向量微分算子的预解算子及谱分析

合集下载

(整理)清华大学微积分A笔记(上)

(整理)清华大学微积分A笔记(上)

多元函数、多元向量值函数f(X) F(X)多元函数的切平面、全微分、偏导有多元函数f(X),若存在向量A=(a1,a2,…,an)使得f(X)-f(X0)-A(X-X0)=o(||X-X0||),则称g(X)=A(X-X0)是f在X0处的切平面df=A d X=a1dx1+a2dx2+…+a n dx n是f的全微分b k=∂(f)/∂(x k)是将X的其他分量视为常数时f的导数,称为f的偏微分可以证明若A存在,a k=b k=∂f/ ∂x kNabla算子∇=(∂/∂x1,…, ∂/∂x n)∇A=Grad(f)=A称为f的梯度,∇ (f○g) = g∇f+f∇g若有单位向量e=(cosθ1, cosθ2,…, cosθn),则称A.e是f沿e方向的方向导数,A.e=∂f/∂l 其中l与e平行若f在X0可微:X0处f各一阶偏导存在X0处f有梯度X0处f连续X0处f的各方向导数均存在若f在X0处各一阶偏导函数连续,则f在X0可微A=∇ f是向量值函数,可以观察,e与A平行时,f的方向导数最大,且大小A.e=||A||,称A 是f的梯度场向量值函数的切平面、微分、偏导F(X)=(f1(X),f2(X),…,f m(X)),若所有f i在X0处可微,则称F在X0处可微,即F(X)=F(X0)+A(X-X0)+o(||X-X0||),其中A=(a ij)m*n=∂F/ ∂X=∂(f1,f2,…,f m)/ ∂(x1,x2,…,x n)=J(F(X0)))称为F在X0处的Jacobian(F的Jacobian的第i行是F的F i分量的梯度,a ij := ∂F i / ∂x j)F的全微分d F=Ad X当m=n时,F有散度Div(F)和旋度Curl(F)Div(F) = ∇.F=∂f1/∂x1 +…+∂f m/ ∂x mCurl(F) = ∇×F复合函数求导一阶偏导:若G=G(X)在X0可微,F=F(U) (U=G(X))在G(X0)可微,则F○G在X0处可微,J(F○G) = J(F(U)) J(G(X))具体地,对于多元函数f(U)=f(u1,…,u m),其中U=G(X)即u i=g(x1,…,x n)∂f/∂x j= ∂f/∂U* ∂U/∂x j= Sum[∂f/∂u i * ∂u i/∂x j] {for each u i in U}高阶偏导:不要忘记偏导数还是复合函数例:f(U):=f(u1,u2), U(X):=(u1(x1,x2),u2(x1,x2))∂2f/(∂x1)2 = 数学分析教程P151隐函数、隐向量值函数由F(X,Y)=0确定的函数Y=f(X)称为隐函数隐函数:1.存在定理:若n+1元函数F(X,y)在零点(X0,y0)处导数连续,且∂(F)/∂(y)(X0,y0)<>0,则存在(X0,y0)附近的超圆柱体B=B(X0)*B(y0),使得B(X0)上的任意一点X可以确定一个y使得F(X,y)=0,即函数F在B内确定了一个隐函数y=f(X),而且这个隐函数的一阶偏导数也连续注:如果∂(F)/∂(y)=0,那么在X=X0超平面上,y在X0处取得了极值,那么沿曲面被X=X0截的曲线从X0处向任意方向走,y都会减小,所以y是双值函数,不是函数2.偏导公式:在B内的处,或者说不正式的证明:F(X,y)≡0, 所以∂F/∂x i=0,即Sum[∂F/∂x j* ∂x j/∂x i]=0 (把y记做x n+1)由于X的各分量都是自变量,∂x j/∂x i=0 (i<>j)所以∂F/ ∂x i + ∂F/∂y * ∂y/ ∂x i=0于是立即可得上述公式隐向量值函数:1.存在定理:若X∈R n,Y∈R m,m维n+m元向量值函数F(X,Y)=0,在P0=(X0,Y0)点的某个邻域B(P0,r)内是C(1)类函数,F(P0)=0,且∂F/∂Y可逆,则存在P0的邻域B(X0)*B(Y0),使得对于在B(X0)内的任意X,存在唯一Y∈B(Y0)满足F(X,Y)=0,即F在B内确定了一个连续可微隐函数Y=f(X)2.偏导公式:J(f) := ∂(y1,…,y m)/ ∂(x1,…,x n) := ∂Y/∂X= -[∂F/∂Y]-1 * ∂F/∂X注:1.求逆矩阵用伴随矩阵的方法,A-1=A*/|A|,A*是A的余子矩阵的转置2.如果只求J(f)中的一列,∂(Y)/∂(x i)= -[∂(F)/∂(Y)]-1 * [∂(F)/∂(x i)]3.如果只求J(f)中的一行或者一个元素,问题退化成隐函数偏导的问题4.计算∂F/∂X时,忽略Y是X的函数,将Y当作自变量计算(从证明中可以看出原因,因为∂y/∂x的成分被移到了等式左侧J(f)里面),而不用偏导公式,采取对F(X,Y)=0左右同时对x i求偏导的方法时,Y要看做x i的函数)3.隐向量值函数的反函数:函数Y=f(X)将R n映射至R m,如果J(f)= ∂f/∂X可逆,那么存在f的反函数X=f-1(Y),且J(f-1)=[J(f)]-1注:1.求逆矩阵用伴随矩阵的方法,A-1=A*/|A|,A*是A的余子矩阵的转置2.|J(f-1)|=|J(f)|-1用参数形式给出的隐函数若有x=x(u,v),y=y(u,v),z=z(u,v),则需要列方程求曲面和曲线的切平面、法线、法向量三维空间下,函数F(x,y,z)=0确定了一个曲面。

泛函分析在力学和工程中的应用

泛函分析在力学和工程中的应用

泛函分析在力学和工程中的应用陆章基(复旦大学应用力学系)摘要本文简单介绍泛函分析方法在力学和工程中的若干应用,包括泛函观点下的结构数学理论、直交投影法、超圆方法、变分法、变分不等式与凸分析、算子的特征值与谱方法、与实验技术有关的泛函方法等。

并介绍当前非线性分析中部分动态。

$ 1 泛函分析概述泛函分析是高度抽象的数学分支,研究各类泛函空间及算子理论。

所谓泛函空间是带有某类数学结构(主要是拓扑和代数结构)的抽象集。

其元(或点)可以是数、向量、函数、张量场,甚至各种物理状态等。

根据不同拓扑和代数结构,泛函空间划分为各个类别。

力学和工程中常见的有①:(i)度量(距离)空间。

对任意两抽象元引入距离,由此自然地引入开集等拓扑结构。

从而,度量空间是一特殊拓扑空间,但尚未赋予代数结构;(ii)线性拓扑空间(拓扑向量空间。

同时带有拓扑和代数结构。

所谓拓扑无非是在抽象集中规定某些子集为开集),他们满足开集的基本公理。

有了拓扑后,即能引入极限、连续、紧致和收敛等初等分析的重要概念。

这里所述的代数结构指的是线性结构(加法和数乘运算)。

由此可讨论线性无关、基和维数等代数概念。

泛函分析的空间(尤其各类函数空间)绝大部分是无限维的。

线性空间(带有线性结构的度量空间)是线性拓扑空间的一例。

但最重要的线性拓扑空间应是下列线性赋范空间;(iii)线性赋范空间。

每个元(常称向量)配有番薯||x||(是普通向量长度的推广)。

线性空间配上范数后,能自然地诱导出度量和拓扑。

就这个意义而言,它是特殊的线性拓扑和度量空间。

于是,具有这两个空间中所有概念。

例如可以讨论该空间(或其子集)是否完备。

即任何柯西序列是否为收敛序列。

(iv)Banach空间。

它是完备的线性赋范空间。

完备性使该空间具有十分良好的性质。

例如闭图像定理、共鸣定理、逆算子定理和开映照原理等。

(v)内积空间。

内积的引入使该空间更直观形象,内容格外丰富。

内积把普通的几何术语差不多全带到抽象空间中。

微分方程的算子算法

微分方程的算子算法

微分方程的算子算法算子算法的基本思想是将微分方程中的微分算子用一种离散化的方式表示出来,然后将微分方程转化为一个线性代数方程组,通过求解方程组得到微分方程的近似解。

下面将详细介绍算子算法的具体步骤和关键技术。

1.离散化:首先将微分方程中的连续变量离散化,将其表示为一组有限个离散点的集合。

通常采用等间距离散方法,即将求解区间分为若干个等距的小区间,然后在每个区间内选择一个离散点作为离散点。

2.近似:通过逼近方法将微分算子离散化。

主要有两种常用的逼近方法:有限差分方法和有限元方法。

有限差分方法是将微分算子用差分算子代替,即用离散点的函数值来逼近函数在该点处的导数。

有限元方法是将微分方程的解表示为一组基函数的线性组合,通过在每个小区间内选择一个基函数,然后通过调节基函数的系数,使得近似解在离散点处的值与微分方程的解尽可能接近。

3.矩阵表示:将离散化后的微分方程转化为一个线性代数方程组。

通过将微分方程中的导数替换为近似值,得到一个线性代数方程组,其中未知数为离散点的函数值,系数矩阵和常数向量由离散化和逼近所确定。

4. 求解:通过求解线性代数方程组得到微分方程的近似解。

通常采用数值线性代数方法求解,如Gauss消元法、LU分解法、迭代法等。

求解得到的是离散点的函数值,可以通过插值方法将离散点的函数值插值到整个求解区间,得到微分方程的近似解。

算子算法的优点是可以适用于各种类型的微分方程,可以求解高阶的微分方程,并且有较好的数值稳定性和收敛性。

但是算子算法也存在一些问题,如离散化带来的误差问题、边界条件的处理问题等,需要根据具体问题进行合理的选取和处理。

总之,算子算法是一种重要的求解微分方程的数值计算方法。

通过将微分方程离散化和逼近,转化为一个线性代数方程组,然后通过求解方程组得到微分方程的近似解。

算子算法在科学计算和工程应用中有着广泛的应用前景。

谱方法解偏微分方程

谱方法解偏微分方程

谱方法解偏微分方程学生:石幸媛,数学与计算机科学学院指导老师:陈慧琴,江汉大学数学与计算机科学学院学号:200808101125摘要本论文分析的是偏微分方程的谱方法解。

在此,我借用向新民编的《谱方法的数值分析》中第67页例2.1方程进行计算。

根据例2.1的谱方法计算方式,给该方程具体的函数进行计算,求解其值,并绘图。

最后研究比较一阶波动方程的Fourier谱方法与Fourier配点逼近有什么不同与相近之处,做出结论。

关键词:Fourier配点逼近,截断函数,插值函数,Fourier谱方法AbstractThis paper analyses the partial differential equations of the spectral method. Here, I use the Xiang Xinmin series" numerical analysis of spectral method" on page sixty-seventh example 2.1equation. According to the case of 2.1spectral methods for computing method, give the specific function for calculating equation, solving its value, and drawing. The final study comparing a first-order wave equation in Fourier spectral method and Fourier collocation approximation of what is the difference and similarities, make a conclusion.Key words: Fourier collocation approximation, truncated function, interpolation function, Fourier spectral method目录绪论 (4)论文主题 (5)§1定义引用: (5)§2论文内容: (5)2.1:Fourier配点法 (5)结论 (13)致谢 (14)参考文献 (15)绪论谱方法是70年代发展起来的一种数值求解偏微分方程的方法,它具有“无穷阶”收敛性,可采用快速算法,这以后。

偏微分方程的chebyshev谱方法及地球物理应用_概述说明

偏微分方程的chebyshev谱方法及地球物理应用_概述说明

偏微分方程的chebyshev谱方法及地球物理应用概述说明1. 引言1.1 概述:在科学研究和工程应用中,许多实际问题可以通过偏微分方程的数值解来描述和求解。

而传统的数值方法面临着计算量大、精度不高等问题,因此需要寻找更有效的数值解法。

本文将重点介绍一种被广泛应用于偏微分方程求解的数值方法——Chebyshev谱方法,并结合地球物理学领域进行具体应用案例的介绍。

1.2 文章结构:本文共分为五个部分。

引言部分对文章整体进行概述,从概念上引出本文涉及的主题。

接下来,第二部分将对Chebyshev谱方法进行简要介绍,包括其基本原理和在偏微分方程中的应用。

第三部分将概述常见的偏微分方程类型及其特点,并对比各种数值解法的优势与局限性,并重点探讨了Chebyshev谱方法在偏微分方程数值解中的优势与局限性。

第四部分将从地球物理学角度出发,回顾地球物理学基础知识并说明偏微分方程在该领域中扮演着重要作用。

同时,还将通过实际案例介绍Chebyshev谱方法在地球物理学领域的应用。

最后,第五部分将对全文进行总结,展望Chebyshev谱方法及其应用的未来发展,并提出可能的未来研究方向建议。

1.3 目的:本文的目的是较为全面地介绍Chebyshev谱方法在偏微分方程数值解中的原理、优势与局限性,并通过地球物理学领域的具体应用案例,展示其实际效果和潜力。

通过本文的阐述,读者将对Chebyshev谱方法有一个深入了解,并且能够明确其在求解偏微分方程问题时的适应性和可行性。

最终,希望能够引起读者对该方法及其应用领域进一步研究与探索的兴趣。

2. chebyshev谱方法简介:2.1 chebyshev多项式及其性质:chebyshev多项式是指满足切比雪夫微分方程的一类特殊函数。

它们可以表示为T_n(x) = cos(n \arccos(x)), 其中n为非负整数,x为定义域在[-1, 1]上的变量。

chebyshev多项式具有许多重要的性质,如其具有正交性、极值点等。

高数二阶常系数非齐次线性微分方程解法及例题详解

高数二阶常系数非齐次线性微分方程解法及例题详解

强迫振动问题例题
01
解题步骤
02 1. 将外力函数展开为傅里叶级数或三角级数。
03 2. 将展开后的级数代入原方程,得到一系列简单 的一阶或二阶常系数线性微分方程。
强迫振动问题例题
3. 分别求解这些简单方程,得到原方程的通解。
示例:考虑方程 $y'' + 4y = sin t$,首先将 $sin t$ 展开为三角级数,然后代入原方程进行求解,得到通解为 $y(t) = C_1 cos(2t) + C_2 sin(2t) + frac{1}{8} sin t$。
详细描述
自由振动问题通常可以通过求解特征方程得到,特征方程是一元二次方程,其根决定了 微分方程的解的形式。如果特征方程有两个不相等的实根,则微分方程的解为两个独立 的指数函数;如果特征方程有两个相等的实根,则微分方程的解为单一的指数函数;如
果特征方程有一对共轭复根,则微分方程的解为正弦和余弦函数。
强迫振动问题
方程形式与特点
01
02
03
04
05
二阶常系数非齐次线性 该方程具有以下特点 微分方程的一般形式为: $y'' + p(x)y' + q(x)y = f(x)$,其中$p(x)$、 $q(x)$和$f(x)$是已知函 数,$y$是未知函数。
未知函数$y$的最高阶导 系数是常数,不随$x$变 右边的函数$f(x)$是非齐
高数二阶常系数非齐次线 性微分方程解法及例题详 解
• 引言 • 二阶常系数非齐次线性微分方程的解
法 • 常见题型及解题技巧 • 例题详解 • 总结与思考
01
引言
背景介绍
二阶常系数非齐次线性微分方程在自 然科学、工程技术和社会科学等领域 有广泛应用,如物理学、化学、生物 学、经济学等。

微分几何

微分几何
syms x
f = sin(x)*exp(-x.^2) F = fourier(f)
注:用eval函数计算得出的表达式
f = ifourier(F) 逆Fourier积分变换
Y = fft(X)
快速Fourier变换
2. Laplace变换
输出参量L = L(s)为有缺 省符号自变量t的标量符号对象F的Laplace变换
变动弧长
s

t
x ' y ' z ' dt
2 2 2
a
用向量函数表示
s

t
r ' (t) dt
a
【P28习题9 】求曲线x3 = 3a2y ;2xz = a2 在平面y = a/3与y = 9a之间的弧长. 【解】曲线的参数方程为 r(x) = {x, x3/3a2,a2/2x }. 当y = a/3时, x= a; 当y = 9a时, x= 3a; 而 r’(x) = {1, x2/a2,-a2/2x2 }.
向(矢)量函数
1.向量函数的极限、连续、微商(导矢、导数)、 积分等定义与性质类似于实函数相应的定义和 性质. 2.向量函数的极限、连续、微商(导矢、导数)、 积分等问题可以转化为实函数的相应问题. 3.向量函数的高阶微商
k 类函数
C
泰勒公式
4、向量函数的两个重要性质
p.10.命题6. 向量函数 r (t ) 具有固定长的充分 必要条件是对于t的每个值,都有 r ' ( t ) 与 r (t )
2u 1 u G 0
G {(x, y) x2 y2 1 }
② hyperbolic 型方程:
仅能求解如下形式的双曲

向量算子(梯度、散度、旋度)与拉普拉斯算符的公式与定义整理

向量算子(梯度、散度、旋度)与拉普拉斯算符的公式与定义整理

向量算子【(nabla)表示向量微分算子。

】拉普拉斯算符梯度(标量化为矢量)散度(矢量化为标量)旋度(矢量化为矢量)数学解释在向量微积分中,标量场的梯度是一个向量场。

标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。

同时也可以求出变化不是最快的那个方向上的倒数,梯度点积该方向上的向量即可。

散度是向量分析中的一个向量算子,将向量空间上的一个向量场(矢量场)对应到一个标量场上。

散度描述的是向量场里一个点是汇聚点还是发源点,形象地说,就是这包含这一点的一个微小体元中的向量是“向外”居多还是“向内”居多。

旋度是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。

这个向量提供了向量场在这一点的旋转性质。

旋度向量的方向表示向量场在这一点附近旋转度最大的环量的旋转轴,它和向量旋转的方向满足右手定则。

拉普拉斯算子有许多用途,此外也是椭圆型算子中的一个重要例子。

在物理中,常用于波方程的数学模型、热传导方程以及亥姆霍兹方程。

在静电学中,拉普拉斯方程和泊松方程的应用随处可见。

在量子力学中,其代表薛定谔方程式中的动能项。

在数学中,经拉普拉斯算子运算为零的函数称为调和函数;拉普拉斯算子是霍奇理论的核心,并且是德拉姆上同调的结果。

物理解释考虑一座高度在点是的山。

这一点的梯度是在该点坡度(或者说斜度)最陡的方向。

梯度的大小告诉我们坡度到底有多陡。

散度是通量的体密度物理上,散度的意义是场的有源性。

某一点或某个区域的散度大于零,表示向量场在这一点或这一区域有新的通量产生,小于零则表示向量场在这一点或区域有通量湮灭。

散度等于零的区域称为无源场或管形场。

就是的环量面密度(或称为环量强度)。

旋度是向量场的一种强度性质,就如同密度、浓度、温度一样,它对应的广延性质是向量场沿一个闭合曲线的环量。

如果一个向量场中处处的旋度都是零,则称这个场为无旋场或保守场相关概念通量环量:记法=或三维直角坐标系柱坐标球坐标线性法则乘积法则商法则高斯散度定理:对某一个体积内的散度进行积分,就应该得到这个体积内的总通量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量微分算子的预解算子及谱分析
微分算子理论研究的基础问题之一就是微分算子的谱理论.研究方法多种多样,利用微分算子的预解算子的Green函数及其性质等研究其谱是最基本的研究方法.利用Green函数的性质也可研究微分算子的特征行列式,特征函数及其特征展开等.由于微分算子谱理论与应用联系密切,谱理论研究受到人们的特别关注,尤其是1953年Molchanov著名的二阶自伴微分算子的谱的离散性判别准则发表以来,各种关于谱的定性分析的研究,特别是离散谱的研究成果不断问世.但是在向量函数空间中这些问题则很少研究.本文讨论向量函数空间中微分算子的预解算子及其核Green函数的性质,离散谱的判别准则等.全文共分为四部分:第一章,简单介绍了微分算子(向量微分算子)理论的背景和进展;第二章,给出2 n阶J-对称向量微分算式所生成的J-自伴向量微分算子在正则情形时的预解算子,得到其预解算子是积分算子及预解算子的核(Green函数)的一些基本性质;然后从预解算子的全连续性证得在正则情形下其谱是离散的结论.第三章,研究了2 n 阶J-对称向量微分算式在一端奇异情形时赋予一定的边界条件所生成J-自伴向量微分算子的预解算子;得到其预解算子的一些性质.第四章研究了二阶自伴向量微分算子,得到其谱是离散的两个充分条件.。

相关文档
最新文档