生运用平方根、立方根进行解答。
5. 知识点讲解讲解二次根式的性质,并进行化简例题的演示。
6. 课堂小结六、板书设计1. 第11章数的开方2. 主要内容:平方根的定义和性质立方根的定义和性质数的开方运算二次根式的化简七、作业设计1. 作业题目:(2) 应用题:一个长方体的体积是216立方厘米,求它的长、宽、高。
2. 答案:(1) 平方根:3,8,立方根:3,2。
(2) 长、宽、高分别为6厘米、6厘米、3厘米。
(3) √18=3√2,√75=5√3,√12=2√3。
八、课后反思及拓展延伸1. 课后反思:通过本节课的学习,学生是否掌握了平方根、立方根的定义和性质,以及数的开方运算和二次根式的化简。
2. 拓展延伸:鼓励学生课后探索平方根、立方根在生活中的应用,提高数学应用能力。
华师大版八年级上数学复习课件第11章数的开方

华师大版八年级上数学复习课件第11章数的开方一、教学内容二、教学目标1. 理解并掌握算术平方根、平方根和立方根的概念及性质,能够运用它们解决实际问题。
2. 学会使用数轴表示实数,理解实数与数轴之间的联系。
3. 能够运用数的开方解决一些简单的数学问题,提高数学思维能力。
三、教学难点与重点难点:平方根和立方根的性质,实数与数轴的关系。
重点:算术平方根、平方根和立方根的定义和性质,实数在数轴上的表示。
四、教具与学具准备1. 教具:PPT课件,数轴模型,平方根和立方根的示例卡片。
2. 学具:练习本,铅笔,橡皮。
五、教学过程1. 实践情景引入:通过实际例子(如平方土地面积、立方体体积等)引出数的开方,激发学生兴趣。
2. 知识讲解:(1) 算术平方根的定义、性质和应用;(2) 平方根的定义、性质、求法以及与算术平方根的联系;(3) 立方根的定义、性质和应用;(4) 实数与数轴的关系,实数在数轴上的表示。
3. 例题讲解:讲解典型例题,如求某个数的平方根、立方根,实数在数轴上的表示等。
4. 随堂练习:让学生独立完成练习题,巩固所学知识。
六、板书设计1. 数的开方2. 知识点:(1) 算术平方根:定义、性质、应用;(2) 平方根:定义、性质、求法、与算术平方根的联系;(3) 立方根:定义、性质、应用;(4) 实数与数轴:关系、表示。
七、作业设计1. 作业题目:(1) 求下列数的平方根和立方根:9,64,1,27。
(3) 已知一个正数x的平方根为3,求x的立方根。
2. 答案:(1) 平方根:9的平方根为3;64的平方根为8;1没有平方根;27的平方根为3。
立方根:9的立方根为3;64的立方根为4;1的立方根为1;27的立方根为3。
(2) 在数轴上表示如下:3在数轴的左边,离原点3个单位;2在数轴的右边,离原点2个单位;5在数轴的右边,离原点5个单位。
(3) x=9,所以x的立方根为3。
八、课后反思及拓展延伸1. 反思:通过本节课的教学,学生对数的开方有了更深入的理解,但仍需加强练习,提高解题能力。
华师大版八年级数学第11章数的开方整章导学案

第11章数的开方导学方案第一课时主备人:焦长续授课人:学习目标:(1) 了解数的平方根的概念,会求某些非负数的平方根。
(2) 会用根号表示一个数的平方根。
学习重点:数的平方根的概念,会求某些非负数的平方根。
学习难点学习指导:一、自主学习:【导学提纲】1.我们已学过哪些数的运算?2.加法与减法这两种运算之间有什么关系?乘法与除法之间呢?3.什么是平方根?一个数的平方根如何表示呢?什么是算术平方根?什么叫开平方?4、一个数的平方根有什么特点?5、要剪出一块面积为25 cm2的正方形纸片,纸片的边长应是多少?【预习填空】★1、如果一个数的等于a,那么这个数叫做a的。
★2、一个正数必定有,它们互为,其中正数a的叫做a的算术平方根;0的平方根(有且只有个);负数;3、一个正数a的平方根记作(符号表示),其中是算术平方根,称为被开方数;4、求一个,叫做开平方,将一个正数开平方,关键是找出它的一个;5、练习:(1)∵()2=25 ∴正数25的平方根是,可表示为± =±5;(2)∵()2=0.09 ∴正数0.09的平方根是,可表示为 = ;(3)∵()2=16/25 ∴16/25的平方根是,可表示为 = ;(4)∵()2=0 ∴0的平方根是,可表示为 = ;(5) ∵负数,∴ -4 。
6、已知一个数的平方等于10000,那么这个数是 .二 ·合作交流1、填空(1) 144的平方根是 ; (2) 0的平方根是 ; (3)254的平方根是 ; (4) -4有没有平方根?为什么? 2、求下列各数的算术平方根。
(1)121 (2)214(3)64 (4)102;(5)0; 3、求下列各数的平方根:(1)81;(2)0.09;(3)1600;(4)49/25;(5)0.0256; 4、下列各数有平方根吗?如果有,写出它的平方根;如果没有,请说明理由. (1)-64; (2)0; (3)(-4)2三、展示点拨:如果我们知道了两个平方根中的一个,那么是否可以得到它的另一个平方根呢?为什么?知识回顾与小结1、平方根的性质:一个正数有 个平方根,它们互为 ;0有一个平方根,它是 ;负数没有 .2.一个非负数a 的平方根的表示法:当a >0时,a 的正的平方根用符号“2a ”表示,a 的负的平方根用符号“-2a ”表示,这两个平方根合起来可以记作“2a ”;其中a 叫做被开方数,2叫做根指数;根指数为2时,一般略去不写. 3.求一个数的平方根,可以通过平方运算来解决四、测评反馈:1、、下列说法正确的个数是( )①0.25的平方根是0.5;②-2是4的平方根;③只有正数才有平方根;④负数没有平方根.A .1B .2C .3D .42.求下列各数的平方根.0,19,17,2564,(-2)2,214,-16.3 ). A .±4 B .4 C .±2 D .2 4.求下列各数的算术平方根. (1)0.0025; (2)(-6)2; (3)0; (4)(-2)×(-8). 5.下列说法中错误的是( )A 是5的平方根B .-16是256的平方根C .-15是(-15)2的算术平方根 D .±27是449的平方根 数的开方 导学方案 第二课时主备人 :焦长续 授课人:学习目标:1、正确理解平方根的概念的意义和平方根的表示方法基础上,进一步掌握算术平方根的概念及其表示方法;2.对于a 表示的算术平方根中的a 的条件和a 的本身的意义作合理性的说明;学习重点:理解平方根的概念的意义学习难点理解平方根的概念的意义学习指导:一、自主学习:【导学提纲】根据下面问题,请勾画出重要内容,把问题写下来1.在(-5)2、-52、52中,哪些有平方根?平方根是多少?哪些没有平方根?为什么?2.求0.49的平方根的运算可记作_ ___=__ __;3.的正的平方根记作36131= ;正的平方根叫做它的 ;4. 正数a 的正的平方根叫做a 的 .记作 ,读作“a 的算术平方根”. 这里强调两点:(1)这里的a 不仅表示开平方运算,而且表示正值的根.(2)这里a 中有两个“正”字,即被开方数必须为正,算术平方根也是正的(0除外). 特别地,0的平方根也叫做0的算术平方根,因此0的算术平方根是0.即00 .从5. 说出平方根的概念和性质.二 ·展示提升1.下列各式中哪些有意义?哪些无意义?为什么?2.求下列各数的平方根和算术平方根:.;;;;;;0169144256101.040025.0121 3.求下列各式的值,并说明它们各表示的意义:4. 解方程 (1)x 2=4(2)25x 2=36. (3)5=x (4)(x-1)2=495、x 为何值时,下列各式有意义: ①x +5 ②x -三、合作交流:【问题1】9的平方根是 ,9的算术平方根是 , 39=表示的意义是什么? 【问题2】根据平方根的性质判断,若42-x 有意义,则x .(取值范围) 练习:1、当x 时, 12-x 有意义。
华师大版八年级上册《第11章-数的开方》复习课教案

《第11章数的开方》复习课教案四川省眉山市东坡区东坡中学严光霞教学目标(核心素养):知识与技能:1、了解平方根、立方根的概念,会用平方运算求某些非负数的平方根、算术平方根;会用立方运算求某些数的立方根。
2、了解无理数和实数的概念,知道实数与数轴上的点一一对应。
3、会进行实数大小比较与运算,能估算无理数。
过程与方法:1、通过引导学生梳理本章知识,让学生建构本章的知识体系。
2、通过考点分析,错例剖析,培养学生观察、分析、比较和运用知识综合解决问题的能力,渗透分类、数形结合等数学思想和方法。
情感态度与价值观:通过复习课的教学,培养学生动脑、动手的良好习惯和勇于克服困难探索知识的信心和勇气。
教学重点:平方根、立方根的概念及性质的运用及实数的概念与运算,形成本章的知识体系。
教学难点:概念解析及解题思想方法的点拨。
教学过程:一、知识引领:(一)教师引导学生理清本章的知识脉络。
学段:小学初一初二初三、高中数:正数和0 有理数实数……运算:加、减、乘、除乘方开方……(二)教师引导学生回顾本章知识要点:知识要点:1、平方根与立方根:,其中a0。
= =、实数:(1)无理数: 叫无理数。
常见形式: 。
223.14157π-、这5个实数中,无理数有 。
(2)实数: 和 统称实数。
(31 实数2 实数3、 与数轴上的点一一对应。
4、有理数的相关概念与性质及运算在实数范围内仍然适用。
设计意图:通过教师引导学生回顾本章节知识要点,让学生理清本节的知识脉络,对知识加深理解。
二、考点分析:(一)求平方根与立方根例1、(1)9的平方根是 ,算术平方根是 , 278-的立方根是 。
(2)327-= ,()72--= 。
(3)()52-的平方根是 ,16的平方根是 ,±64的立方根是 。
例2、已知2a-1的平方根是±3,3a+b-1的立方根是2,则 a+2b= 。
(二)a 的非负性的运用()=+=++-+-z x ,z y x 、y 求若例033132。
华东师大数学八上《第11章 数的开方小结与复习教案 (新版)华东师大版

第11章数的开方
教学目标
1、进一步巩固实数的开方的有关概念.
2、进一步巩固实数的运算法则和运算定律.
3.进一步巩固用估算方法来比较两数的大小,利用结算方法求无理数的范围. 教学过程
2.用计算器求下列各式的值:
-56169 0.0006705 3
-4839
3
418.9
3.一个圆柱的体积是10m3,且底面圆的直径与圆柱的高相等,求这个圆柱的底面半径(∏取3.14,结果保留2个有效数字).
二、复习估算法
问题l:你在生活中使用过估算的方法吗?举例说明.
问题2:你能比较下列各组里两个实数的大小吗?
(1)-∏,-3.1415926 (2)29 ,54
13
问题3:你能计算:∏+10 -1-2 3 (结果精确到0.01)吗?
三、复习实数的有关概念
问题l:什么叫做无理数?什么叫做实数?
(无限不循环小数叫无理数;有理数和无理数统称为实数) 问题2:实数可以怎样分类?
1.按正负数分类,实数可以分为正实数、负实数、0;
2.按有理数、无理数分类.
问题3:你能在数轴上找到表示 2 的点吗?
问题4:无理数与数轴上的点一一对应吗?
问题5:有理数与数轴上的点一一对应吗?
问题6:实数与数轴上的点一一对应吗?
练习:P22页复习题5、6.
五、知识结构图
本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。
内容由一线名师原创,立意新,图片精,是非常强的一手资料。
八年级上册数学教案华东师大版

八年级上册数学教案华东师大版数学教案是数学教师和学生在课堂上的一系列行为方案。
下面是小编为大家精心整理的八年级上册数学教案华东师大版,仅供参考。
八年级上册数学教案华东师大版范文第11章数的开方平方根(1)教学目标1,了解数的平方根的概念,会求某些非负数的平方根。
2,会用根号表示一个数的平方根、教学过程一、复习引入1、我们已学过哪些数的运算?(加、减、乘、除、乘方5种)2、加法与减法这两种运算之间有什么关系?乘法与除法之间呢?(均为互逆运算)3、一个正方形的边长是5米,它的面积是多少?其运算是什么运算? (面积25平方米,运算是乘方运算)二、创设问题情境,解决问题1、请同学们欣赏本章导图,如果要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?这个问题实质上就是要找一个数,这个数的平方等于25、2.提出问题,探索解决问题的办法、(1)平方根的概念;如果一个数的平方等于a,那么这个数叫做a的平方根、问:有了这个规定以后,a是什么数?让学生思考、交流后回答:a是非负数、(2)在上述问题中,因为52=25,所以5是25的一个平方根、问:25的平方根只有一个吗?还有没有别的数的平方也等于25?(因为(-5)2=52=25,所以-5也是25的一个平方根)从上述解决问题过程中,你能总结一下求一个数的平方根的方法吗? (根据平方根的意义,可以利用平方来检验或寻找一个数的平方根)三、范例例1、求100的平方根、提问:(1)你能仿照上述问题解决的方法,求出100的平方根吗? 让学生讨论、交流后回答。
(2)你能正确书写解题过程吗?请一位同学口述,教师板书。
(3)l0和-l0用〒10表示可以吗?试一试(1)144的平方根是什么?(2)0的平方根是什么?(3)4的平方根是什么? 25(4)0.81的平方根是什么?(5)-4有没有平方根?为什么?请你自己也编三道求平方根的题目,并给出解答、总结四、课堂练习说出下列各数的平方根:1、642、0.253、五、小结1、一个正数如果有平方根,那么有几个,它们之间关系如何?2、如果我们知道了两个平方根中的一个,那么是否可以得到它的另一个平方根?为什么?3、0的平方根有几个?是什么数?4、负数有平方根吗?为什么?六、作业习题12.1第1题、教学后记八年级数学工作计划一、指导思想抓好常规教学,坚持以教学为中心,把质量当根本,正确处理传授知识与培养能力的关系,因材施教,注重培养学生的数学素养,动手操作和探究创新的精神,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的开方
课题名称 第11章 数的开方 复习课一 基础知识
三维目标
1.进一步理解一个数的平方根、算术平方根及立方根的意义;
2.理解无理数和实数的意义;
3.熟练地求出一个正数的平方根、算术平方根和实数的立方根;
4.会对实数分类以及进行实数的近似计算.
重点目标
平方根、算术平方根、实数的概念及其计算.
难点目标 算术平方根、实数的综合运算和代数与几何的综合运用
导入示标
知识归纳 1、平方根
(1)平方根的定义:如果一个数的平方等于a ,这个数就叫做a 的平方根。
a 的平方根记作: 或 。
求一个数a 的平方根的运算叫做开平方. (2)平方根的性质
①一个正数有 个平方根,它们互为相反数 ②0有 个平方根,它是 。
③负数 平方根。
(3)平方和开平方互为逆运算; 2、算术平方根
(1)算数平方根的定义:
一个非负数a 的平方根用符号表示为:“ ”,读作:“ ”,其中 叫做被开方数 (2)算术平方根的性质
①正数a 的算术平方根是 ; ②0的算术平方根是 ; ③负数 算术平方根 (3)重要性质:
3、立方根 (1)立方根的定义
如果一个数的立方等于a ,那么这个数叫做a 的 (也叫 )。
如果x 3
=a ,则 叫做 的立方根。
记
=
2a ()
=
2
a (a ≥0)
作: ,读作“ ” 。
求一个数的立方根的运算叫做 。
(2)立方根的性质
①一个正数的立方根是 ; ②一个负数的立方根是 ; ③0的立方根是 。
(3)重要性质: 4、实数基础知识
(1).无理数的定义: 叫做无理数
(2).有理数与无理数的区别: 有理数总可以用 或 表示;反过来,任何 或 也都是有理数。
而无理数是 小数,有理数和无理数区别之根本是有限及无限循环和无限不循环。
(3).常见的无理数类型
○
1一般的无限不循环小数,如:1.41421356¨··· ○
2看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。
○
3有特定意义的数,如:π=3.14159265··· ○
4.开方开不尽的数。
如35,3 (4) 实数概念:________和________统称为实数。
(5)分类
_______ ________ _______
________ _ __ 有限小数或___ ___小数
_______ 实数 ________
_______
_________
________ 无限不循环小数
_________
(6)、实数的有关性质
⑴若a 与b 互为相反数则ab=
=
-3
a
⑵若a 与b 互为倒数则ab=
⑶任何实数的绝对值都是非负数,即a ⑷互为相反数的两个数的绝对值相等, 即a =
⑸正数的倒数是 数负数的倒数是 数零 倒数.实数和数轴上的点的对应关系:实数和数轴上的点是 关系
(6).正数大于零,零大于负数,正数大于一切负数,两个负数比较,绝对值大的 。
一般情况下,非负数有三种形式,即a ≥0 ;2
a ≥0;a ≥0
目标三导
学做思一:
例1、x 为何值时,下列代数式有意义。
(1) (2) (3)
(4) (5) (6)
学做思二: 例2.计算:
(1)256 (2)44.1- (3)2
32⎪⎭
⎫
⎝
⎛
±
(4)410± (5)3125
.016
13
23
)8
71(-
(6)2
-+---)5
4(1)6()3
1(2
2
学做思三: 例4、解方程:
(1)942
=x (2)()112
=+x (3)
()049
121352=--x .
(4)(x3)3
=27 (5)8)12(3
-=-x (6)64(x1)3
125=0
x 23+x x -+-223
2+x 131
-x 1
1
-+x x 2
)1(--x
例5.有一个边长为11cm 的正方形和一个长为13cm ,宽为8cm 的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm 。
例6、已知2a1的算术平方根是3,3ab1的平方根是±4 ,求a2b 的平方根。
达标检测
1、求下列各数的平方根和算术平方根: (1)
4
25 (2)()2
4- (3)()()82-⋅-.
2、(1)25
16
± (2)01.0
反思总结
1. 知识建构:见导入示标
2.能力提高
3.课堂体验
课后练习
书A 组2、3、4。