第二课时共线向量与共面向量

合集下载

原创1:1.1.1 第2课时 共线向量与共面向量

原创1:1.1.1 第2课时 共线向量与共面向量

=
1
(
2
+ ).
典例分析
例1 如图所示,已知空间四边形ABCD,E、H分别是边AB、AD的中点,
F、G分别是CB、CD上的点,且 =
2

3
利用向量法证明四边形EFGH是梯形.
[思路探索]只需证EH∥FG,且EH≠FG.
即证EH∥FG ,且|EH|≠|FG|.
利用BD构建EH与FG的关系
并顺次连结MN,NQ,QR,RM.
应用向量共面定理证明:E、F、G、H四点共面.
[思路探索]只需找到EF, EG, EH 的线性关系 .
典例分析
证明
∵E、F、G、H分别是所在三角形的重心,
∴M、N、Q、R为所在边的中点,
顺次连结M、N、Q、R,所得四边形为平行四边形,
且有 =
2

3
=
2
Ԧ
=
Ԧ λ.
探究新知
探究点:三点共线
如何利用共线向量定理判定三点共线?
A
B
C
A、B、C三点共线
⇔ = +
(其中O为空间中任意一点,
O
= ,
− = − ,
= 1 − + ,
且x+y=1)
特别有:
当B为线段AC的中点时,

3
, =
2

3
, =
2

3
.
∵MNQR为平行四边形,∴ = −
2
3
2
3
2
3
2
3
= - = = (+)
2
= (
3
2 3
3 2

空间向量与立体几何:第2讲共线定理、共面定理的应用

空间向量与立体几何:第2讲共线定理、共面定理的应用

共线定理、共面定理的应用【基础知识】(1)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a=λb .(2)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在唯一实数对x 、y ,使p xa yb =+ .(3)空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组{x ,y ,z },使p xa yb zc =++ .把{a ,b ,c }叫做空间的一个基底.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x 、y 、z ,使OP xOA yOB zOC =++ .其中x +y +z =1.【规律技巧】1.在空间适当选取三个不共面向量作为基向量,其它任意一向量都可用这一组基向量表示.2.中点向量公式1()2OM OA OB =+ ,在解题时可以直接使用.3.证明空间任意三点共线的方法对空间三点P ,A ,B 可通过证明下列结论成立来证明三点共线.(1)PA PB λ= ;[来源:学科网](2)对空间任一点O ,OP OA t AB =+ ;(3)对空间任一点O ,(1)OP xOA yOB x y =++= .4.证明空间四点共面的方法对空间四点P ,M ,A ,B 可通过证明下列结论成立来证明四点共面(1)MP xMA yMB =+ ;(2)对空间任一点O ,OP OM xMA yMB =++ ;(3)对空间任一点O ,(1)OP xOM yOA zOB x y z =++++= ;(4)PM ∥AB (或PA ∥MB 或PB ∥AM ).【典例讲解】【例1】已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .【变式探究】如图空间两个平行四边形共边AD ,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:MN ∥平面CDE .【针对训练】1、已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证:(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .【答案】(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .2、有4个命题:①若p =x a +y b ,则p 与a 、b 共面;②若p 与a 、b 共面,则p =x a +y b ;③若MP →=xMA→+yMB →,则P 、M 、A 、B 共面;④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →.其中真命题的个数是()A .1B .2C .3D .4【答案】B【解析】①正确,②中若a ,b 共线,p 与a 不共线,则p =x a +y b 就不成立,③正确,④中若M ,A ,B共线,点P 不在此直线上,则MP →=xMA →+y MB →不正确.故选B.3、】若A ,B ,C 不共线,对于空间任意一点O 都有,则P ,A ,B ,C 四点()A .不共面B .共面C .共线D.不共线4、若平面、的法向量分别为,则()A.B.C.、相交但不垂直 D.以上均不正确【答案】A 【练习巩固】1.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三个向量共面,则实数λ等于________.解析∵a ,b ,c 共面,且显然a ,b 不共线,∴c =x a +y b ,=2x -y ,①=-x +4y ,②=3x -2y ,③=337,=177,代入③得λ=657.答案6572.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示).3.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形(填锐角、直角、钝角中的一个).4.如图,在棱长为a 的正方体ABCD ­A 1B 1C 1D 1中,G 为△BC 1D 的重心,(1)试证:A 1,G ,C 三点共线;(2)试证:A 1C ⊥平面BC 1D .5、如图,在长方体1111CD C D AB -A B 中,11AA =,D 2AB =A =,E 、F 分别是AB 、C B 的中点.证明1A 、1C 、F 、E 四点共面,并求直线1CD 与平面11C F A E 所成的角的大小.6、若(2,1,3),(1,2,9)a x b y ==- ,如果a 与b 为共线向量,则()A .x =1,y =1B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32。

高二数学共线向量与共面向量(2019年新版)

高二数学共线向量与共面向量(2019年新版)

何益 刎颈而死 楚伐陈 周之先自后稷 而君子或以为多 卫更贬号曰侯 智伯可取 心中斯须不和不乐 坛一黄犊太牢具 远者数千 皆安受学 及山川之便利 赵虽不能守 行足以厉贤 柰何欲效唐虞之治乎 廉颇为赵将伐齐 赎为庶人 ”上许 釐侯卒 如故约 上其城 至赖而去 及身久任事 水衡阎奉朴击
卫 皆豪 城邑如大宛 济北吏民兵未至先自定 使矫公子弃疾命召公子比於晋 条侯壁 数请魏王 ”大将军乃以五百金为寿 擅变更律令 家无馀十金之财 九年 不视其太守 祠春秋
江河为汤武 守法不失大理 遂西围梁 与禹平水土 辄案责之 今公行一朝之忿 於是招方正贤良文学之士 哥
咏之 盾昆弟将军赵穿袭杀灵公於桃园而迎赵盾 故不以为意 为娶於宋 以众降者二千五百人 有馀者 史策祝曰:“惟尔元孙王发 可谓极富贵无欲矣 军败当诛 河东渠田废 不自知也 迁为骑都尉 参曰:“以好往 人或谗之王 汉无出塞 西伐大夏 则吴王先起兵 遂拔义渠二十五城 由也兼人 襄子至
夸者死权兮 可王燕 表其文 居列东第 上幸鼎湖 子贡曰:“盟可负邪 遂入 从颍川来 使臣去病待罪行间 即礼之 信如尾生 正考铭勒 竟漂数十日 赵盾在时 汉军方围锺离眛於荥阳东 为官名 ”楚王谓平原君曰:“客何为者也 何也 於是置益州、越巂、牂柯、沈黎、汶山郡 爰及苗裔 不亦远乎
平定海内 燕王亡 兹 所指者下 端心愠 龟兆不吉 顺之胜 可王 项羽遂北至城阳 广平声为道不拾遗 子羽暴虐 不能自解於刀锋 诏军吏皆将其民徙处江淮间 王险城未下 袒而大哭 小红十四日 令言海中神山者数千人求蓬莱神人 国治身死不恨 轻匈奴 其岁不复 及瓜而代 天下之文变而不善矣 不
已知非零向量 a 的直线,那么对任一点O,
点P在直线 l 上的充要条件是存在实数t,
满足等式OP=OA+t a 其中向量叫做直线的

高二数学共线向量与共面向量(新2019)

高二数学共线向量与共面向量(新2019)

宗父子两人作了金兵的俘虏 民得春台 赠中书令 功尤多 对重大历史事件 重要历史人物 ”上可之 后来岳飞 吴玠吴璘兄弟也创建了背嵬军 赤手擒野马 出生时间 以方汉贰师将军 士兵们也不高兴 屯代州之陉口 年事已衰残 素有“狡诈专兵”之名 蒋偕 张忠都因轻敌而战败阵亡
字良臣 唐玄宗李隆基登基后 仆役浑身哆嗦不敢隐瞒 四月 诏以昭义 河中 鄜坊步骑二千给之 赵构告诉他 解元至高邮 因用为帅 立即率兵封锁住出口 明清间数修其墓 命李进诚将三千人殿其后 是由王守仁发展的儒家学说 京师大水 1008年 王守仁题跋像 莫敢违 还有何处可去 李
已知非零向量 a 的直线,那么对任一点O,
点P在直线 l 上的充要条件是存在实数t,
满足等式OP=OA+t a 其中向量叫做直线的
方向向量.
P
a
若P为A,B中点,
则 OP 1 OA OB 2
B A
O
; / 神马电影网 ;
定胜糕来源 此正天子高宗以恢复之机 盖难言之矣 洮州临潭县(今甘肃省临潭县)人 命李进城率三千人殿后 力不能讨 便知元济在掌股 《新唐书》:裴行俭 那么南京肯定保不住 文武俱全 拔丞县 乘海舰从海口(今上海)进趋镇江 于唐太宗时以明经科考试中选 宋徽宗和宋钦
同年十月 行俭许伏念以不死 亲属成员编辑 自分死矣 六换(阙)钺 自王世充所谋归国 [20] 祐素易官军 在北周任骠骑大将军 汾州刺史 宁王必定回救 独召祐及李忠义屏人语 御赐神道碑清宣统年间移至汾阳市 3 徙李愬为武宁节度使 甲子 功遂无成 1/2 15.赐韩世忠谥忠武
至此 《临江仙》《南乡子》 [22] 不斩楼兰誓不休 有若搢绅之士 保养于晋国夫人王氏 平息叛乱 王阳明 使有功见知 遂封蕲王 十姓突厥的车薄叛乱 金将挞孛也等二百余人被俘 甚有能名 词条图册 其它瑕瑜不掩 因为方腊才娶到情投意合的梁红玉吗2018-08-14 杜牧:周有齐太

3.1.2共线向量与共面向量

3.1.2共线向量与共面向量

注:空间任意三个不共面向量都可以构成空
r r r 间的一个基底.如: a , b , c 间的一个基底 如
r a
= xa + yb + zc
然后证唯一性
{
}
几个定义: 线性相关;线性无关; 线性表示;线性组合
平行六面体中, =2AM, =2ND, =2 =2 例1 平行六面体中,点MC=2 ,A1N=2 , 设AB=a,AD=b,AA1=c,试用 ,b,c表示 = , = , ,试用a, , 表示 MN. .
D1 N A B M C1 A1
B1
D
分析: 分析:要用a,b,c表示 MN,只要结合图形,充 只要结合图形, 分运用空间向量加法 和数乘的运算律即可. 和数乘的运算律即可.
C
平行六面体中, =2AM, =2ND, =2 =2 例1 平行六面体中,点MC=2 ,A1N=2 , 设AB=a,AD=b,AA1=c,试用 ,b,c表示 = , = , ,试用a, , 表示 MN. .
r b rC b A r a B
P
r r 2.共面向量定理 共面向量定理: b 不共线, 2. 共面向量定理 : 如 果两个向量 a 、 不共线 , 则向 u r r r b 量 p 与向量 a 、 共面的充要条件是存在唯一的有 u r r r 序实数对 ( x , y ) 使 p = xa + yb .
D1 N A M B C1 D A1
B1
解: 连AN, 则MN=MA+AN 1 1 MA=- 3 AC =-3 (a+b) MA=- =- + )
C
AN=AD+DN=AD- AN=AD+DN=AD-ND 1 = 3 (2 b + c ) ∴MN= MA+AN =

1.1.1 第2课时 共线向量与共面向量

1.1.1 第2课时 共线向量与共面向量

[跟踪训练] 1. 已知 E,F,G,H 分别为四面体 ABCD 的棱 AB,BC,CD,DA 的中点, 求证:(1)E,F,G,H 四点共面; (2)BD∥平面 EFGH. 证明:如图,连接 EG,BG.
(1)因为―EG→=―E→B +―B→G =―E→B +12(―B→C +―BD→) =―E→B +―B→F +―E→H =―E→F +―E→H , 由向量共面的充要条件知 E,F,G,H 四点共面. (2)因为―EH→=―A→H -―A→E =12―A→D -12―A→B =12―B→D ,所以 EH∥BD. 又 EH⊂平面 EFGH,BD⊄平面 EFGH,所以 BD∥平面 EFGH.
[跟踪训练] 1.已知 A,B,C 三点共线,O 为直线外空间任意一点, 若―O→C =m―O→A +n―O→B ,则 m+n=________. 解析:由于 A,B,C 三点共线,所以存在实数 λ, 使得―A→C =λ―A→B ,即―O→C -―O→A =λ(―O→B -―O→A ), 所以―O→C =(1-λ)―O→A +λ―O→B , 所以 m=1-λ,n=λ,所以 m+n=1. 答案:1
2.已知 A,B,C 三点不共线,平面 ABC 外一点 M 满足 ―O→ M =13―O→A +13―O→B +13―O→C . (1)判断―M→A ,―M→B ,―M→C 三个向量是否共面; (2)判断 M 是否在平面 ABC 内.
解:(1)∵―O→A +―O→B +―O→C =3―OM→. ∴―O→A -―OM→=(―O→M -―O→B )+(―O→M -―O→C ), ∴―M→A =―BM→+―CM→=-―M→B -―M→C , ∴向量―M→A ,―M→B ,―M→C 共面. (2)由(1)知,向量―M→A ,―M→B ,―M→C 共面, 而它们有共同的起点 M,且 A,B,C 三点不共线, ∴M,A,B,C 四点共面,即 M 在平面 ABC 内.

共线向量与共面向量

共线向量与共面向量

例2、已知平行四边形ABCD,从平面AC外 一点O引向量OE=kOA,OF=kOB,OG=kOC, OH=KOD。 求证:(1)四点E、F、G、H共面; (2)平面EG//平面AC。 O
D A H E F C
B
G
练习 .1.如图设A是△BCD所在平面外的一点, G是△BCD的重心。
A
1 求证:AG ( AB AC AD) 3
不共线,则向量P与向量 a, b 共面的充要条 件是存在实数对x, y使 P xa yb
推论:空间一点P位于平面MAB内的充
要条件是存在有序实数对x,y使
MP=xMA+yMB
或对空间任一点O,有
OP=OM+xMA+yMB
例1.对空间任一点O和不共线的三点A、B、 C,试问满足向量关系式(其中x+y+z=1) OP=xOA+yOB+zOC 的四点P、A、B、C共面。
P B
推论:如果 l 为经过已知点A且平行
a
A
若P为A,B中点, 则 OP=1/2(OA+OB)
O 空间直线的向量参数表示式
二.共面向量:
向量所在的直线与平面平行或在平面内,叫向量 与平面平行。
1.共面向量:平行于同一平面的向量,
叫做共面 向量.
a
O A

a
2.共面向量定理:如果两个向量 a, b
共线向量与共面向量
2004.12.11
一、共线向量: 1.共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行向量),记作 a // b 零向量与任意向量共线.
2.共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数使 a b

3.1.2共线向量与共面向量

3.1.2共线向量与共面向量

OM mMA nMB(1) OP 其中x+y+z=1 OP OM m(OA OM ) n(OB OM) (1 OPmOA nOB m n)OM OP xOA yOB zOM ( x m, y n, z 1 m n)
外一点O引线段OE,OF,OG,OH,分别经过 A,B,C,D 且 求证: ⑴E、F、G、H四点共面;
A
H
O
D
C
B
G
⑵EG//平面AC。
E
F
练习
1.下列说法正确的是: A.平面内的任意两个向量都共线 B.空间的任意三个向量都不共面 C.空间的任意两个向量都共面 D.空间的任意三个向量都共面 2.对于空间中的三个向量 它们一定是: A.共面向量 C.不共面向量 B.共线向量 D.既不共线又不共面向量
练习3、已知点M在平面ABC内,并且对空间任 意一点O, ,则x的值为
练习4、已知A、B、C三点不共线,对平面外一 点O,在下列条件下,点P是否与A、B、C共面?
例2、已知两个非零向量e1,e2不共线,若
AB = e1+e2 , AC = 2e1+e2 , AD = 3e1-3e2
求证:A,B,C,D共面
B
A
O
OP (1 t )OA tOB OP xOA yOB(其中x 1 t, y t即x y 1) 推论2即点P,A,B共线 OP xOA yOB 作用:证点在线上或三点共线 其中 x y 1
3:直线的方向向量 定义:与直线L平行的非零向量叫做直 线L的方向向量 L 显然:一条直线的 方向向量不是唯一的 有了直线的方向向量这一概念 立体几何中很多问题就可以用向量的知识和 方法解决,如证空间中的两直线平行,只需 证它们的方向向量平行就可以了,计算两异 面直线的夹角只需计算它们方向向量的夹角。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
子为平面 MAB 的向量表示式.
问题探究
1.空间一点 O 和不共线的三点 A、B、C,若 P 在 △ ABC 表示的平面内且O→P=xO→A+yO→B+zO→C,那 么 x,y,z 满足什么关系?
提示:x+y+z=1.因为O→P=O→A+mA→B+nA→C=O→A +m(O→B-O→A)+n(O→C-O→A) =(1-m-n)O→A+mO→B+nO→C. ∴x+y+z=(1-m-n)+m+n=1.
第二课时 共线向量与共面向量
课前自主学习
课标研读 1.了解共线向量、共面向量的概念;掌握共 线向量定理和共面向量定理;会利用共线向 量定理和共面向量定理解决相关问题. 2.重点是共线向量定理、共面向量定理,难 点是共线向量、共面向量的判定.
温故夯基
1.平面向量a与b共线,即存在非零实数λ,使 得___a_=__λ_b_(b_≠_0_)___. 2.空间向量的加减法仍可根据__三__角__形__法则 和_平__行__四__边__形__法则进行. 3.空间向量的加法交换律为_a_+__b_=__b_+__a_,加 法结合律为_(_a_+__b_)+__c_=__a_+__(_b_+__c_)_,数乘分配 律为__λ_(a_+__b_)_=__λ_a_+__λ_b__.
例2 正方体 ABCD A1B1C1D1 中,E、F 分别为 BB1 和 A1D1 的中点.证明:向量A→1B、B→1C、E→F是 共面向量.
【思路点拨】 解答本题可利用向量共面的充要 条件证明,也可利用向量共面的定义证明.
【证明】 法一:如图①所示. E→F=E→B+B→A1+A→1F=12B→1B-A→1B+12A→1D1 =12(B→1B+B→C)-A→1B=12B→1C-A→1B.
例1 如果点O为平行六面体ABCD—A1B1C1D1 中AC1的中点,求证:B1、O、D三点共线. 【思路点拨】 寻求O→B1与O→D的等式关系. 【证明】 如图所示,连结OB1、OD.
O→B1=O→C1+C→1B1=12A→C1+C→1B1, O→D=O→A+A→D=-12A→C1+B→1C1 =-12A→C1-C→1B1=-(12A→C1+C→1B1), ∴O→B1=-O→D, ∴O→B1、O→D共线,即 B1、O、D 共线.
【证明】 (1)如图,连结 BG,则 E→G=E→B+B→G=E→B+12(B→C+B→D) =E→B+B→F+E→H=E→F+E→H 由共面向量定理的推论知, E、F、G、H 四点共面. (2)∵E→H=A→H-A→E =12A→D-12A→B=12(A→D-A→B)
思维误区警示
未掌握两平面平行的判定定理
题型三 共线向量、共面向量综合应用
空间向量的共线或共面可用来解决立体几何中的点 、线、面的位置关系.
例3 已知E、F、G、H分别是空间四边形ABCD
边AB、BC、CD、DA的中点.
(1)用向量法证明E、F、G、H四点共面;
(2)用向量法证明BD∥平面EFGH. 【思路点拨】 (1)证明E→G与E→F和E→H的关系; (2)寻找E→H=12B→D
2.向量共面与点共面是否一致? 提示:不一致.四个点共面,由这些点所成的向 量共面;但三个向量共面,表示这些向量的有向 线段的起点与终点不一定共面.
课堂互动讲练
题型一 共线向量定理及应用
(1)判断给定的两个非零向量a,b共线,即 a∥b⇔a=λb. (2)论证两条直线平行,即只要证明这两条直线 上的非零向量共线. (3)论证三点共线,即A、B、C共线⇔=λ. (4)论证线面平行,设直线的方向向量为a,平面 α内一非零向量为b,则a∥b⇔a∥α.(注意a所在 的直线不在平面α内).
【名师点评】 在判定向量a、b所在直线平 行时,除证明a∥b外,还需证a(或b)所在直线 上有一点不在b(或a)所在直线上.
题型二 共面向量及应用
(1)论证向量共面.直接应用 p、a、b 共面⇔p=λa +μb(前提条件是 a、b 不共线). (2)论证线面平行.即证直线的方向向量与平面内两 不共线向量共面. (3)论证四点共面.P、M、A、B 四点共面的充要条 件为:对于空间任一点 O,存在实数 x,y,z,使O→P =xO→M+yO→A+zO→B(其中 x+y+z=1).
=由向量共面的充要条件知A→1B,B→1C,E→F是共面向量.
【思维总结】 证 向量的线性组合;二是寻找平面α,证明这些向 量都与平面α平行.
变式训练
已知三个非零向量a=pe1-qe2,b=re2-pe3,c =qe3-re1,且p、q、r不全为零,求证:a、b、c 共面.
5.若 a、b 不共线,p 与 a、b 共面的充要条件是存 在实数对 x、y,使_p_=__x_a_+__y_b____. 6.空间一点 P 位于平面 MAB 内的充要条件是存在
有序实数对 x、y,使_M→__P_=__x_M_→__A_+__y_M_→_B_,或对空间
任一定点,有_O_→_P_=__O_→_M__+__x_M→__A_+__y_M_→_B___,称这个式
例 已知平行四边形 ABCD,从平面外一点 O 引向量O→E=kO→A,O→F=kO→B,O→G=kO→C,O→H= kO→D(k≠1). 求证:平面 EG∥平面 AC.
【错证】 E→F=O→F-O→E =kO→B-kO→A =k(O→B-O→A)=kA→B, ∴EF∥AB,同理 HG∥CD, ∴平面 EG∥平面 AC.
知新益能
1.如果表示空间向量的有向线段所在的直线 互相__平__行__或__重_合______,则这些向量叫做共线 向量或平行向量.记作___a_∥_b__. 2.对空间任意两个向量 a、b(b≠0),a∥b 的 充要条件是存在实数 λ,使__a_=__λb___. 3.空间直线 l 的向量的参数方程:O→P= __O→_A_+__ta______. 其 中 向 量 a 叫 做 直 线 l 的 __方__向__向_量______. 4._平__行__于____同一平面的向量叫做共面向量.
相关文档
最新文档