数学思想之一转化与化归思想(概述)
高中数学 转化与化归思想

第四讲转化与化归思想知识整合一、转化与化归思想的含义转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法,一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.二、转化与化归的常见方法1.直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.2.换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.3.数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.4.等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的.5.特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题的结论适合原问题.6.构造法:构造一个合适的数学模型,把问题变为易于解决的问题.7.坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.8.类比法:运用类比推理,猜测问题的结论,易于探求.9.参数法:引进参数,使原问题转化为熟悉的问题进行解决.10.补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集∁U A使原问题获得解决,体现了正难则反的原则.1.特殊与一般的转化典题例析例1(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则cos A+cos C1+cos A cos C=45.[思路探究]看到a,b,c成等差数列,可联想到等边三角形举特例求解.[解析]显然△ABC为等边三角形时符合题设条件,所以cos A+cos C1+cos A cos C=cos60°+cos60°1+cos60°cos60°=11+14=45.(2)已知f (x )=33x +3,则f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)=__2_020__.[思路探究] 看到求f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)的值,想到求f (x )+f (1-x )的值.[解析] f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x3+3x =3x +33x +3=1,所以f (0)+f (1)=1,f (-2 019)+f (2 020)=1,所以f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)=2 020. 规律总结化一般为特殊的应用(1)常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. (2)对于选择题,当题设在普通条件下都成立时,用特殊值进行探求,可快捷地得到答案.(3)对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.1.AB 是过抛物线x 2=4y 的焦点的动弦,直线l 1,l 2是抛物线两条分别切于A ,B 的切线,则l 1,l 2的交点的坐标为__(0,-1)__.[解析] 找特殊情况,当AB ⊥y 轴时,AB 的方程为y =1,则A (-2,1),B (2,1),过点A 的切线方程为y -1=-(x +2),即x +y +1=0.同理,过点B 的切线方程为x -y -1=0,则l 1,l 2的交点为(0,-1).2.在平行四边形ABCD 中,|AB →|=12,|AD →|=8.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( C )A .20B .15C .36D .6[解析] 方法一:由BM →=3MC →,DN →=2NC →知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM →=AB →+34AD →,AN →=AD →+DN →=AD→+23AB →,所以NM →=AM →-AN →=AB →+34AD →-(AD →+23AB →)=13AB →-14AD →,所以AM →·NM →=(AB →+34AD →)·(13AB →-14AD →)=13(AB →+34AD →)·(AB →-34AD →)=13(AB →2-916AD →2)=13(144-916×64)=36,故选C.方法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM →=(12,6),NM →=(4,-2),所以AM →·NM →=12×4+6×(-2)=36,故选C.2.函数、方程、不等式之间的转化 典题例析例2 (1)已知e 为自然对数的底数,若对任意的x ∈[1e ,1],总存在唯一的y ∈[-1,1],使得ln x -x +1+a =y 2e y 成立,则实数a 的取值范围是( B )A .[1e ,e]B .(2e ,e]C .(2e,+∞)D .(2e ,e +1e)[解析] 设f (x )=ln x -x +1+a ,当x ∈[1e ,1]时,f ′(x )=1-x x ≥0,f (x )是增函数,所以x ∈[1e ,1]时,f (x )∈[a -1e ,a ].设g (y )=y 2e y ,则g ′(y )=e y y (y +2),则g (y )在[-1,0)单调递减,在[0,1]单调递增,且g (-1)=1e <g (1)=e.因为对任意的x ∈[1e ,1],存在唯一的y ∈[-1,1],使得f (x )=g (y )成立,所以[a -1e ,a ]⊆[1e ,e],∴2e<a ≤e ,故选B.(2)(文)(2019·沈阳模拟)已知函数f (x )=x +4x ,g (x )=2x +a ,若对∀x 1∈[12,3],∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是( C )A .(-∞,1]B .[1,+∞)C .(-∞,0]D .[0,+∞)[解析] 当x ∈[12,3]时,f (x )≥2x ·4x=4,当且仅当x =2时等号成立,此时f (x )min =4.当x ∈[2,3]时,g (x )min =22+a =4+a .依题意f (x )min ≥g (x )min ,∴a ≤0.选C.(理)(2019·济南调研)已知m ,n ∈(2,e),且1n 2-1m 2<ln mn ,则( A )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定[解析] 由不等式可得1n 2-1m 2<ln m -ln n ,即1n 2+ln n <1m 2+ln m .设f (x )=1x 2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.因为x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增.因为f (n )<f (m ),所以n <m .故选A . 规律总结函数、方程与不等式相互转化的应用1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助. 2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.1.已知函数f (x )=ax 2-2x +2,若对一切x ∈[12,2],f (x )>0都成立,则实数a 的取值范围为( B )A .[12,+∞)B .(12,+∞)C .[-4,+∞)D .(-4,+∞)[解析] 由题意得,对一切x ∈[12,2],f (x )>0都成立,即a >2x -2x 2=-2x 2+2x =-2(1x -12)2+12在x ∈[12,2]上恒成立,而-2(1x -12)2+12≤12,则实数a 的取值范围为(12,+∞). 2.已知a =13ln 94,b =45ln 54,c =14ln4,则( B )A .a <b <cB .b <a <cC .c <a <bD .b <c <a[解析] a =13ln 94=13ln(32)2=23ln 32=ln 3232,b =45ln 54=ln 5454,c =14ln4=14×2ln2=ln22.故构造函数f (x )=ln x x ,则a =f (32),b =f (54),c =f (2).因为f ′(x )=1-1·ln x x 2=1-ln xx2,由f ′(x )=0,解得x =e.故当x ∈(0,e)时,f ′(x )>0,函数f (x )在(0,e]上单调递增;当x ∈(e ,+∞)时,f ′(x )<0, 函数f (x )在[e ,+∞)上单调递减.因为54<32<2<e ,所以f (54)<f (32)<f (2),即b <a <c ,故选B.3.正难则反的转化 典题例析例3 (1)若对于任意t ∈[1,2],函数g (x )=x 3+(m2+2)x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是( B )A .(-5,-103)B .(-373,-5)C .(-5,-2)D .(-5,+∞)[解析] g ′(x )=3x 2+(m +4)x -2, 若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,又t ∈[1,2],则m +4≥21-3×1=-1,即m ≥-5;②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.(2)已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为 (0,18) .[解析] f ′(x )=2ax -1+1x.(ⅰ)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x ≥0,得a ≥12(1x -1x2).①令t =1x ,因为x ∈(1,2),所以t =1x ∈(12,1).设h (t )=12(t -t 2)=-12(t -12)2+18,t ∈(12,1),显然函数y =h (t )在区间(12,1)上单调递减,所以h (1)<h (t )<h (12),即0<h (t )<18.由①可知,a ≥18.(ⅱ)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x ≤0,得a ≤12(1x -1x2).②结合(ⅰ)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪[18,+∞).所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为(0,18).规律总结转化化归思想遵循的原则1.熟悉化原则:将陌生的问题转化为我们熟悉的问题. 2.简单化原则:将复杂的问题通过变换转化为简单的问题.3.直观化原则:将较抽象的问题转化为比较直观的问题(如数形结合思想,立体几何向平面几何问题转化).4.正难则反原则:若问题直接求解困难时,可考虑运用反证法或补集法或用逆否命题间接地解决问题.1.若抛物线y =x 2上的所有弦都不能被直线y =k (x -3)垂直平分,则k 的取值范围是( D )A .(-∞,12]B .(-∞,12)C .(-12,+∞)D .[-12,+∞)[解析] 设抛物线y =x 2上两点A (x 1,x 21),B (x 2,x 22)关于直线y =k (x -3)对称,AB 的中点为P (x 0,y 0),则x 0=x 1+x 22,y 0=x 21+x 222.由题设知x 21-x 22x 1-x 2=-1k ,所以x 1+x 22=-12k .又AB 的中点P (x 0,y 0)在直线y =k (x -3)上,所以x 21+x 222=k (x 21+x 222)=k (x 1+x 22-3)=-6k +12,所以中点P (-12k ,-6k +12).由于点P 在y >x 2的区域内,则-6k +12>(-12k )2,整理得(2k +1)(6k 2-2k +1)<0,解得k <-12.因此当k <-12时,抛物线y =x 2上存在两点关于直线y =k (x -3)对称,于是当k ≥-12时,抛物线y =x 2上存在两点关于直线y =k (x =3)对称.所以实数k 的取值范围是[-12,+∞).故选D.2.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围是 (-3,32) .[解析] 若在区间[-1,1]内不存在c 满足f (c )>0, 因为Δ=36p 2≥0恒成立,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0解得⎩⎨⎧p ≤-12或p ≥1,p ≤-3或p ≥32.所以p ≤-3或p ≥32,取补集得-3<p <32,即满足题意的实数p 的取值范围是(-3,32).4.形体位置关系的转化 典题例析例4 (1)如图所示,已知多面体ABCDEFG 中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为__4__.[解析] 方法一:(分割法)因为几何体有两对相对面互相平行,如图所示,过点C 作CH ⊥DG 于H ,连接EH ,即把多面体分割成一个直三棱柱DEH -ABC 和一个斜三棱柱BEF -CHG .由题意,知V 三棱柱DEH -ABC =S △DEH ·AD =(12×2×1)×2=2,V 三棱柱EBF -CHG =S △BEF ·DE =(12×2×1)×2=2.故所求几何体的体积为V 多面体ABCDEFG =2+2=4.方法二:(补形法)因为几何体有两对相对面互相平行,如图所示,将多面体补成棱长为2的正方体,显然所求多面体的体积即该正方体体积的一半.又正方体的体积V 正方体ABHI -DEKG =23=8, 故所求几何体的体积为V 多面体ABCDEGH =12×8=4.(2)如图1所示,正△ABC 的边长为2a ,CD 是AB 边上的高,E ,F 分别是AC ,BC 的中点.现将△ABC 沿CD 翻折,使翻折后平面ACD ⊥平面BCD (如图2),求三棱锥C -DEF 的体积.[解析] 方法一:如图,取CD 的中点M ,连接EM ,则EM ∥AD ,且EM =12AD =a2,又AD ⊥平面BDC ,故EM 为三棱锥E -DFC 的高.求三棱锥C -DEF 的体积,即求三棱锥E -DFC 的体积. 由题意,知CD ⊥BD ,AD ⊥CD ,F 为BC 的中点, 所以S △CDF =12S △BCD =12×12CD ·BD =14(2a )2-a 2·a =34a 2.所以V 三棱锥E -CDF =13S △CDF ·EM =13×34a 2×12a =324a 3.即V 三棱锥C -DEF =324a 2.方法二:如图所示,知三棱锥C -DEF 与三棱锥E -DFC 的体积相等,且三棱锥E -DFC 是三棱锥A -BDC 的一部分.因为平面ACD ⊥平面BCD ,点E ,F 分别是AC ,BC 的中点,故三棱锥E -DFC 的底面积和高分别是三棱锥A -BDC 的底面积和高的一半.由题意,知CD ⊥BD ,AD ⊥CD ,AD ⊥BD ,AD =BD =a ,DC =3a ,所以S △BCD =12×3a ·a =32a 2. 故V 三棱锥A -BDC =13S △BCD ·AD =13×32a 2×a =36a 3,则V 三棱锥C -DEF =14V 三棱锥A -BCD =14×36a 3=324a 3. 规律总结形体位置关系的转化是通过切割、补形、等体积转化等方式转化为便于观察、计算的常用几何体,由于新的几何体是转化而来的,一般需要对新几何体的位置关系、数据情况进行必要分析,准确理解新几何体的特征.1.(2019·吉林模拟)已知如图,四边形ABCD 和四边形BCEG 均为直角梯形,AD ∥BC ,CE ∥BG ,∠BCD =∠BCE =π2,平面ABCD ⊥平面BCEG ,BC =CD =CE =2AD =2BG =2,则五面体EGBADC的体积为 73.[解析] 如图所示,连接DG ,BD .由平面ABCD ⊥平面BCEG , ∠BCD =∠BCE =π2,可知EC ⊥平面ABCD , 又CE ∥GB , 所以GB ⊥平面ABCD .又BC =CD =CE =2,AD =BG =1,所以V 五面体EGBADC =V 四棱锥D -BCEG +V 三棱锥G -ABD=13S 梯形BCEG ·DC +13S △ABD ·BG =13×2+12×2×2+13×12×1×2×1=73.故填73. 2.如图,在四棱锥P -ABCD 中,侧面P AD 是边长为2的正三角形,且与底面垂直,底面ABCD 是∠ABC =60°的菱形,M 为PC 的中点.(1)求证:PC ⊥AD ;(2)求点D 到平面P AM 的距离.[解析] (1)证明:如图,取AD 的中点O ,连接OP ,OC ,AC ,由题意可知△P AD ,△ACD 均为正三角形,所以OC ⊥AD ,OP ⊥AD .又OC ∩OP =O ,所以AD ⊥平面POC , 又PC ⊂平面POC ,所以PC ⊥AD .(2)点D 到平面P AM 的距离即点D 到平面P AC 的距离,由(1)可知,PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD ,即PO 为三棱锥P -ACD 的高.在Rt △POC 中,PO =OC =3,PC =6,在△P AC 中, 因为P A =AC =2,PC =6,所以边PC 上的高 AM =P A 2-PM 2=22-(62)2=102, 所以△P AC 的面积S △P AC =12PC ·AM =12×6×102=152.设点D 到平面P AC 的距离为h ,由V D -P AC =V P -ACD ,得13S △P AC ·h =13S △ACD ·PO ,又S △ACD =12×2×3=3,所以13×152×h =13×3×3,解得h =2155.故点D 到平面P AM 的距离为2155.。
高考数学题中蕴含的转化与化归思想

高考数学题中蕴含的转化与化归思想一、转化与化归的内涵转化与化归是数学思想中的两个重要内容,它们贯穿于整个数学学科,是数学问题解决的基本方法之一。
转化,即将一个数学问题或数学对象转化成另一个同等价值的形式,以更便于解决或研究。
而化归,则是将一个较复杂或抽象的问题归结为一个较简单或具体的问题,从而更易于处理和理解。
转化与化归的实质是通过合理的变换和归结,将原问题转化为更易处理或更易理解的形式,从而为解题提供便利和途径。
二、数学题中的转化与化归思想在高考数学题中,转化与化归思想经常出现在各个知识点的解题过程中,其中尤以代数和几何题为突出。
以代数题为例,常见的多项式化简、方程转化、不定方程的化归等问题,都需要学生灵活掌握转化与化归的方法,才能顺利解题。
在几何题中,诸如相似三角形的证明、线段比例的求解等问题,也需要学生善于将复杂的几何形态转化为简单的几何概念,或者将一个复杂的几何问题化归为一个简单的几何问题,从而找到解答的路径。
在实际解题过程中,学生必须不断地运用转化与化归的思想,才能更轻松地解决高考数学题。
三、实例分析现来分别通过代数题和几何题的实例分析,展示高考数学题中转化与化归思想的实际应用。
1.代数题假设有如下代数方程组:\[\left\{\begin{array}{c}x+y=5 \\x^2+y^2=17\end{array}\right.\]求解这个方程组的实数解。
分析:通过观察和分析,我们很难直接求出 x 和 y 的具体值。
我们可以考虑将上述方程组进行化归。
我们知道(x+y)²=x²+2xy+y²,将其代入x²+y²=17 中得到:\[ x^2+2xy+y^2=25 \]这样方程组就化归为一个较为简单形式。
接下来,我们将 x+y=5 代入上式,可以得到:进而求出 xy 的值为 4。
接着,我们可以用代数方法求出 x 和 y 的值,最终得到实数解为 2 和 3。
转化与化归思想在中学数学中的应用

转化与化归思想在中学数学中的应用转化思想和化归思想是中学数学中非常重要的两个思想,它们在解决问题和证明定理过程中起着至关重要的作用。
本文将分别探讨转化思想和化归思想在中学数学中的应用。
一、转化思想在中学数学中的应用转化思想是指通过变换问题的形式或等效变形,使问题转化为熟悉的或易于处理的问题。
它就像是把难题中的棘手一面剥离,使问题变得简单易懂,进而更好地解决问题。
在中学数学中,转化思想主要体现在以下几个方面:1.利用等量代换简化方程式在代数运算中,我们会遇到很多组长方程式,而这些方程式中经常出现相同的项。
这时候,我们可以采用等量代换的方法,将其化简,使问题更容易解决。
例如,我们可以利用x+y=1这个式子,将x^3+y^3转化为(x+y)^3-3xy(x+y),从而简化计算过程。
2.利用等式变形证明定理在证明数学定理时,通过大量变量之间的等式变形,可以大大简化证明过程。
例如,在证明勾股定理中,我们可以把原方程式a^2+b^2=c^2转化为a^2+b^2-c^2=0,继续变形成(a+c)(a-c)+(b+c)(b-c)=0,再变形成其它等式,最终证明了定理。
3.利用变量的代数变换简化问题有些问题需要建立函数关系式,但是常见的函数关系式过于复杂,不容易解决。
这时候,我们可以尝试采用代数变换的方法,将其变成简单的函数关系式。
例如,在解决极值问题时,我们可以利用三角函数的性质进行变量的代数变换,将复杂的函数关系式变得简单清晰。
二、化归思想在中学数学中的应用化归思想是指将问题按一定规律,通过变形而归约成一个与原问题相关的子问题,然后逐步化简子问题,最终解决原问题。
通过化归,我们可以更容易地理解问题,从而更好地解决问题。
在中学数学中,化归思想主要体现在以下几个方面:1.将高阶次问题化归为低阶次问题有些问题是高阶次或高维的,很难直接解决。
这时候,我们可以采用化归的方法,将其化归为低阶次问题。
例如,在解决n阶递推数列时,我们可以将n阶递推数列化归为n-1阶递推数列,从而简化问题的处理。
转换与化归思想

浅谈转换与化归思想转化思想就是数学中的一种基本却很重要的思想。
深究起来,转化两字中包含着截然不同的两种思想,即转换与化归。
这两者其实表达了不同的思想方法,可以说就是思维方式与操作方法的区别。
一、 转换思想(1)转换思想的内涵转换思想就是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。
要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。
(2)转换思想在同一学科中的应用转换思想可以就是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。
象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。
比如,函数、方程、不等式就是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其她模块的各类问题。
不等式恒成立问题可以转换到用函数图象解决,或者就是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。
再比如,数列问题用函数观点来解释,那更就是我们数学课堂中一再强调的问题了。
瞧这样一个问题:已知:11122=-+-a b b a ,求证:122=+b a 。
[分析] 这就是一个纯粹的代数证明问题,条件的变形就是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点令人望而生畏。
再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。
[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα化简得1cos cos sin sin =+αααα所以0sin ≥=αa ,0cos ≥=αb则 1cos sin 2222=+=+ααb a[小结] 本题的解决了就是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设与结论中都没有出现三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还就是比较棘手的。
数学思想之转化与化归总结

数学思想之转化与化归总结在数学中,转化与化归是一种常用的思想方法。
通过转化问题的表达形式或者化简问题的复杂度,我们可以更容易地理解和解决数学问题。
转化与化归涉及到问题的等价转化、代数化简、几何转化、枚举化归等多个方面。
下面将从这几个方面对转化与化归进行总结。
首先,等价转化是一种常见的数学思想之一。
它意味着将一个问题转化为与之等价的另一个问题,以求得更容易解决的问题。
等价转化包括将问题的形式转化为更简单或者更具有可操作性的形式,或者将问题与已知的问题进行对应。
一个经典的例子是将一个复杂的代数方程转化为一个简单的一次方程或者二次方程,从而解决原方程。
在某些情况下,等价转化也可以是不可逆的,这意味着我们只能从简单的问题得到复杂的问题,但是这种转化仍然能够帮助我们更好地理解问题的本质和特点。
其次,代数化简是转化与化归的另一个重要方面。
代数化简是指通过运用代数运算的性质和规则,将一个复杂的代数表达式或者方程化简为更简单的形式。
代数化简的方法包括合并同类项、因式分解、配方法、三角函数的恒等变换等。
代数化简不仅可以减少问题的复杂度,还可以揭示问题的规律和特点,从而更好地解决数学问题。
几何转化是将几何问题转化为代数问题或者相反,通过几何图形的变换和变形,我们可以使得问题的解决更加直观和简单。
几何转化常常涉及到使用待定系数法、相似三角形的性质、勾股定理等几何知识,从而求得问题的解。
几何转化不仅能够帮助我们更好地理解和解决几何问题,还能够提高我们的思维能力和几何直观。
最后,枚举化归是一种将一个复杂的问题化归为若干个简单的情况,通过对每个简单情况的分析和解决,来解决原问题的方法。
枚举化归可以通过列举具体的例子,或者考虑特殊情况来进行。
枚举化归的优点是能够将一个复杂的问题简化为多个简单的情况,从而更好地理解和解决问题。
然而,枚举化归的缺点是可能需要计算大量的情况,耗费时间和精力。
综上所述,转化与化归是数学中一种重要的思想方法。
4、转化与化归思想

4 转化与化归思想主线—基础—方法—应用—例题—注意—总结知识清单:知识1 转化与化归思想概述知识2 转化与化归的原则知识1 转化与化归思想概述所谓化归思想就是通过转化,使所要解决的问题由难变易或变为已经解决的问题,以有利于解决的一种数学思想。
化归思想常常以变换题目的结构形状、变更问题、从反面探究结论等方式出现,前面所介绍的函数思想、方程思想、数形结合、分类讨论等都是重要的化归方法。
知识2 转化与化归的原则(1)目标简化原则将复杂的问题向简单的问题转化。
(2)和谐统一性原则即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当。
(3)具体化原则即化归方向应由抽象到具体。
(4)低层次原则即将高维空间问题化归成低维空间问题。
(5)正难则反原则即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
方法清单:方法1 直接转化法方法2 换元转化法方法3 数形结合法转化方法4 构造法转化方法5 坐标法转化方法6 补集法转化方法7 空间与平面间的转化方法8 几何条件转化为向量关系的方法方法9 变更主元的转化法方法10一般式转化为标准式方法1 直接转化法把原问题转化为基本定理、基本公式或基本图形问题。
例1函数y=1+a x(0<a<1)的反函数的图象大致是()方法2 换元转化法运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题。
例2 设20≤≤x ,求函数523421+⋅-=-x x y 的最大值和最小值。
方法3 数形结合法转化研究原问题中数量关系(解析式)与空间形式(图形)的关系,通过互相变化获得转化途径。
例3 已知1,0,0=+≥≥b a b a ,求证225)2()2(22≥+++b a 方法4 构造法转化 “构造”一个合适的数学模型,把问题变为易于解决的问题。
转化与化归思想

例1 已知 x + x + 1 = 0, 求 x + 2 x + 2010 的的。
2 3 2
例2 解方解 2( x − 1) − 5( x − 1) + 2 = 0.
2
1 1 4 例3 已知 x + = 2, 则 x + 4 的的为 __________ . x x
已知正方形的边长为a, 例4 已知正方形的边长为 ,以各边为直径 在正方形内画半圆,求所围成的图形( 在正方形内画半圆,求所围成的图形(阴影 部分)的面积。 部分)的面积。
如图,在梯形 在梯形ABCD中,AD//BC,AB=CD, 例6 如图 在梯形 中 对角线AC,BD交于点 且AC⊥BD.已知 交于点O,且 ⊥ 对角线 交于点 已知 AD=3,BC=5,求AC的长 的长. 求 的长
如图, 分别是正三角形ABC、正 例7 如图,点E、D分别是正三角形 、 分别是正三角形 、 四边形ABCM、正五边形 中以C点为 四边形 、正五边形ABCMN中以 点为 中以 顶点的一边延长线和另一边反向延长线上的 延长线交AE于点 点,且BE=CD,DB延长线交 于点 . , 延长线交 于点F. 1))若将条件“正三角形、正四边形、正 求图1中∠AFB度数,并证明 , 、 中 度数, ((3)若将条件“正三角形、正四边形图3中 )求图2中∠AFB的度数为 中 度数 并证明CD2=BD•EF 2)图 中 的度数为______, 的度数为 五边形”改为“ 边形” 其它条件不变, 度数为_______,在图 、图3中, 五边形”改为 边形 在图2、 ∠AFB度数为“正n边形”,其它条件不变, 度数为 , 中 ;(填 可用含n的代数式 成立” 则∠AFB度数为 (1)中的等式 _______. 填“成立”或“不成 )中的等式_____ ;( (可用含 的代数式 度数为 表示,不必证明) 表示,不必证明) 不必证明) 立”,不必证明)
浅谈转换与化归思想(精)

浅谈转换与化归思想转化思想是数学中的一种基本却很重要的思想。
深究起来,转化两字中包含着截然不同的两种思想,即转换和化归。
这两者其实表达了不同的思想方法,可以说是思维方式与操作方法的区别。
一、 转换思想(1)转换思想的内涵转换思想是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。
要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。
(2)转换思想在同一学科中的应用转换思想可以是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。
象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。
比如,函数、方程、不等式是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其他模块的各类问题。
不等式恒成立问题可以转换到用函数图象解决,或者是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。
再比如,数列问题用函数观点来解释,那更是我们数学课堂中一再强调的问题了。
看这样一个问题: 已知:11122=-+-a b b a ,求证:122=+b a 。
[分析] 这是一个纯粹的代数证明问题,条件的变形是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点令人望而生畏。
再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。
[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα化简得1cos cos sin sin =+αααα所以0sin ≥=αa ,0cos ≥=αb则 1cos sin 2222=+=+ααb a[小结] 本题的解决了是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设和结论中都没有出现三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还是比较棘手的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思想之一:转化与化归思想(概述)
1、转化与化归的思想方法
转化与化归的思想方法是数学中最基本的思想方法,数学中一切
问题的解决(当然包括解题)都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。
各种变换方法、分析法、反证法、待定系数法、构造法等都是转化的手段。
所以说,转化与化归是数学思想方法的灵魂。
2、转化包括等价转化和非等价转化
等价转化要求在转化过程中的前因后果既是充分的又是必要的,这样的转化能保证转化的结果仍为原问题所需要的结果,不等价转化其过程则是充分的或必要的,这样的转化能给人带来思维的启迪,找到解决问题的突破口,不等价变形要对所得结论进行必要的修改。
3、转化与化归的原则
将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题,将抽象的问题转化为具体的直观的问题,将复杂的问题转化为简单的问题,将一般性的问题转化为直观的特殊的问题;将实际问题转化为数学问题,使问题便与解决。
4、转化与化归的基本类型
(1)正与反、一般与特殊的转化;
(2)常量与变量的转化;
(3)数与形的转化;
(4)数学各分支之间的转化;
(5)相等与不相等之间的转化;
(6)实际问题与数学模型的转化。