10.1 随机事件与概率(精练)(解析版)

合集下载

高中数学第十章概率10.1.2事件的关系和运算同步练习含解析新人教A版必修第二册

高中数学第十章概率10.1.2事件的关系和运算同步练习含解析新人教A版必修第二册

课时素养评价三十九事件的关系和运算(15分钟30分)1.一个射手进行一次射击,事件A:命中环数大于8;事件B:命中环数大于5,则(A.A与B是互斥事件B.A与B是对立事件C.A⊆BD.A⊇B【解析】选C.事件A:命中环数大于8即命中9或10环;事件B:命中环数大于5即命中6或7或8或9或10环,故A⊆B.2.抽查10件产品,设“至少抽到2件次品”为事件A,则A的对立事件是(A.至多抽到2件次品B.至多抽到2件正品C.至少抽到2件正品D.至多抽到1件次品【解析】选D.因为“至少抽到2件次品”就是说抽查10件产品中次品的数目至少有2件,所以A的对立事件是抽查10件产品中次品的数目最多有1件.【补偿训练】从装有十个红球和十个白球的罐子里任取两个球,下列情况中是互斥而不对立的两个事件是( )A.至少有一个红球;至少有一个白球B.恰有一个红球;都是白球C.至少有一个红球;都是白球D.至多有一个红球;都是红球【解析】选B.对于A,“至少有一个红球”可能为一个红球、一个白球,“至少有一个白球”可能为一个白球、一个红球,故两事件可能同时发生,所以不是互斥事件;对于B,“恰有一个红球”,则另一个必是白球,与“都是白球”是互斥事件,而任取2个球还有都是红球的情形,故两事件不是对立事件;对于C,“至少有一个红球”为都是红球或一红一白,与“都是白球”显然是对立事件;对于D,“至多有一个红球”为都是白球或一红一白,与“都是红球”是对立事件.3.从1,2,…,9中任取两数,其中: ①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述各对事件中,是对立事件的是( A.① B.②④ C.③ D.①③【解析】选C.从1,2,…,9中任取两数,包括一奇一偶、两奇、两偶,共三种互斥事件,所以只有③中的两个事件才是对立事件.4.现有语文、数学、英语、物理和化学共5本书,从中任取1本,记取到语文、数学、英语、物理、化学书分别为事件A、B、C、D、E,则事件取出的是理科书可记为.【解析】由题意可知事件“取到理科书”的可记为B∪D∪E.答案:B∪D∪E5.在投掷骰子试验中,根据向上的点数可以定义许多事件,如:A={出现1点},B={出现3点或4点},C={出现的点数是奇数},D={出现的点数是偶数}.求以上4个事件两两运算的结果.【解析】在投掷骰子的试验中,根据向上出现的点数有6种基本事件,记作A i={出现的点数为i}(其中i=1,2,…,6).则A=A1,B=A3∪A4,C=A1∪A3∪A5,D=A2∪A4∪A6.A∩B=∅,A∩C=A,A∩D=∅.A∪B=A1∪A3∪A4={出现的点数为1或3或4},A∪C=C={出现的点数为1或3或5},A∪D=A1∪A2∪A4∪A6={出现的点数为1或2或4或6}.B∩C=A3={出现的点数为3},B∩D=A4={出现的点数为4}.B∪C=A1∪A3∪A4∪A5={出现的点数为1或3或4或5}.B∪D=A2∪A3∪A4∪A6={出现的点数为2或3或4或6}.C∩D= ,C∪D=A1∪A2∪A3∪A4∪A5∪A6={出现的点数为1,2,3,4,5,6}.(30分钟60分)一、单选题(每小题5分,共20分)1.从一批产品(既有正品也有次品)中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品有次品,但不全是次品},则下列结论中错误的是( A.A与C互斥 B.B与C互斥C.任何两个都互斥D.任何两个都不互斥【解析】选D.由题意知事件A,B,C两两不可能同时发生,因此两两互斥.2.打靶3次,事件A i表示“击中i发”,其中i=0,1,2,3.那么A=A1∪A2∪A3表示(A.全部击中B.至少击中1发C.至少击中2发D.以上均不正确【解析】选B.A1∪A2∪A3所表示的含义是A1,A2,A3这三个事件中至少有一个发生,即可能击中1发、2发或3发.3.同时抛掷两枚均匀的骰子,事件“都不是5点且不是6点”的对立事件为(A.一个是5点,另一个是6点B.一个是5点,另一个是4点C.至少有一个是5点或6点D.至多有一个是5点或6点【解题指南】考虑事件“都不是5点且不是6点”所包含的各种情况,然后再考虑其对立事件.【解析】选C.设两枚骰子分别为甲、乙,则其点数的可能值包括以下四种可能:甲是5点且乙是6点,甲是5点且乙不是6点,甲不是5点且乙是6点,甲不是5点且乙不是6点,事件“都不是5点且不是6点”为第四种情况,故其对立事件是前三种情况.【误区警示】解答本题容易忽视根据两个骰子是否为5点或6点对所有可能出现的结果进行分析,导致错误.【补偿训练】抛掷一枚骰子,记事件A为“落地时向上的点数是奇数”,事件B为“落地时向上的点数是偶数”,事件C为“落地时向上的点数是3的倍数”,事件D为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( A.A与B B.B与CC.A与DD.C与D【解析】选C.A与B互斥且对立;B与C有可能同时发生,即出现6,从而不互斥;A与D不会同时发生,从而A与D互斥,又因为还可能出现2,故A与D不对立;C与D有可能同时发生,从而不互斥.4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一炮弹击中飞机},D={至少有一炮弹击中飞机},下列关系不正确的是( A.A⊆D B.B∩D=C.A∪C=DD.A∪B=B∪D【解析】选 D.“恰有一炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一炮弹击中飞机”包含两种情况:一种是恰有一炮弹击中,一种是两炮弹都击中,所以A∪B≠B∪D.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A:“恰有一件次品”;事件B:“至少有两件次品”;事件C:“至少有一件次品”;事件D:“至多有一件次品”.则选项中结论正确的是( A.A∪B=C B.D∪B是必然事件C.A∪B=BD.A∪D=C【解析】选AB.A∪B表示的事件为至少有一件次品,即事件C,所以A正确,C不正确;D∪B表示的事件为至少有两件次品或至多有一件次品,包括了所有情况,所以B正确;A∪D表示的事件为至多有一件次品,即事件D,所以D不正确.6.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是(A.两球都不是白球B.两球恰有一个白球C.两球至少有一个白球D.两球都是黑球【解析】选ABD.根据题意,结合互斥事件、对立事件的定义可得,选项A,事件“两球都为白球”和事件“两球都不是白球”不可能同时发生,故它们是互斥事件.但这两个事件不是对立事件,因为它们的和事件不是必然事件.选项B,事件“两球都为白球”和事件“两球恰有一个白球”是互斥而非对立事件.选项C,事件“两球都为白球”和事件“两球至少有一个白球”可能同时发生,故它们不是互斥事件;选项D,事件“两球都为白球”和事件“两球都是黑球”是互斥而非对立事件.三、填空题(每小题5分,共10分)7.下列各对事件:①运动员甲射击一次,“射中9环”与“射中8环”;②甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”;③甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”;④甲、乙两运动员各射击一次,“至少有一人射中目标”与“甲射中目标但乙没有射中目标”.其中是互斥事件的有,是包含关系的有.【解析】①甲射击一次“射中9环”与“射中8环”不能同时发生,是互斥事件;②甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”不是同一试验的结果,不研究包含或互斥关系;③甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没有射中目标”不能同时发生,是互斥事件;④甲、乙两运动员各射击一次,“至少有一人射中目标”,即“甲射中目标但乙没有射中目标”或“乙射中目标但甲没有射中目标”或“甲、乙都射中目标”,具有包含关系.答案:①③④8.已知100件产品中有5件次品,从这100件产品中任意取出3件,设E表示事件“3件产品全不是次品”,F表示事件“3件产品全是次品”,G表示事件“3件产品中至少有1件次品”,则下列四个结论正确的是.(填序号)①F与G互斥②E与G互斥但不对立③E,F,G任意两个事件均互斥④E与G对立【解析】由题意得事件E与事件F不可能同时发生,是互斥事件;事件E与事件G不可能同时发生,是互斥事件;当事件F发生时,事件G一定发生,所以事件F与事件G不是互斥事件.故①,③错.事件E与事件G中必有一个发生,所以事件E与事件G对立,所以②错误,④正确.答案:④四、解答题(每小题10分,共20分)9.在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题.(1)请举出符合包含关系、相等关系的事件.(2)利用和事件的定义,判断上述哪些事件是和事件.【解析】(1)因为事件C1,C2,C3,C4发生,则事件D3必发生,所以C1⊆D3,C2⊆D3,C3⊆D3,C4⊆D3. 同理可得,事件E包含事件C1,C2,C3,C4,C5,C6;事件D2包含事件C4,C5,C6;事件F包含事件C2,C4,C6;事件G包含事件C1,C3,C5.且易知事件C1与事件D1相等,即C1=D1.(2)因为事件D2={出现的点数大于3}={出现4点或出现5点或出现6点},所以D2=C4∪C5∪C6(或D2=C4+C5+C6).同理可得,D3=C1+C2+C3+C4,E=C1+C2+C3+C4+C5+C6,F=C2+C4+C6,G=C1+C3+C5,E=F+G,E=D2+D3.10.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件.(1)恰有1名男生与恰有2名男生;(2)至少有1名男生与全是男生;(3)至少有1名男生与全是女生;(4)至少有1名男生与至少有1名女生.【解题指南】判别两个事件是否互斥,就要考察它们是否能同时发生;判别两个互斥事件是否对立,就要考察它们是否必有一个发生.【解析】(1)因为“恰有1名男生”与“恰有2名男生”不可能同时发生,所以它们是互斥事件;当恰有2名女生时它们都不发生,所以它们不是对立事件.(2)因为恰有2名男生时“至少有1名男生”与“全是男生”同时发生,所以它们不是互斥事件.(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们对立.(4)由于选出的是1名男生1名女生时“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.1.如果事件A,B互斥,那么(A.A∪B是必然事件B.∪是必然事件C.与一定互斥D.与一定不互斥【解析】选B.用集合表示法中的“Venn图”解决比较直观,如图所示,∪=I是必然事件.2.从学号为1,2,3,4,5,6的六名同学中选出一名同学担任班长,其中1,3,5号同学为男生,2,4,6号同学为女生,记:C1=“选出1号同学”,C2=“选出2号同学”,C3=“选出3号同学”,C4=“选出4号同学”,C5=“选出5号同学”,C6=“选出6号同学”,D1=“选出的同学学号不大于1”,D2=“选出的同学学号大于4”,D3=“选出的同学学号小于6”,E=“选出的同学学号小于7”,F=“选出的同学学号大于6”,G=“选出的同学学号为偶数”,H=“选出的同学学号为奇数”.据此回答下列问题:(1)上述事件中哪些是必然事件?哪些是随机事件?哪些是不可能事件?(2)如果事件C1发生,则一定有哪些事件发生?(3)两个事件的交事件也可能为不可能事件,在上述事件中有这样的例子吗?【解析】(1)必然事件有:E;随机事件有:C1,C2,C3,C4,C5,C6,D1 ,D2,D3,G,H;不可能事件有:F.(2)如果事件C1发生,则事件D1,D3,E,H一定发生.(3)有,如:C1和C2;C3和C4等.。

新教材(学习指导)10.1.1 有限样本空间与随机事件含解析

新教材(学习指导)10.1.1 有限样本空间与随机事件含解析

第十章概率10.1随机事件与概率10.1.1有限样本空间与随机事件素养目标·定方向素养目标学法指导1.理解样本点和有限样本空间的含义.(数学抽象)2.理解随机事件与样本点的关系.(逻辑推理)1.类比集合的有关概念来认识样本空间. 2.类比集合与集合之间的关系来认识随机事件.必备知识·探新知知识点1随机试验及样本空间1.随机试验的概念和特点(1)随机试验:我们把对__随机现象__的实现和对它的观察称为随机试验,简称试验,常用字母E来表示.(2)随机试验的特点:①试验可以在相同条件下__重复__进行;②试验的所有可能结果是__明确可知__的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间定义字母表示样本点我们把随机试验E的__每个可能的基本结果__称为样本点用__w__表示样本点样本空间全体__样本点__的集合称为试验E的样本空间用__Ω__表示样本空间有限样本空间如果一个随机试验有n个可能结果w1,w2,…,w n,则称样本空间ΩΩ={w1,w2,…,w n}={w1,w2,…,w n}为有限样本空间知识点2三种事件的定义随机事件我们将样本空间Ω的__子集__称为随机事件,简称事件,并把只包含__一个__样本点的事件称为基本事件,随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生必然事件Ω作为自身的子集,包含了__所有的__样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件不可能事件空集∅不包含任何样本点,在每次试验中都不会发生,我们称∅为不可能事件[知识解读]1.随机试验的三个特点(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.关于样本点和样本空间(1)样本点是指随机试验的每个可能的基本结果,全体样本点的集合称为试验的样本空间;(2)只讨论样本空间为有限集的情况,即有限样本空间.3.事件与基本事件(1)随机事件是样本空间的子集.随机事件是由若干个基本事件构成的,当然,基本事件也是随机事件.(2)必然事件与不可能事件不具有随机性,是随机事件的两个极端情形.关键能力·攻重难题型探究题型一事件类型的判断典例1在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)如果a、b都是实数,那么a+b=b+a;(2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;(3)没有水分,种子发芽;(4)某电话总机在60秒内接到至少15个电话;(5)在标准大气压下,水的温度达到50 ℃时会沸腾;(6)同性电荷相互排斥.[分析]依据事件的分类及其定义,在给出的条件下,判断事件是否发生.[解析]结合必然事件、不可能事件、随机事件的定义可知.(1)对任意实数,都满足加法的交换律,故此事件是必然事件.(2)从6张号签中任取一张,得到4号签,此事件可能发生,也可能不发生,故此事件是随机事件.(3)适宜的温度和充足的水分,是种子萌发不可缺少的两个条件,没有水分,种子就不可能发芽,故此事件是不可能事件.(4)电话总机在60秒内接到至少15个电话,此事件可能发生,也可能不发生,故此事件是随机事件.(5)在标准大气压下,水的温度达到100 ℃时,开始沸腾,水温达到50 ℃,水不会沸腾,故此事件是不可能事件.(6)根据“同种电荷相互排斥,异种电荷相互吸引”的原理判断,该事件是必然事件.[归纳提升]判断一个事件是随机事件、必然事件还是不可能事件,首先一定要看条件,其次是看在该条件下所研究的事件是一定发生(必然事件)、不一定发生(随机事件),还是一定不发生(不可能事件).【对点练习】❶指出下列事件是必然事件、不可能事件,还是随机事件:(1)我国东南沿海某地明年将受到3次冷空气的侵袭;(2)抛掷硬币10次,至少有一次正面向上;(3)同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标.[解析](1)我国东南沿海某地明年可能受到3次冷空气侵袭,也可能不是3次,是随机事件.(2)抛掷硬币10次,也可能全是反面向上,也可能有正面向上,是随机事件.(3)同一门炮向同一目标发射,命中率可能是50%,也可能不是50%,是随机事件.题型二确定试验的样本空间典例2下列随机事件中,一次试验各指什么?试写出试验的样本空间.(1)先后抛掷两枚质地均匀的硬币多次;(2)从集合A={a,b,c,d}中任取3个元素;(3)从集合A={a,b,c,d}中任取2个元素.[解析](1)一次试验是指“先后抛掷两枚质地均匀的硬币一次”,试验的样本空间为:{(正,反),(正,正),(反,反),(反,正)}.(2)一次试验是指“从集合A中一次选取3个元素组成集合”,试验的样本空间为:{(a,b,c),(a,b,d),(a,c,d),(b,c,d)}.(3)一次试验是指“从集合A中一次选取2个元素”,试验的样本空间为:{(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)}.[归纳提升]不重不漏地列举试验的所有样本点的方法(1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确试验中的条件.(2)根据日常生活经验,按照一定的顺序列举出所有可能的结果,可应用画树状图、列表等方法解决.【对点练习】❷袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和样本空间.(1)从中任取1球;(2)从中任取2球.[解析](1)条件为:从袋中任取1球.样本空间为{红,白,黄,黑}.(2)条件为:从袋中任取2球.若记(红,白)表示一次试验中,取出的是红球与白球,样本空间为{(红,白),(红,黄),(红,黑),(白,黄),(白,黑),(黄,黑)}.题型三随机事件的表示典例3一个口袋内装有除颜色外完全相同的5个球,其中3个白球,2个黑球,从中一次摸出2个球.(1)一共有多少个样本点?(2)写出“2个球都是白球”这一事件的集合表示.[解析](1)分别记白球为1,2,3号,黑球为4,5号,则这个试验的样本点为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个[其中(1,2)表示摸到1号球和2号球].(2)记A表示“2个球都是白球”这一事件,则A={(1,2),(1,3),(2,3)}.[归纳提升]1.判随机事件的结果是相对于条件而言的,要确定样本空间,(1)必须明确事件发生的条件;(2)根据题意,按一定的次序列出所有样本点.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.2.试验中当试验的结果不唯一时,一定要将各种可能都要考虑到,尤其是有顺序和无顺序的情况最易出错.【对点练习】❸做抛掷红、蓝两枚骰子的试验,用(x,y)表示结果,其中x表示红色骰子出现的点数,y表示蓝色骰子出现的点数.写出:(1)这个试验的样本空间;(2)这个试验的结果的个数;(3)指出事件A={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}的含义;(4)写出“点数之和大于8”这一事件的集合表示.[解析](1)这个试验的样本空间Ω为{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}.(2)这个试验的结果的个数为36.(3)事件A的含义为抛掷红、蓝两枚骰子,掷出的点数之和为7.(4)记B=“点数之和大于8”,则B={(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)}.易错警示忽视试验结果与顺序的关系而致误典例4已知集合M={-2,3},N={-4,5,6},从这两个集合中各取一个元素分别作为点的横、纵坐标.(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件的总数.[错解](1)这个试验的基本事件空间Ω={(-2,-4),(-2,5),(-2,6),(3,-4),(3,5),(3,6)}.(2)这个试验的基本事件的总数是6.[错因分析]题中要求从两个集合中各取一个元素分别作为点的横、纵坐标,所以集合N 中的元素也可以作为横坐标,错解中少了以下基本事件:(-4,-2),(-4,3),(5,-2),(5,3),(6,-2),(6,3).[正解](1)这个试验的基本事件空间Ω={(-2,-4),(-2,5),(-2,6),(3,-4),(3,5),(3,6),(-4,-2),(-4,3),(5,-2),(5,3),(6,-2),(6,3)}.(2)这个试验的基本事件的总数是12.【对点练习】❹同时抛掷两枚大小相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点的个数是(D)A.3B.4C.5D.6[解析](1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个样本点.。

高中数学必修二课件:随机事件与概率 习题课

高中数学必修二课件:随机事件与概率 习题课

2.事件A与事件B的关系如图所示,则( C )
A.A⊆B C.A与B互斥
B.A⊇B D.A与B互为对立事件
解析 由题图知,事件A与事件B不能同时发生,且A∪B≠Ω,因此A与B互 斥不对立,故选C.
3.从分别写有A,B,C,D,E的5张卡片中任取2张,这2张卡片上的字母
恰好是按字母顺序相邻的概率为 ( B )
4.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄
5
球.从中一次随机摸出2只球,则这2只球颜色不同的概率为____6____.
解析 从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色不同 有5种结果,故所求概率为56.
5.为了对某课题进行研究,用分层随机抽样方法从三所高校A,B,C的相
【解析】 (1)设该厂这个月共生产轿车n辆. 则5n0=1001+0300,所以n=2 000. 则z=2 000-100-300-150-450-600=400. (2)设所抽样本中有a辆舒适型轿车, ∴1400000=a5,则a=2.
因此抽取的容量为5的样本中有2辆舒适型轿车,3辆标准型轿车,用A1,A2 表示2辆舒适型轿车,用B1,B2,B3表示3辆标准型轿车,用E表示“在该样本中 任取2辆,其中至少有一辆舒适型轿车”,则样本空间中包含的基本事件有 (A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1, B2),(B1,B3),(B2,B3),共10个.
性别
选考方案确定情况 物理 化学 生物 历史 地理 政治
选考方案确定的有5人 5
5
2
1
2
0
男生
选考方案待确定的有7人 6
4

人教版高中数学必修第二册10.1随机事件与概率 一课一练 同步训练(含答案)

人教版高中数学必修第二册10.1随机事件与概率 一课一练 同步训练(含答案)

人教版高中数学必修第二册10.1随机事件与概率一课一练同步训练(时间:45分钟分值:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.以下事件是随机事件的是()A.在标准大气压下,水加热到100℃,必会沸腾B.长和宽分别为a,b的矩形,其面积为a×bC.走到十字路口,遇到红灯D.三角形的内角和为180°2.下列事件中随机事件的个数是()①同性电荷,互相排斥;②明天天晴;③自由下落的物体做匀速直线运动;④函数y=log a x(a>0,且a≠1)在定义域上是增函数.A.0B.1C.2D.33.甲、乙两队准备进行一场足球赛,根据以往的经验知甲队获胜的概率是12,两队打平的概率是16,则这次比赛乙队不输的概率是()A.16B.13C.12D.564.从装有20个红球和30个白球的罐子里任取两个球,下列各组中的两个事件互斥而不对立的是()A.“至少有一个红球”和“至少有一个白球”B.“恰有一个红球”和“都是白球”C.“至少有一个红球”和“都是白球”D.“至多有一个红球”和“都是红球”5.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是()A.23B.25C.12D.136.某中学举行广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了从1到10共10个出场序号签供大家抽签,高一(1)班先抽,则他们抽到的出场序号小于4的概率为() A.710B.15C.25D.3107.在一次随机试验中,已知A,B,C三个事件发生的概率分别为0.2,0.3,0.5,则下列说法一定正确的是()A.B与C是互斥事件B.A+B与C是对立事件C.A+B+C是必然事件D.0.3≤P(A+B)≤0.58.若a,b∈{-1,0,1,2},则函数f(x)=ax2+2x+b有零点的概率为()A.1316B.78C.34D.58二、填空题(本大题共4小题,每小题5分,共20分)9.某战士射击一次中靶的概率为0.95,中靶环数大于5的概率为0.75,则中靶环数大于0且小于6的概率为.(只考虑整数环数)10.记事件A=“某人射击一次中靶”,且P(A)=0.92,则事件A的对立事件是,它发生的概率是.11.按文献记载,《百家姓》成书于北宋初年,表1记录了《百家姓》开头的24大姓氏:表1赵钱孙李周吴郑王冯陈褚卫蒋沈韩杨朱秦尤许何吕施张表2记录了2018年中国人口最多的前10大姓氏:表21:李2:王3:张4:刘5:陈6:杨7:赵8:黄9:周10:吴从《百家姓》开头的24大姓氏中随机选取1个姓氏,则这个姓氏是2018年中国人口最多的前10大姓氏之一的概率为.12.把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,事件“甲分得红牌”与“乙分得红牌”是.(填序号)①对立事件;②不可能事件;③互斥但不对立事件;④对立但不互斥事件.三、解答题(本大题共3小题,共40分)13.(10分)已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率.14.(15分)在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为12,中二等奖或三等奖的概率为512.(1)求任取一张,中一等奖的概率;(2)若中一等奖或二等奖的概率是14,求任取一张,中三等奖的概率.15.(15分)学校组织学生参加某项比赛,参赛选手必须有很好的语言表达能力和文字组织能力.学校对10位已入围的学生进行语言表达能力和文字组织能力的测试,测试成绩分为A,B,C三个等级,其统计结果如下表:语言表达能力A B C文字组织能力A220B1a1C01b由于部分数据丢失,只知道从这10位参加测试的学生中随机抽取一位,抽到语言表达能力或文字组织能力为C的学生的概率为310.(1)求a,b的值;(2)从测试成绩均为A或B的学生中任意抽取2位,求其中至少有一位语言表达能力或文字组织能力为A的学生的概率.参考答案与解析1.C[解析]在A中,在标准大气压下,水加热到100℃,必会沸腾,该事件是必然事件;在B 中,长和宽分别为a,b的矩形,其面积为a×b,该事件是必然事件;在C中,走到十字路口,遇到红灯,该事件是随机事件;在D中,三角形的内角和为180°,该事件是必然事件.故选C.2.C[解析]由随机事件、必然事件、不可能事件的定义可知,②④是随机事件,①是必然事件,③是不可能事件.故选C.3.C[解析]由题意,“甲队获胜”与“乙队不输”是对立事件,因为甲队获胜的概率是12,所以这次比赛乙队不输的概率是1-12=12,故选C.4.B[解析]易知A选项中的两个事件可以同时发生,故不互斥;C,D选项中的两个事件为对立事件;B选项中的两个事件互斥,但事件“都是红球”也有可能发生,故不对立.故选B.5.B[解析]将大小材质完全相同的3个红球和3个黑球分别记为A1,A2,A3,a1,a2,a3,随机摸出两个小球,则试验的样本空间为Ω={A1A2,A1A3,A1a1,A1a2,A1a3,A2A3,A2a1,A2a2,A2a3,A3a1,A3a2,A3a3,a1a2,a1a3,a2a3},共包含15个样本点,其中“两个小球同色”包含的样本点有A1A2,A1A3,A2A3,a1a2,a1a3,a2a3,共6个,所以两个小球同色的概率P=615=25,故选B.6.D[解析]由题知样本空间中样本点的个数n=10,事件“高一(1)班抽到的出场序号小于4”包含的样本点的个数m=3,∴所求概率P= =310.故选D.7.D[解析]在A中,B与C有可能同时发生,不一定是互斥事件,故A错误;在B中,A+B和C 有可能同时发生,不一定是对立事件,故B错误;在C中,A,B,C不一定是互斥事件,故A+B+C 不一定是必然事件,故C错误;在D中,A,B,C不一定是互斥事件,∴P(A+B)≤0.5,∴0.3≤P(A+B)≤0.5,故D正确.故选D.8.A[解析]方法一:易知该试验共有16个样本点,当a=0时,f(x)=2x+b,无论b取{-1,0,1,2}中的何值,函数f(x)必有零点,所以满足条件的取法有4种,故有4个样本点符合要求;当a≠0时,函数f(x)=ax2+2x+b为二次函数,要使f(x)有零点,须有Δ≥0,即4-4ab≥0,即ab≤1,所以a,b取值组成的数对可以为(-1,0),(1,0),(2,0),(-1,1),(-1,-1),(1,1),(1,-1),(-1,2),(2,-1),故满足条件的样本点有9个.综上,符合条件的样本点的个数为13,故所求概率为1316,故选A.方法二(排除法):易知该试验共有16个样本点,要使函数f(x)无零点,须有a≠0且Δ<0,即ab>1,所以a,b取值组成的数对可以为(1,2),(2,1),(2,2),故有3个样本点符合条件.所以所求概率为1-316=1316,故选A.9.0.2[解析]因为“中靶环数大于5”与“中靶环数大于0且小于6”是互斥事件,且两个事件的和事件为“射击一次中靶”,因此中靶环数大于0且小于6的概率为0.95-0.75=0.2.10.“某人射击一次未中靶”0.08[解析]事件A=“某人射击一次中靶”,则事件A的对立事件为“某人射击一次未中靶”,它发生的概率P( )=1-P(A)=1-0.92=0.08.11.13[解析]由题意得《百家姓》开头的24大姓氏中,是2018年中国人口最多的前10大姓氏的有8个,∴从《百家姓》开头的24大姓氏中随机选取1个姓氏,则这个姓氏是2018年中国人口最多的前10大姓氏之一的概率P=824=13.12.③[解析]根据题意,把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,每人分得1张纸牌,事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,故它们是互斥事件;又事件“丙分得红牌”与事件“丁分得红牌”也是有可能发生的,故事件“甲分得红牌”与事件“乙分得红牌”不是对立事件.故两事件之间的关系是互斥但不对立.13.解:记“甲射击一次,命中7环(不含7环)以下”为事件A,则P(A)=1-0.56-0.22-0.12=0.1;记“甲射击一次,命中7环”为事件B,则P(B)=0.12.由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件.(1)事件“甲射击一次,命中不足8环”即为A+B,由互斥事件的概率加法公式,知P(A+B)=P(A)+P(B)=0.1+0.12=0.22,故甲射击一次,命中不足8环的概率是0.22.(2)方法一:记“甲射击一次,命中8环”为事件C,“甲射击一次,命中9环(含9环)以上”为事件D,则事件“甲射击一次,至少命中7环”为B+C+D,则P(B+C+D)=P(B)+P(C)+P(D)=0.12+0.22+0.56=0.9,故甲射击一次,至少命中7环的概率为0.9.方法二:因为“甲射击一次,至少命中7环”为事件 ,所以P( )=1-P(A)=1-0.1=0.9,故甲射击一次,至少命中7环的概率为0.9.14.解:(1)设任取一张,中一等奖、中二等奖、中三等奖、不中奖分别为事件A,B,C,D,则A,B,C,D是互斥事件,由题意得P(D)=12,P(B+C)=P(B)+P(C)=512,由对立事件的概率公式得P(A)=1-P(B+C+D)=1-P(B+C)-P(D)=1-512-12=112,∴任取一张,中一等奖的概率为112.(2)∵P(A+B)=14,又P(A+B)=P(A)+P(B),∴P(B)=14-112=16,又P(B+C)=P(B)+P(C)=512,∴P(C)=14,∴任取一张,中三等奖的概率为14.15.解:(1)依题意可知语言表达能力或文字组织能力为C的学生共有(b+2)人,所以 +210=310,解得b=1,因为2+2+1+a+1+1+b=10,所以a=2.(2)测试成绩均为A或B的学生共有7人,其中语言表达能力和文字组织能力均为B的有2人,设为b1,b2,其余5人设为a1,a2,a3,a4,a5.从这7人中任取2人,则该试验的样本空间Ω={(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a 2,b2),(a3,a4),(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2)},样本点的个数为21,“选出的2人的语言表达能力和文字组织能力均为B”包含的样本点有(b1,b2),共1个,所以至少有一位语言表达能力或文字组织能力为A的学生的概率P=1-121=2021.。

人教A版(2019)必修第二册《随机事件与概率》同步练习

人教A版(2019)必修第二册《随机事件与概率》同步练习

人教A版(2019)必修第二册《10.1 随机事件与概率》同步练习一、单选题(本大题共12小题,共72分)1.(6分)将一枚骰子抛掷3次,则最大点数与最小点数之差为3的概率是()A. 13B. 14C. 15D. 162.(6分)甲、乙、丙、丁四位同学竞选数学课代表和化学课代表(每科课代表只能由一人担任,且同一个人不能任两科课代表),则甲、丙竞选成功的概率为()A. 16B. 14C. 13D. 123.(6分)某班有6名班干部,其中4名男生,2名女生.从中选出3人参加学校组织的社会实践活动,在男生甲被选中的情况下,女生乙也被选中的概率为()A. 25B. 35C. 12D. 234.(6分)将骰子抛2次,其中向上的数之和是5的概率是()A. 19B. 14C. 136D. 975.(6分)从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是()A. 至少有一个黑球与都是黑球B. 至少有一个黑球与至少有一个红球C. 恰有一个黑球与恰有两个黑球D. 至少有一个黑球与都是红球6.(6分)2013年5月,华人数学家张益唐教授发表论文《素数间的有界距离》,破解了“孪生素数猜想”这一世纪难题,证明了孪生素数猜想的弱化形式.孪生素数就是指相差2的素数对,最小的6对孪生素数是{ 3,5},{ 5,7},{ 11,13},{ 17,19},{ 29,31},{ 41,43}.现从这6对孪生素数中取2对进行研究,则取出的4个素数的和大于100的概率为()A. 13B. 15C. 16D. 257.(6分)从装有5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是()A. 恰有一个红球与恰有两个红球B. 至少有一个红球与都是白球C. 至少有一个红球与至少有个白球D. 至少有一个红球与都是红球8.(6分)某校高一共有20个班,编号为01,02,…,20,现用抽签法从中抽取3个班进行调查,设高一(1)班被抽到的可能性为a,高一(2)班被抽到的可能性为b,则()A. a=320,b=219B. a=120,b=119C. a=320,b=320D. a=120,b=1199.(6分)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A. 恰有1个黑球与恰有2个黑球B. 至少有一个黑球与都是黑球C. 至少有一个黑球与至少有1个红球D. 至多有一个黑球与都是黑球10.(6分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和小于10的概率是()A. 16B. 56C. 23D. 3411.(6分)将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是3的倍数但不是2的倍数的概率为()A. 112B. 211C. 16D. 51812.(6分)从分别写有1,2,3的三张卡片中随机抽取一张,放回后再随机抽取一张,连续抽取4次,则恰好有2次抽到的卡片上的数字为奇数的概率为()A. 481B. 881C. 827D. 3281二、填空题(本大题共6小题,共33分)13.(6分)现有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加同一个兴趣小组的概率为_____.14.(6分)随着第二十四届冬奥会在北京和张家口成功举办,冬季运动项目在我国迅速发展.调查发现A,B两市擅长滑雪的人分别占全市人口的6%,5%,这两市的人口数之比为4:6.现从这两市随机选取一个人,则此人恰好擅长滑雪的概率为 ______. 15.(6分)甲、乙两人对局,甲获胜的概率为0.30,两人对成平局的概率为0.25,则甲不输的概率为 ___________.16.(5分)从8名女生和4名男生中选出6名学生组成课外活动小组,则按4位女生和2位男生组成课外活动小组的概率为______.17.(5分)宋元时期是我国古代数学非常辉煌的时期,其中秦九韶、李治、杨辉、朱世杰并称宋元数学四大家,其代表作有秦九韶的《数书九章》,李治的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.现有数学著作《数书九章》,《测圆海镜》,《益古演段》,《详解九章算法》,《杨辉算法》,《算学启蒙》,《四元玉鉴》,共七本,从中任取2本,至少含有一本杨辉的著作的概率是 ______ .18.(5分)随机投掷三枚正方体骰子,则其中有两枚骰子出现点数之和为7的概率为______.三、多选题(本大题共4小题,共20分)19.(5分)一个不透明的袋子中装有6个小球,其中有4个红球,2个白球,这些球除颜色外完全相同,则下列结论中正确的有()A. 若一次摸出3个球,则摸出的球均为红球的概率是25B. 若一次摸出3个球,则摸出的球为2个红球,1个白球的概率是35C. 若第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球,则两次摸出的球为不同颜色的球的概率是49D. 若第一次摸出一个球,不放回袋中,再次摸出一个球,则两次摸出的球为不同颜色的球的概率是3520.(5分)如图是一个古典概型的样本空间Ω和事件A和B,其中n(Ω)=24,n(A)= 12,n(B)=8,n(A∪B)=16,下列运算结果,正确的有()A. n(AB)=4B. P(AB)=16C. P(A∪B)=2D. P(−A−B)=12321.(5分)若A,B为互斥事件,P(A),P(B)分别表示事件A,B发生的概率,则下列说法正确的是()A. P(A)+P(B)<1B. P(A)+P(B)⩽1C. P(A∪B)=1D. P(A∩B)=022.(5分)从装有两个红球和三个黑球的口袋里任取两个球,那么不互斥的两个事件是()A. “至少有一个黑球”与“都是黑球”B. “至少有一个黑球”与“至少有一个红球”C. “恰好有一个黑球”与“恰好有两个黑球”D. “至少有一个黑球”与“都是红球”四、解答题(本大题共5小题,共25分)23.(5分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1、抽奖方案有以下两种:方案a,从装有1个红球、2个白球(仅颜色不同)的甲袋中随机摸出1个球,若是红球,则获得奖金15元,否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b,从装有2个红、1个白球(仅颜色不同)的乙袋中随机摸出1个球,若是红球,则获得奖金10元,否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件是:顾客购买商品的金额满100元,可根据方案a抽奖一;满足150元,可根据方案b抽奖(例如某顾客购买商品的金额为310元,则该顾客采用的抽奖方式可以有以下三种,根据方案a抽奖三次或方案b抽奖两次或方案a,b各抽奖一次).已知顾客A在该商场购买商品的金额为250元.(1)若顾客A只选择根据方案a进行抽奖,求其所获奖金为15元的概率;(2)当若顾客A采用每种抽奖方式的可能性都相等,求其最有可能获得的奖金数(0元除外).24.(5分)在流行病学调查中,潜伏期指自病原体侵入机体至最早临床症状出现之间的一段时间.某地区一研究团队从该地区500名A病毒患者中,按照年龄是否超过60岁进行分层抽样,抽取50人的相关数据,得到如表格:(2)以各组的区间中点值为代表,计算50名患者的平均潜伏期(精确到0.1);(3)从样本潜伏期超过10天的患者中随机抽取两人,求这两人中恰好一人潜伏期超过12天的概率.25.(5分)据历年大学生就业统计资料显示:某大学理工学院学生的就业去向涉及公务员、教师、金融、商贸、公司和自主创业等六大行业.2020届该学院有数学与应用数学、计算机科学与技术和金融工程等三个本科专业,毕业生人数分别是70人,140人和210人.现采用分层抽样的方法,从该学院毕业生中抽取18人调查学生的就业意向.(Ⅰ)应从该学院三个专业的毕业生中分别抽取多少人?(Ⅰ)国家鼓励大学生自主创业,在抽取的18人中,含有“自主创业”就业意向的有6人,且就业意向至少有三个行业的学生有7人.为方便统计,将至少有三个行业就业意向的这7名学生分别记为A、B、C、D、E、F、G,统计如下表:其中“○”表示有该行业就业意向,“×”表示无该行业就业意向.(1)试估计该学院2020届毕业生中有自主创业意向的学生人数;(2)现从A、B、C、D、E、F、G这7人中随机抽取2人接受采访.设M为事件“抽取的2人中至少有一人有自主创业意向”,求事件M发生的概率.26.(5分)甲、乙两人玩一种猜数游戏,每次由甲、乙各出1到4中的一个数,若两个数的和为偶数算甲赢,否则算乙赢.(1)若事件A表示“两个数的和为5”,求P(A);(2)现连玩三次,若事件B表示“甲至少赢一次”,事件C表示“乙至少赢两次”,试问B与C是不是互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.27.(5分)做抛掷红、蓝两枚骰子的试验,用(x,y)表示结果,其中x表示红色骰子出现的点数,y表示蓝色骰子出现的点数.写出:(1)这个试验的样本空间Ω;(2)这个试验的结果的个数;(3)指出事件A={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}的含义.答案和解析1.【答案】D;【解析】解:将一枚骰子抛掷3次,基本事件总数n=6×6×6=216,最大点数与最小点数之差为3包含三种情况:①取最小点为1,最大点为4,另外1个点数可能为1,2,3,4,包含的基本事件个数为C32C41=12,②取点最小点为2,最大点为5,另外1个点数可能为2,3,4,5,包含的基本事件个数为C32C41=12,③取点最小点为3,最大点为6,另外1个点数可能为3,4,5,6,包含的基本事件个数为C32C41=12,则最大点数与最小点数之差为3的概率是:P=12+12+12216=16.故选:D.将一枚骰子抛掷3次,基本事件总数n=6×6×6=216,最大点数与最小点数之差为3包含三种情况:①取最小点为1,最大点为4,另外1个点数可能为1,2,3,4,包含的基本事件个数为C32C41=12,②取点最小点为2,最大点为5,另外1个点数可能为2,3,4,5,包含的基本事件个数为C32C41=12,③取点最小点为3,最大点为6,另外1个点数可能为3,4,5,6,包含的基本事件个数为C32C41=12,由此能求出最大点数与最小点数之差为3的概率.该题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.2.【答案】A;【解析】解:包括的基本事件为:(甲,乙)、(乙,甲)、(甲,丙)、(丙,甲),(甲,丁)(丁,甲)、(乙,丙)(丙,乙)、(乙,丁)、(丁,乙)(丙,丁)、(丁,丙),共12个,甲、丙竞选成功包括的基本事件为:(甲,丙)、(丙,甲),共2个,故甲、丙竞选成功的概率为P=212=16.故选:A.利用列举法求出包括的基本事件总和和甲、丙竞选成功包括的基本事件个数,由此能求出甲、丙竞选成功的概率.此题主要考查概率的运算,考查古典概型、列举法等基础知识,考查运算求解能力等数学核心素养,是基础题.3.【答案】A;【解析】解:设事件A 表示“男生甲被选中”,事件B 表示“女生乙被选中”, 则P(A)=C 11C 52C 63=12,P(AB )=C 22C 41C 63=15,∴P(A)=P(AB )P(A)=1512=25.故选:A.设事件A 表示“男生甲被选中”,事件B 表示“女生乙被选中”,推导出P(A)=C 11C 52C 63=12,P(AB )=C 22C 41C 63=15,由此利用条件概率计算公式能求出在男生甲被选中的情况下,女生乙也被选中的概率.此题主要考查概率的求法,考查条件概率等基础知识,考查运算求解能力,是基础题.4.【答案】A;【解析】解:由题意知本题是一个古典概型,∵试验发生包含的所有事件由分步计数原理知有6×6=36种结果,满足条件的事件是向上点数之和是5,列举出结果包括(1,4)(2,3)(3,2)(4,1)共有4种结果, ∴由古典概型公式得到P =436=19, 故选A .由题意知本题是一个古典概型,试验发生包含的所有事件由分步计数原理知有6×6种结果,满足条件的事件是向上点数之和是5,列举出结果,根据古典概型公式得到结果. 在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.5.【答案】C; 【解析】该题考查互斥事件与对立事件.首先要求理解互斥事件和对立事件的定义,理解互斥事件与对立事件的联系与区别.同时要能够准确列举某一事件所包含的基本事件.属于简单题.列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可解:对于A :事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:两个都是黑球,∴这两个事件不是互斥事件,∴A 不正确对于B :事件:“至少有一个黑球”与事件:“至少有一个红球”可以同时发生,如:一个红球一个黑球,∴B 不正确对于C :事件:“恰好有一个黑球”与事件:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是红球,∴两个事件是互斥事件但不是对立事件,∴C 正确对于D :事件:“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生,∴这两个事件是对立事件,∴D不正确故选:C.6.【答案】B;【解析】此题主要考查了古典概型的计算与应用.注意事件的无漏无缺,属于基础题.先找出符合题意得所有事件,再找符合题意的事件.利用古典概型的计算,计算得结论.解:从6对李生素数中取出2对,有\left{ 3,5}和\left{ 5,7},\left{ 3,5}和\left{ 11,13},\left{ 3,5}和\left{ 17,19},\left{ 3,5}和\left{ 29,31},\left{ 3,5}和{ 41,43},\left{ 5,7}和\left{ 11,13},\left{ 5,7}和\left{ 17,19},\left{ 5,7}和\left{ 29,31},\left{ 5,7}和{ 41,43},\left{ 11,13}和\left{ 17,19},\left{ 11,13}和\left{ 29,31},\left{ 11,13}和{ 41,43},\left{ 17,19}和\left{ 29,31},\left{ 17,19}和{ 41,43},\left{ 29,31}和{ 41,43},所以6对孪生素数中取出2对共有15种不同取法,其中4个素数的和大于100的有{ 41,43}和{ 29,31},{ 41,43}和{ 17,19},{ 41,43}和{ 11,13},共3种不同取法,则其概率为315=15.故选B.7.【答案】A;【解析】该题考查互斥事件、对立事件的定义等基础知识,是基础题.利用互斥事件、对立事件的定义直接求解.解:从装有5个红球和3个白球的口袋内任取3个球,在A中,恰有一个红球与恰有两个红球既不能同时发生,也不能同时不发生,是互斥而不对立事件,故A正确;在B中,至少有一个红球与都是白球是对立事件,故B错误;在C中,至少有一个红球与至少有个白球能同时发生,不是互斥事件,故C错误;在D中,至少有一个红球与都是红球能同时发生,不是互斥事件,故D错误.故选:A.8.【答案】C;【解析】解:由抽签法特征知:每个班被抽到的可能性均相等,则a=b=320.故选:C.根据抽样的等可能性可直接得到结果.此题主要考查抽签法的概念,属于基础题.9.【答案】A;【解析】解:从装有2个红球和2个黑球的口袋中任取2个球,包括3种情况:①恰有一个黑球,②恰有两个黑球,③没有黑球.故恰有一个黑球与恰有两个黑球不可能同时发生,它们是互斥事件,再由这两件事的和不是必然事件,故他们是互斥但不对立的事件,故选:A.依据互斥事件与对立事件的定义,以及它们的关系,判断.这道题主要考查互斥事件与对立事件的定义,以及它们的关系,属于基础题.10.【答案】B;【解析】此题主要考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.先后抛掷两次,基本事件总数n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,利用列举法能求出出现向上的点数之和不小于10包含的基本事件有6个,由此利用对立事件概率计算公式能求出出现向上的点数之和小于10的概率.解:将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,基本事件总数n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有6个,分别为:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),∴出现向上的点数之和小于10的概率是:p=1−636=56,故选B.11.【答案】C;【解析】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数n=6×6=36,点数之和是3的倍数但不是2的倍数包含的基本事件有:(1,2),(2,1),(3,6),(4,5),(5,4),(6,3),共6个, 则点数之和是3的倍数但不是2的倍数的概率为P =636=16. 故选:C.基本事件总数n =6×6=36,再利用列举法求出点数之和是3的倍数但不是2的倍数包含的基本事件的个数,由此能求出点数之和是3的倍数但不是2的倍数的概率. 此题主要考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.12.【答案】C;【解析】解:∵每次抽到的卡片上的数字为奇数的概率为23,∴恰好有2次抽到的卡片上的数字为奇数的概率为P =C 42⋅(23)2×(13)2=827.故选:C.由于每次抽到的卡片上的数字为奇数的概率为23,所以连续抽取4次,则恰好有2次抽到的卡片上的数字为奇数的概率可用P =C 42⋅(23)2×(13)2进行求解.此题主要考查古典概型概率计算公式,涉及独立事件的概率,考查学生的逻辑推理和运算求解的能力,属于基础题.13.【答案】13 ; 【解析】此题主要考查相互独立事件的概率,等可能事件的概率,属于基础题.由于每位同学参加各个小组的可能性相同,故这两位同学同时参加一个兴趣小组的概率为 3×(13 ×13 ),运算求得结果.解:由于每位同学参加各个小组的可能性相同,故这两位同学同时参加一个兴趣小组的概率为 3×(13 ×13 )=13 , 故答案为13 .14.【答案】0.054;【解析】解:设此人恰好擅长滑雪为事件A , 则P(A)=6%×44+6+5%×64+6=0.054, 故答案为:0.054.利用相互独立事件概率乘法公式直接求解.此题主要考查概率的运算,考查相互独立事件概率乘法公式,是基础题.15.【答案】0.55;【解析】此题主要考查随机事件的概率的计算,正确理解互斥事件及其概率加法公式是解答该题的关键.解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=0.3+0.25=0.55.故答案为0.55.16.【答案】511;【解析】解:从8名女生和4名男生中选出6名学生组成课外活动小组,基本事件总数n=C126,按4位女生和2位男生组成课外活动小组包含的基本事件个数m=C84C42,∴按4位女生和2位男生组成课外活动小组的概率为p=mn =C84C42C126=511.故答案为:511.基本事件总数n=C126,按4位女生和2位男生组成课外活动小组包含的基本事件个数m=C84C42,由此能求出按4位女生和2位男生组成课外活动小组的概率.该题考查概率的求法,考查排列组合、古典概型等基础知识,考查运算求解能力,是中档题.17.【答案】1121;【解析】解:共七本,从中任取2本,共有C72=21种,一本也不含杨辉的著作的共有C52=10种,所以从中任取2本,至少含有一本杨辉的著作的概率是1121.故答案为:1121.先求出一本也不含杨辉的著作的概率,再由对立事件的概率求解即可.此题主要考查了古典概型问题的求解,涉及了对立事件概率的求解,解答该题的关键是求出总的基本事件数以及满足条件的基本事件数,属于基础题.18.【答案】512;【解析】本小题主要考查随机事件、等可能事件的概率等基础知识,考查运算求解能力,属于中档题 .古典概率的求法,关键是找到所有基本事件存在的情况.解:随机投掷三枚正方体骰子共有63=216种可能,考虑7=1+6=2+5=3+4;投掷三枚正方体骰子,有两枚骰子出现1和6的可能有6×6−6=30种,分为(1,6,x),(1,x,6),(6,1,x),(6,x,1),(x,1,6),(x,6,1)6种可能,其中(1,6,1),(1,6,6),(1,1,6),(6,1,1),(6,1,6),(6,6,1)重复出现;同理投掷三枚正方体骰子,有2粒骰子出现2和5的可能与有两枚骰子出现3和4的可能均为30种,所以投掷3粒骰子,其中有2粒骰子出现点数之和为7的有3×30=90种可能;所以所求概率为90216=512.故答案为512.19.【答案】BC;【解析】解:对于A,总事件数是C63=20,摸出的球均为红球的事件数为C43=4,所以摸出的球均为红球的概率是15,故选项A错误;对于B,总事件数是C63=20,摸出的球为2个红球,1个白球的事件数为C42.C21=12,所以摸出的球为2个红球,1个白球的概率是35,故选项B正确;对于C,①若第一次摸出红球,第二次摸出白球,则概率为46×26=836;②若第一次摸出白球,第二次摸出红球,则概率为26×46=836.故两次摸出的球为不同颜色的球的概率是8 36+836=49,故选项C正确;对于D,①若第一次摸出红球,第二次摸出白球,则概率为46×25=830,②若第一次摸出白球,第二次摸出红球,则概率为26×45=830.故两次摸出的球为不同颜色的球的概率是8 30+830=815,故选项D错误.故选:BC.求出总事件数以及摸出的球均为红球的事件数,由概率公式求解即可判断选项A,求出总事件数和摸出的球为2个红球,1个白球的事件数,由概率公式求解即可判断选项B,分两种情况:,①若第一次摸出红球,第二次摸出白球;②若第一次摸出白球,第二次摸出红球,分别求出其概率相加即可判断选项C,D.此题主要考查了概率问题的求解,主要考查了古典概型公式的应用以及分步计数原理和分类计数原理的应用,属于中档题.20.【答案】ABC;【解析】解:对于A,∵n(A∪B)=n(A)+n(B)−n(AB),∴n(AB)=n(A)+n(B)−n(A∪B)=4.故A正确;对于B,P(AB)=n(AB)n(Ω)=424=16,故B正确;对于C,P(A∪B)=n(A∪B)n(Ω)=1624=23,故C正确;对于D,∵n(−A−B)=n(Ω)−n(A∪B)=24−16=8,∴P(−A−B)=n(−A−B)n(Ω)=824=13,故D错误.故选:ABC.利用互斥事件概念直接判断.此题主要考查命题真假的判断,考查互斥事件、韦恩图等基础知识,考查推理论证能力,是基础题.21.【答案】BD;【解析】解:∵A,B为互斥事件,P(A),P(B)分别表示事件A,B发生的概率,∴P(A)+P(B)⩽1,P(A∩B)=0,故A错误,B正确,C错误,D正确.故选:BD.利用互斥事件概率加法公式和互斥事件的性质直接判断.此题主要考查命题真假的判断,考查互斥事件概率加法公式和互斥事件的性质等基础知识,考查运算求解能力,是基础题.22.【答案】AB;【解析】此题主要考查互斥事件与对立事件,是基础题,解题时要认真审题,注意对立事件、互斥事件的定义的合理运用.利用对立事件、互斥事件的定义求解即可.解:从装有两个红球和三个黑球的口袋里任取两个球,在A中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A正确;在B中,“至少有一个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B正确;在C中,“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故C错误;在D中,“至少有一个黑球”与“都是红球”是对立事件,故D错误.故选AB.23.【答案】解:(1)记甲袋中红球是r,白球分别为w1,w2由题意得顾客A可以从甲袋中先后摸出2个球,其所有等可能出现的结果为:(r,r),(r,w1),(r,w2),(w1,r),(w1,w1),(w1,w2),(w2,r),(w2,w1),(w2,w2)共9种,其中结果(r,w1),(r,w2),(w1,r),(w2,r)可获奖金15元,所以顾客A所获奖金为15元的概率为4.9(2)由题意的顾客A可以根据方案a抽奖两次或根据方案a,b各抽奖一次.由(1)知顾客A根据方案a抽奖两次所获奖金及其概率如下表:W12则顾客A根据方案a,b各抽奖一次的所有等可能出现的结果为:(r,R1),(r,R2),(r,W),(w1,R1),(w1,R2),(w1,W),(w2,R1),(w2,R2),(w2,W)共9种其中结果(r,R1),(r,R2)可获奖金25元.结果(r,W)可获奖金15元,(w1,R1),(w1,R2),(w1,W),(w2,R1),(w2,R2)可获奖金10元,其余可获奖金0元,所以顾客A根据方案a,b各抽奖一次所获奖金及其概率如下表:15元.;【解析】(1)记甲袋中红球是r,白球分别为w1,w2,利用列举法能求出顾客A所获奖金为15元的概率.(2)由题意的顾客A可以根据方案a抽奖两次或根据方案a,b各抽奖一次,求出顾客A根据方案a抽奖两次所获奖金及其概率分布表,记乙袋中红球分别是R1,R2,白球W,则顾客A根据方案a,b各抽奖一次的所有等可能出现的结果共9种,其中结果(r,R1),(r,R2)可获奖金25元.结果(r,W)可获奖金15元,(w1,R1),(w1,R2),(w1,W),(w2,R1),(w2,R2)可获奖金10元,其余可获奖金0元,求出顾客A根据方案a,b各抽奖一次所获奖金及其概率分布表,由此可知顾客A最有可能获得的奖金数为15元.该题考查概率的求法,考查离散型概率分布列的求法及应用,是中档题,解题时要认真审题,注意列举法的合理运用.24.【答案】解:(1)调查的50名A病毒患者中,年龄在60岁以下的有20人,×500=200人;因此该地区A病毒患者中,60岁以下的人数估计有2050(2)50名患者的平均潜伏期为:−x=150(1×2+3×7+5×10+7×11+9×14+11×4+13×2)=150×346=6.92(天);(3)样本潜伏期超过10天的患者共六人,其中潜伏期在10~12天的四人编号为:1,2,3,4,潜伏期超过12天的两人编号为:5,6,从六人中抽取两人包括15个基本事件,分别为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.记事件“恰好一人潜伏期超过12天”为事件A,则事件A包括8个,所以这两人中恰好一人潜伏期超过12天的概率P(A)=815.;【解析】(1)调查的50名A病毒患者中,年龄在60岁以下的有20人,由此能求出该地区A病毒患者中,60岁以下的人数.(2)利用频数分布表能求出50名患者的平均潜伏期.(3)样本潜伏期超过10天的患者共六人,其中潜伏期在10~12天的四人编号为:1,2,3,4,潜伏期超过12天的两人编号为:5,6,从六人中抽取两人,利用列举法能求出这两人中恰好一人潜伏期超过12天的概率.此题主要考查频数、平均数、概率的求法,考查频率分布直方图的性质等基础知识,考查推理论证能力,属于基础题.25.【答案】解:(Ⅰ)由已知,数学与应用数学、计算机科学与技术和金融工程三个专业的毕业生人数之比为1:2:3,由于采取分层抽样的方法抽取18人,因此应从数学与应用数学、计算机科学与技术和金融工程三个专业分别抽取3人,6人,9人;(Ⅰ)(1)该学院有学生70+140+210=420(人),所以估计该学院2020届毕业生中有自主创业意向的人数为618×420=140(人);(2)从已知的7人中随机抽取2人的所有结果为:{ A,B},{ A,C},{ A,D},{ A,E},{ A,F},{ A,G},{ B,C},{ B,D},{ B,E},{ B,F},{ B,G},{ C,D},{ C,E},{ C,F},{ C,G},{ D,E},{ D,F},{ D,G},{ E,F},{ E,G},{ F,G}共21种,由统计表知,符合条件的所有可能结果为:{ A,B},{ A,C},{ A,D},{ A,E},{ A,F},{ A,G},{ B,C},{ B,F},{ B,G},{ C,D},{ C,E},{ C,F},{ C,G},{ D,F},{ D,G},{ E,F},{ E,G},{ F,G紘种,所以事件M发生的概率P(M)=1821=67.;【解析】此题主要考查了分层抽样,用列举法计算随机事件所含基本事件数,古典概型及其概率计算公式等基础知识,考查运算求解能力,属于中档题 .(Ⅰ)由已知,数学与应用数学、计算机科学与技术和金融工程三个专业的毕业生人数之比为1:2:3,进而由分层抽样的定义解答即可;(Ⅰ)(1)由题意,可得该学院有学生70+140+210=420,进而根据在抽取的18人中,含有“自主创业”就业意向的有6人,从而求解;(2)先求出从已知的7人中随机抽取2人的所有结果,然后由统计表知,求出符合条件。

高中数学 第10章 概率 10.1 随机事件与概率 课时作业47 概率的基本性质 新人教A版必修第二

高中数学 第10章 概率 10.1 随机事件与概率 课时作业47 概率的基本性质 新人教A版必修第二

课时作业47 概率的基本性质知识点一概率的性质1.下列结论正确的是( )A.事件A发生的概率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然要发生的事件D.如果A⊆B,那么P(A)<P(B)答案 B解析因为事件A发生的概率0≤P(A)≤1,所以A错误;不可能事件的概率规定为0,必然事件的概率规定为1,所以B正确;小概率事件是指这个事件发生的可能性很小,但并不是不发生,大概率事件发生的可能性较大,但并不是一定发生,所以C错误;由概率的单调性可知,如果A⊆B,那么P(A)≤P(B),所以D错误.知识点二互斥事件的概率2.盒子里装有6个红球,4个白球,从中任取3个球.设事件A表示“3个球中有1个红球,2个白球”,事件B表示“3个球中有2个红球,1个白球”.已知P(A)=310,P(B)=12,则这3个球中既有红球又有白球的概率是________.答案4 5解析记事件C为“3个球中既有红球又有白球”,则它包含事件A“3个球中有1个红球,2个白球”和事件B“3个球中有2个红球,1个白球”,而且事件A与事件B是互斥的,所以P(C)=P(A∪B)=P(A)+P(B)=310+12=45.3.在某超市的一个收银台等候的人数及相应的概率如下表所示:等候人数01234大于等于5 概率0.050.140.350.300.100.06求:(1)等候人数不超过2的概率;(2)等候人数大于等于3的概率.解设A,B,C,D,E,F分别表示等候人数为0,1,2,3,4,大于等于5的事件,则易知A,B,C,D,E,F彼此互斥.(1)设M表示事件“等候人数不超过2”,则M=A∪B∪C,故P(M)=P(A)+P(B)+P(C)=0.05+0.14+0.35=0.54,即等候人数不超过2的概率为0.54.(2)设N表示事件“等候人数大于等于3”,则N=D∪E∪F,故P(N)=P(D)+P(E)+P(F)=0.30+0.10+0.06=0.46,即等候人数大于等于3的概率为0.46.知识点三对立事件的概率4.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的不是一等品”的概率为( )A.0.7 B.0.65C.0.35 D.0.3答案 C解析由对立事件的概率关系知抽到的不是一等品的概率为P=1-0.65=0.35.5.某射击手平时的射击成绩统计如下表所示:已知他命中7(1)求a和b的值;(2)求命中10环或9环的概率;(3)求命中环数不足9环的概率.解(1)因为他命中7环及7环以下的概率为0.29,所以a=0.29-0.13=0.16,b=1-(0.29+0.25+0.24)=0.22.(2)命中10环或9环的概率为0.24+0.25=0.49.(3)命中环数不足9环的概率为1-0.49=0.51.易错点不能区分事件是否互斥而错用加法公式6.掷一个质地均匀的骰子,向上的一面出现1点、2点、3点、4点、5点、6点的概率都是16,记事件A为“出现奇数”,事件B为“向上的点数不超过3”,求P(A∪B).易错分析由于忽视了“和事件”概率公式应用的前提条件,由于“朝上一面的数是奇数”与“朝上一面的数不超过3”这二者不是互斥事件,即出现1或3时,事件A,B同时发生,所以不能应用公式P(A ∪B )=P (A )+P (B )求解,而致误.正解 记事件“出现1点”“出现2点”“出现3点”“出现5点”分别为A 1,A 2,A 3,A 4,由题意知这四个事件彼此互斥.则A ∪B =A 1∪A 2∪A 3∪A 4.故P (A ∪B )=P (A 1∪A 2∪A 3∪A 4)=P (A 1)+P (A 2)+P (A 3)+P (A 4)=16+16+16+16=23.一、选择题1.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值X 围是( )A.⎝ ⎛⎭⎪⎫54,2B.⎝ ⎛⎭⎪⎫54,32C.⎣⎢⎡⎦⎥⎤54,32D.⎝ ⎛⎦⎥⎤54,43 答案 D解析 由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,即⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<1,3a -3≤1,即⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43,解得54<a ≤43.2.下列说法正确的是( )A .对立事件一定是互斥事件,互斥事件不一定是对立事件B .A ,B 同时发生的概率一定比A ,B 中恰有一个发生的概率小C .若P (A )+P (B )=1,则事件A 与B 是对立事件D .事件A ,B 中至少有一个发生的概率一定比A ,B 中恰有一个发生的概率大 答案 A解析 根据对立事件和互斥事件的概念,得到对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 正确.对于两个不可能事件来说,同时发生的概率与恰有一个发生的概率相等,且均为零,故B 错误.若P (A )+P (B )=1,且AB =∅时,事件A 与B 是对立事件,故C 错误.事件A ,B 中至少有一个发生包括事件A 发生B 不发生,A 不发生B 发生,A ,B 都发生;A ,B 中恰有一个发生包括A 发生B 不发生,A 不发生B 发生;当事件A ,B 互斥时,事件A ,B 至少有一个发生的概率等于事件A ,B 恰有一个发生的概率,故D 错误.3.一个袋子里有4个红球,2个白球,6个黑球,若随机地摸出一个球,记A ={摸出黑球},B ={摸出红球},C ={摸出白球},则事件A ∪B 及B ∪C 的概率分别为( )A.56,12B.16,12C.12,56D.13,12 答案 A解析 P (A )=12,P (B )=13,P (C )=16.因为事件A ,B ,C 两两互斥,则P (A ∪B )=P (A )+P (B )=56.P (B ∪C )=P (B )+P (C )=12. 4.在一次随机试验中,三个事件A 1,A 2,A 3的概率分别是0.2,0.3,0.5,则下列说法正确的个数是( )①A 1∪A 2与A 3是互斥事件,也是对立事件; ②A 1∪A 2+A 3是必然事件; ③P (A 2∪A 3)=0.8; ④P (A 1∪A 2)≤0.5. A .0 B .1 C .2 D .3答案 B解析 由题意知,A 1,A 2,A 3不一定是互斥事件,所以P (A 1∪A 2)≤0.5,P (A 2∪A 3)≤0.8,P (A 1∪A 3)≤0.7,所以,只有④正确,所以说法正确的个数为1.故选B.5.在5件产品中,有3件一级品和2件二级品,从中任取2件,下列事件中概率为710的是( )A .都是一级品B .都是二级品C .一级品和二级品各1件D .至少有1件二级品答案 D解析 设A 1,A 2,A 3分别表示3件一级品,B 1,B 2分别表示2件二级品.任取2件,则样本空间Ω={A 1A 2,A 1A 3,A 2A 3,A 1B 1,A 1B 2,A 2B 1,A 2B 2,A 3B 1,A 3B 2,B 1B 2},共10个样本点,每个样本点出现的可能性相等.事件A 表示“2件都是一级品”,包含3个样本点, 则P (A )=310,事件B 表示“2件都是二级品”,包含1个样本点, 则P (B )=110,事件C 表示“2件中一件一级品、一件二级品”,包含6个样本点,则P (C )=610=35.事件A ,B ,C 互斥,P (B )+P (C )=710,B ∪C 表示“至少有1件二级品”,故选D.二、填空题6.从一副扑克牌(52X ,无大小王)中随机抽取1X ,事件A 为“抽得红桃K”,事件B 为“抽得黑桃”,则P (A ∪B )=________.答案726解析 事件A ,B 为互斥事件,由题意可知P (A )=152,P (B )=1352=14,所以P (A ∪B )=P (A )+P (B )=152+14=726.7.在掷一枚质地均匀的骰子的试验中,事件A 表示“出现不大于4的偶数点”,事件B 表示“出现小于5的点数”,则事件A ∪B -发生的概率为________.(B -表示B 的对立事件)答案 23解析 随机掷一枚质地均匀的骰子一次共有六种不同的结果,且每种结果发生的可能性是相等的.其中事件A “出现不大于4的偶数点”包括2,4两种结果,P (A )=26=13.事件B “出现小于5的点数”包括1,2,3,4四种结果,P (B )=46=23,P (B -)=13.且事件A 和事件B -是互斥事件,所以P (A ∪B -)=13+13=23.8.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,已知得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,则得到黑球、黄球、绿球的概率分别是________,________,________.答案141614解析 设事件A ,B ,C ,D 分别表示事件“得到红球”“得到黑球”“得到黄球”“得到绿球”,且事件A ,B ,C ,D 两两互斥,根据题意,得⎩⎪⎨⎪⎧P (A )=13,P (B )+P (C )=512,P (C )+P (D )=512,P (A )+P (B )+P (C )+P (D )=1,解得P (B )=14,P (C )=16,P (D )=14.三、解答题9.某商场有奖销售中,购满100元商品得1X 奖券,多购多得.1000X 奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1X 奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1X 奖券的中奖概率;(3)1X 奖券不中特等奖且不中一等奖的概率.解 (1)P (A )=11000,P (B )=101000=1100,P (C )=501000=120.(2)1X 奖券中奖包含中特等奖、一等奖、二等奖. 设“1X 奖券中奖”为事件M ,则M =A ∪B ∪C , ∵事件A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =11000+1100+120=611000.故1X 奖券的中奖概率为611000. (3)设“1X 奖券不中特等奖且不中一等奖”为事件N ,由对立事件概率公式得P (N )=1-P (A ∪B )=1-⎝⎛⎭⎪⎫11000+1100=9891000.故1X 奖券不中特等奖且不中一等奖的概率为9891000.10.甲、乙两人玩一种游戏,每次甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.(1)若事件A 表示“和为6”,求P (A );(2)现连玩三次,若事件B 表示“甲至少赢一次”,事件C 表示“乙至少赢两次”,试问B 与C 是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.解 (1)易知样本点总数n =25,且每个样本点出现的可能性相等.事件A 包含的样本点共5个:(1,5),(2,4),(3,3),(4,2),(5,1).所以P (A )=525=15.(2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次. (3)这种游戏规则不公平.和为偶数的样本点有:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).共13个,所以甲赢的概率为1325,乙赢的概率为1-1325=1225,所以这种游戏规则不公平.。

高中必修第二册数学统编人教A版《10.1 随机事件与概率》课后课时精练

高中必修第二册数学统编人教A版《10.1 随机事件与概率》课后课时精练

A级:“四基”巩固训练一、选择题1.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两弹都击中飞机},B={两弹都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列说法不正确的是()A.A⊆D B.B∩D=∅C.A∪C=D D.A∪C=B∪D答案 D解析由于至少有一弹击中飞机包括两种情况:两弹都击中飞机,只有一弹击中飞机,故有A⊆D,故A正确.由于事件B,D是互斥事件,故B∩D=∅,故B正确.再由A∪C=D成立可得C正确.A∪C=D={至少有一弹击中飞机},不是必然事件,而B∪D为必然事件,故D不正确.2.抽查10件产品,设A={至少有2件次品},则A-等于()A.{至多有2件次品} B.{至多有两件正品}C.{至少有两件正品} D.{至多有一件次品}答案 D解析“至少有2件次品”表示事件包含次品数最少是2,对立事件则应该为“至多有一件次品”,故选D.3.一人连续掷硬币两次,事件“至少有一次为正面”的互斥事件是() A.至多有一次为正面B.两次均为正面C.只有一次为正面D.两次均为反面答案 D解析对于A,至多有一次为正面与至少有一次为正面,能够同时发生,不是互斥事件;对于B,两次均为正面与至少有一次为正面,能够同时发生,不是互斥事件;对于C,只有一次为正面与至少有一次为正面,能够同时发生,不是互斥事件;对于D,两次均为反面与至少有一次为正面,不能够同时发生,是互斥事件.故选D.4.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.则在上述事件中,是对立事件的是( )A .①B .②④C .③D .①③答案 C解析 从1~9中任取两数,有以下三种情况:(1)两个均为奇数;(2)两个均为偶数;(3)一个奇数和一个偶数.故选C.5.从装有2个红球和2个白球的盒子中任取两个球,下列情况是互斥而不对立的两个事件的是( )A .至少有一个红球;至少有一个白球B .恰有一个红球;都是白球C .至少一个红球;都是白球D .至多一个红球;都是红球答案 B解析 A 中至少有一个红球包含两种情形:一红一白,两个红,至少有一个白球包含:一红一白,两个白,这两个事件不互斥,C ,D 中的两个事件互斥且对立.二、填空题6.在抛掷一枚骰子的试验中,事件A 表示“出现不大于4的偶数点”,事件B 表示“出现小于5的点数”,则事件A ∪B -表示________.答案 出现的点数为2,4,5,6解析 因为B -表示“出现大于等于5的点数”,即“出现5,6点”,所以A ∪B -表示“出现的点数为2,4,5,6”.7.同时掷两枚骰子,两枚骰子的点数之和可能是2,3,4,…,11,12中的一个.记事件A 为“点数之和是2,4,7,12”,事件B 为“点数之和是2,4,6,8,10,12”,事件C 为“点数之和大于8”,则事件“点数之和为2或4”可记为________.答案 A ∩B ∩C -解析 ∵事件A ={2,4,7,12},事件B ={2,4,6,8,10,12},∴A ∩B ={2,4,12}.又C ={9,10,11,12},∴A ∩B ∩C -={2,4}.8.从一副扑克牌(去掉大、小王,共52张)中随机选取一张,给出如下四组事件:①“这张牌是红心”与“这张牌是方块”;②“这张牌是红色牌”与“这张牌是黑色牌”;③“这张牌牌面是2,3,4,6,10之一”与“这张牌是方块”;④“这张牌牌面是2,3,4,5,6,7,8,9,10之一”与“这张牌牌面是A ,K ,Q ,J 之一”,其中互为对立事件的有________(写出所有正确的编号).答案 ②④解析 从一副扑克牌(去掉大、小王,共52张)中随机选取一张,①“这张牌是红心”与“这张牌是方块”是互斥事件,但不是对立事件; ②“这张牌是红色牌”与“这张牌是黑色牌”是互斥事件,也是对立事件; ③“这张牌牌面是2,3,4,6,10之一”与“这张牌是方块”不是互斥事件,故更不会是对立事件;④“这张牌牌面是2,3,4,5,6,7,8,9,10之一”与“这张牌牌面是A ,K ,Q ,J 之一”是互斥事件,也是对立事件.故答案为②④.三、解答题9.甲、乙、丙三人独立破译密码,用事件的运算关系表示:(1)密码被破译;(2)至少有一人破译;(3)至多有一人破译;(4)恰有一人破译;(5)只有甲破译;(6)密码未被破译.解 用A ,B ,C 分别表示甲、乙、丙破译密码,则(1)A ∪B ∪C ;(2)A ∪B ∪C ;(3)A ∩B -∩C -+A -∩B ∩C -+A -∩B -∩C +A -∩B -∩C -;(4)A ∩B -∩C -+A -∩B ∩C -+A -∩B -∩C ;(5)A ∩B -∩C -;(6)A -∩B -∩C -.B 级:“四能”提升训练判断下列各事件是不是互斥事件,是不是对立事件,并说明理由.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中:(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是男生;(4)至少有1名男生和全是女生.解(1)是互斥事件,不是对立事件.理由是:在所选的2名同学中,“恰有1名男生”实质是选出“1名男生、1名女生”,它与“恰有2名男生”不可能同时发生,所以是一对互斥事件,但其并事件不是必然事件,所以不是对立事件.(2)既不是互斥事件,也不是对立事件.理由是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”两种结果.“至少有1名女生”包括“1名女生、1名男生”和“2名都是女生”两种结果,他们可能同时发生.(3)既不是互斥事件,也不是对立事件.理由是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”,这与“全是男生”可能同时发生.(4)既是互斥事件,又是对立事件.理由是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”两种结果,它与“全是女生”不可能同时发生,且其并事件是必然事件,所以他们是对立事件.。

10.1 随机事件与概率(精讲)(解析版)

10.1 随机事件与概率(精讲)(解析版)

10.1 随机事件与概率(精讲)考法一 有限样本空间与随机事件【例1-1】(2021·全国高一)给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件; ②“当x 为某一实数时,可使x 2≤0”是不可能事件; ③“明天天津市要下雨”是必然事件;④“从100个灯泡(含有10个次品)中取出5个,5个全是次品”是随机事件. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3【答案】C【解析】对于①,三个球全部放入两个盒子,有两种情况:1+2和3+0,故必有一个盒子有一个以上的球,所以该事件是必然事件,①正确;对于②,x =0时x 2=0,所以该事件不是不可能事件,②错误;对于③,“明天天津市要下雨”是偶然事件,所以该事件是随机事件,③错误;对于④,“从100个灯泡(含有10个次品)中取出5个,5个全是次品”,发生与否是随机的,所以该事件是随机事件,④正确.故正确命题有2个.故选:C .【例1-2】(2020·全国高一)袋子中有4个大小和质地相同的球,标号为1,2,3,4,从中随机摸出一个球,记录球的编号,先后摸两次.(1)若第一次摸出的球不放回,写出试验的样本空间; (2)若第一次摸出的球放回,写出试验的样本空间. 【答案】(1)详见解析(2)详见解析【解析】m 表示第一次摸出球的编号,用n 表示第二次摸出球的编号,则样本点可用(),m n ,{},1,2,3,4m n ∈表示.(1)若第一次摸出的球不放回,则m n ≠,此时的样本空间可表示为()()()()()()()()()()()(){}1,2,1,3,1,4,2,1,,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3Ω=,共有12个样本点.(2)若第一次摸出的球放回,则m ,n 可以相同.此时试验的样本空间可表示为(){}{},,1,2,3,4m n m n Ω=∈,共有16个样本点.【一隅三反】1.(2021·全国高一课时练习)下列事件中,随机事件的个数为()①连续两次抛掷一枚骰子,两次都出现2点向上;②13个人中至少有两个人生肖相同;③某人买彩票中奖;④在标准大气压下,水加热到90℃会沸腾.A.1个B.2个C.3个D.4个【答案】B【解析】抛掷一枚骰子,每一面出现都是随机的,所以①是随机事件;一年只有12生肖,所以13个人中至少有两个人生肖相同是必然事件,所以②是必然事件;购买彩票号码是随机的,某人买彩票中奖也是随机的,所以③是随机事件;在标准大气压下,水加热到100℃才会沸腾.故④是不可能事件故选:B2.(多选)(2020·全国高一单元测试)下列事件中,是随机事件的是()A.2021年8月18日,北京市不下雨B.在标准大气压下,水在4C时结冰C.从标有1,2,3,4的4张号签中任取一张,恰为1号签x≥D.若x∈R,则20【答案】AC【解析】A选项与C选项为随机事件,B为不可能事件,D为必然事件.故选:AC.3.(2020·全国高一课时练习)写出下列各随机试验的样本空间:(1)采用抽签的方式,随机选择一名同学,并记录其性别;(2)采用抽签的方式,随机选择一名同学,观察其ABO血型;(3)随机选择一个有两个小孩的家庭,观察两个孩子的性别;(4)射击靶3次,观察各次射击中靶或脱靶情况;(5)射击靶3次,观察中靶的次数.【答案】(1)详见解析(2)详见解析(3)详见解析(4)详见解析(5)详见解析【解析】解:(1)一名同学的性别有两种可能结果:男或女.故该试验的样本室间可以表示为Ω={男,女};(2)一名同学的血型有四种可能结果:A型、B型、AB型、O型.故该试验的样本空间可表示为{}Ω=;A B AB O,,,(3)每个小孩的性别有男或女两种可能,两个小孩的性别情况有四种可能,故该试验的样本空间可表示为{(男、男),(男,女),(女,男),(女,女)};(4)每次射击有中靶或脱靶两种可能,射击3次有八种可能,用1表示中靶,用0表示脱靶,该试验的样本空间可表示为()()()()()()()(){}0,0,0,0,1,0,0,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,1,1N =;(5)射击3次,中靶的次数可能是0,1,2,3,故该试验的样本空间可以表示为{}0,1,2,3N =. 4.(2021·全国高一)写出下列试验的样本空间:(1)设袋中装有4个白球和6个黑球,从中不放回逐个取出,直到白球全部取出为止,记录取球的次数; (2)甲、乙、丙三位同学参加演讲比赛,通过抽签确定演讲的顺序,记录抽签的结果. 【答案】(1)详见解析(2)详见解析【解析】(1)从中不放回逐个取出,直到白球全部取出为止,则取球次数为{}4,5,6,7,8,9,10N =; (2)由抽签确定演讲的顺序,抽签的结果即样本空间可表示为{(甲,乙,丙),(甲,丙,乙),(丙,甲,乙),(丙,乙,甲),(乙,甲,丙),(乙,丙,甲)}.考法二 事件的关系与运算【例2-1】(2020·全国高一课时练习)盒子里有6个红球,4个白球,现从中任取3个球.设事件A =“1个红球和2个白球”,事件B =“2个红球和1个白球”,事件C =“至少有1个红球”,事件D “既有红球又有白球”,则:(1)事件D 与事件,A B 是什么关系?(2)事件C 与事件A 的交事件与事件A 是什么关系?【答案】(1)D A B =⋃.(2)事件C 与事件A 的交事件与事件A 相等.【解析】(1)对于事件D ,可能的结果为1个红球和2个白球或2个红球和1个白球,故D A B =⋃. (2)对于事件C ,可能的结果为1个红球和2个白球,2个红球和1个白球或3个红球,故C A A ⋂=,所以事件C 与事件A 的交事件与事件A 相等.【例2-2】(2021·全国高一)掷一枚骰子,给出下列事件:A =“出现奇数点”,B =“出现偶数点”,C =“出现的点数小于3”. 求:(1)AB ,BC ⋂;(2)A B ,B C ⋃.【答案】(1)A B =∅,B C ⋂=“出现2点”.(2)AB =“出现1,2,3,4,5或6点”,BC =∪“出现1,2,4或6点”.【解析】由题意知:A =“出现奇数点”{}1,3,5=,B =“出现偶数点”{}2,4,6=,C =“出现的点数小于3”{}1,2=,(1)A B =∅,{}2B C ⋂==出现2点”;(2){}1,2,3,4,5,6AB ==“出现1,2,3,4,5或6点”,{}1,2,4,6B C ⋃==“出现1,2,4或6点”.【一隅三反】1.(2020·全国高一课时练习)用红、黄、蓝三种不同的颜色给大小相同的三个圆随机涂色,每个圆只涂一种颜色.设事件A =“三个圆的颜色全不相同”,事件B =“三个圆的颜色不全相同”,事件C =“其中两个圆的颜色相同”,事件D “三个圆的颜色全相同”.(1)写出试验的样本空间.(2)用集合的形式表示事件,,,A B C D .(3)事件B 与事件C 有什么关系?事件A 和B 的交事件与事件D 有什么关系?并说明理由.【答案】(1)见解析;(2)见解析;(3)事件B 包含事件C ,事件A 和B 的交事件与事件D 互斥.见解析 【解析】(1)由题意可知3个球可能颜色一样,可能有2个一样,另1个异色,或者三个球都异色.则试验的样本空间Ω={(红,红,红),(黄,黄,黄),(蓝,蓝,蓝),(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝),(红,黄,蓝)}. (2)A ={(红,黄,蓝)}B ={(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝),(红,黄,蓝)}C ={(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝)}.D {(红,红,红),(黄,黄,黄),(蓝,蓝,蓝)}.(3)由(2)可知事件B 包含事件C ,事件A 和B 的交事件与事件D 互斥.2.(2021·全国高一)记某射手一次射击训练中,射中10环、9环、8环、7环分别为事件A ,B ,C ,D ,指出下列事件的含义: (1)AB C ;(2)B C ∩; (3)B C D ∪∪.【答案】(1)射中10环或9环或8环. (2)射中9环.(3)射中10环或6环或5环或4环或3环或2环或1环或0环.【解析】(1)A=射中10环,B=射中9环,C=射中8环,∴A B C=∪∪射中10环或9环或8环. (2)C=射中8环,∴C=射中环数不是8环,则B C=∩射中9环.(3)B C D=∪∪射中9环或8环或7环,则B C D=∪∪射中10环或6环或5环或4环或3环或2环或1环或0环.3.(2021·全国高一)在试验“甲、乙、丙三人各射击1次,观察中靶的情况”中,事件A表示随机事件“甲中靶”,事件B表示随机事件“乙中靶”,事件C表示随机事件“丙中靶”,试用A,B,C的运算表示下列随机事件:(1)甲未中靶;(2)甲中靶而乙未中靶;(3)三人中只有丙未中靶;(4)三人中至少有一人中靶;(5)三人中恰有两人中靶.【答案】(1)A(2)AB(3)ABC(4)ABC(5)()()() ABC ABC ABC【解析】(1)甲未中靶:A.(2)甲中靶而乙未中靶:A B⋂,即AB.(3)三人中只有丙未中靶:A B C,即ABC.(4)三人中至少有一人中靶ABC.(5)三人中恰有两人中靶()()()ABC ABC ABC.考法三互斥与对立【例3】(多选)(2020·全国高一课时练习)袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是()A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球【答案】BD【解析】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B 中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B 成立; 在C 中,至少一个白球与至多有一个红球,能同时发生,故C 不成立;在D 中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D 成立; 故选:BD. 【一隅三反】1.(多选)(2020·全国高一课时练习)一个人连续射击2次,则下列各事件关系中,说法正确的是( ) A .事件“两次均击中”与事件“至少一次击中”互为对立事件 B .事件“恰有一次击中”与事件“两次均击中”互为互斥事件 C .事件“第一次击中”与事件“第二次击中”互为互斥事件 D .事件“两次均未击中”与事件“至少一次击中”互为对立事件 【答案】BD【解析】对于A ,事件“至少一次击中”包含“一次击中”和“两次均击中“,所以不是对立事件,A 错误 对于B ,事件“恰有一次击中”是“一次击中、一次不中”它与事件“两次均击中”是互斥事件,B 正确 对于C ,事件“第一次击中”包含“第一次击中、第二次击中”和“第一次击中、第二次不中”,所以与事件“第二次击中”不是互斥事件,C 错误对于D ,事件“两次均未击中”的对立事件是“至少一次击中”,D 正确 故选:BD2.(多选)(2020·全国高一课时练习)下面结论正确的是( ) A .若()()1P A P B +=,则事件A 与B 是互为对立事件 B .若()()()P AB P A P B =,则事件A 与B 是相互独立事件 C .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 D .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件 【答案】BD【解析】对于A 选项,要使,A B 为对立事件,除()()1P A P B +=还需满足()0P AB =,也即,A B 不能同时发生,所以A 选项错误.对于C 选项,A 包含于B ,所以A 与B 不是互斥事件,所以C 选项错误. 对于B 选项,根据相互独立事件的知识可知,B 选项正确. 对于D 选项,根据相互独立事件的知识可知,D 选项正确.故选:BD3.(2020·全国高一课时练习)在试验E “连续抛掷一枚骰子2次,观察每次掷出的点数”中,事件A 表示随机事件“第一次掷出的点数为1”,事件j A 表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j ,事件B 表示随机事件“2次掷出的点数之和为6”,事件C 表示随机事件“第二次掷出的点数比第一次的大3”,(1)试用样本点表示事件AB 与A B ;(2)试判断事件A 与B ,A 与C ,B 与C 是否为互斥事件; (3)试用事件j A 表示随机事件A .【答案】(1)详见解析(2)事件A 与事件B ,事件A 与事件C 不是互斥事件,事件B 与事件C 是互斥事件.(3)123456A A A A A A A =【解析】由题意可知试验E 的样本空间为Ω=()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,()()()()()()2,1,2,2,2,3,2,4,2,5,2,6, ()()()()()()3,1,3,2,3,3,3,4,3,5,3,6, ()()()()()()4,1,4,2,4,3,4,4,4,5,4,6, ()()()()()()5,1,5,2,5,3,5,4,5,5,5,6,()()()()()()}6,1,6,2,6,3,6,4,6,5,6,6.(1)因为事件A 表示随机事件“第一次掷出的点数为1”,所以满足条件的样本点有()()()()()()1,1,1,2,1,3,1,4,1,5,1,6,即()()()()()(){}1,1,1,2,1,3,1,4,1,5,1,6A =.因为事件B 表示随机事件“2次掷出的点数之和为6”,所以满足条件的样本点有()()()()()1,5,2,4,3,3,4,2,5,1,即()()()()(){}1,5,2,4,3,3,4,2,5,1B =.所以(){}1,5AB =,()()()()()()()()()(){}1,1,1,2,1,3,1,4,1,5,1,6,2,4,3,3,4,2,5,1A B =.(2)因为事件C 表示随机事件“第二次掷出的点数比第一次的大3”,所以()()(){}1,4,2,5,3,6C =. 因为(){}1,5AB =≠∅,(){}1,4AC =≠∅,B C =∅,所以事件A 与事件B ,事件A 与事件C 不是互斥事件,事件B 与事件C 是互斥事件.(3)因为事件j A 表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j ”,所以(){}(){}(){}(){}(){}(){}1234561,1,1,2,1,3,1,4,1,5,1,6A A A A A A ======, 所以123456A A A A A A A =.考法四 古典概型【例4】(2020·全国高一课时练习)在一次语文考试的阅卷过程中,两位老师对一篇作文打出的分数都是两位的正整数,且十位数字都是5,则两位老师打出的分数之差的绝对值小于或等于1的概率为( ) A .0.18 B .0.2C .0.28D .0.32【答案】C【解析】用(),x y 表示两位老师的打分,则(),x y 的所有可能情况有1010100⨯=种. 当50x =时,y 可取50,51,共2种;当51x =,52,53,54,55,56,57,58时,y 的取值均有3种; 当59x =时,y 可取58,59,共2种;综上可得两位老师打出的分数之差的绝对值小于或等于1的情况有28种, 由古典概型的概率公式可得所求概率280.28100P ==故选:C. 【一隅三反】1.(2020·全国高一课时练习)从数字1,2,3,4中任取两个数,则这两个数中其中一个数为另一个数的整数倍的概率为( ) A .14B .12C .13D .23【答案】D【解析】基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中符合条件的基本事件为(1,2),(1,3),(1,4),(2,4)共4个,所求概率为4263P ==.故选:D 2.(2021·全国高一)把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为( ) A .23B .13C .35D .14【答案】B【解析】分三类情况,第一类1,2连号,则甲、乙、丙三个人拿到的卡片可能为()12,3,4,()12,4,3,()3,12,4,()4,12,3,()3,4,12,()4,3,12,有6种分法;第二类2,3连号,则甲、乙、丙三个人拿到的卡片可能为()1,23,4,()4,23,1,()23,1,4,()23,4,1,()1,4,23,()4,1,23,有6种分法;第三类3,4连号,则甲、乙、丙三个人拿到的卡片可能为()1,2,34,()2,1,34,()34,1,2,()34,2,1,()1,34,2,()2,34,1,有6种分法;共有18种分法, 则2,3连号的概率为61183P ==. 故选:B .3.(2021·全国高一)为了更好了解某年入伍新兵的身高情况,解放军某部随机抽取100名新兵,分别对他们的身高进行了测量,并将测量数据分为以下五组:[160,165),[165,170),[170,175),[175,180),[180,185]进行整理,如下表所示:(1)在下面的图纸中,画出频率分布直方图;(2)若在第4,5两组中,用分层抽样的方法抽取6名新兵,再从这6名新兵中随机抽取2名新兵进行体能测试,求这2名新兵来自不同组的概率. 【答案】(1)直方图见解析;(2)815. 【解析】(1)频率分布直方图如下图所示:(2)因为第4,5组共有30名新兵,所以利用分层抽样从中抽取6名,每组应抽取的人数分别为: 4组:206430⨯=名,第5组:106230⨯=名, 设第4组抽取的4名新兵分别为1A ,2A ,3A ,4A ,第5组抽取的2名新兵分别为1B ,2B .从这6名新兵中随机抽取2名新兵,有以下15种情况:12{,}A A ,13{,}A A ,14{,}A A ,11{,}A B ,12{,}A B ,23{,}A A ,24{,}A A ,21{,}A B ,22{,}A B ,34{,}A A ,31{,}A B ,32{,}A B ,41{,}A B ,42{,}A B ,12{,}B B ,这2名新兵来自不同组的情况有以下8种:11{,}A B ,12{,}A B ,21{,}A B ,22{,}A B ,31{,}A B ,32{,}A B ,41{,}A B ,42{,}A B ,故所求的概率P =815. 考法五 概率的基本性质【例5-1】(2020·全国高一课时练习)老师讲一道数学题,李峰能听懂的概率是0.8,是指( )A .老师每讲一题,该题有80%的部分能听懂,20%的部分听不懂B .老师在讲的10道题中,李峰能听懂8道C .李峰听懂老师所讲这道题的可能性为80%D .以上解释都不对 【答案】C【解析】概率的意义就是事件发生的可能性大小,即李峰听懂老师所讲这道题的可能性为80%.故选:C 【例5-2】(2020·全国高一课时练习)在学校运动会开幕式上,100名学生组成一个方阵进行表演,他们按照性别(M (男)、F (女))及年级(1G (高一)、2G (高二)、3G (高三))分类统计的人数如下表:若从这100名学生中随机选一名学生,求下列概率:()P M =____________,()P F =____________,()P M F =____________,()P MF =____________,()1P G =____________,()2P MG =____________,()3P FG =____________【答案】0.52 0.48 1 0 0.35 0.76 0.07 【解析】()()123182014520.52100100100100P M P MG MG MG ==++==; ()()10.48P F P M =-=; ()1P MF =;()()0P MF P =∅=;()()11118170.35100100P G P MG FG ==+=; ()()()()2220.520.440.200.76P MG P M P G P MG =+-=+-=;()370.07100P FG == 故答案为:(1)0.52;(2)0.48;(3)1;(4)0;(5)0.35;(6)0.76;(7)0.07 【一隅三反】1.(2020·全国高一课时练习)在北京消费季活动中,某商场为促销举行购物抽奖活动,规定购物消费每满200元就可以参加一次抽奖活动,中奖的概率为110.那么以下理解正确的是( ) A .某顾客抽奖10次,一定能中奖1次 B .某顾客抽奖10次,可能1次也没中奖 C .某顾客消费210元,一定不能中奖 D .某顾客消费1000元,至少能中奖1次 【答案】B 【解析】中奖概率110表示每一次抽奖中奖的可能性都是110,故不论抽奖多少次,都可能一次也不中奖, 故选:B.2.(2020·全国高一课时练习)某射击运动员平时训练成绩的统计结果如下:如果这名运动员只射击一次,以频率作为概率,求下列事件的概率; (1)命中10环;(2)命中的环数大于8环; (3)命中的环数小于9环; (4)命中的环数不超过5环.【答案】(1)0.2 (2)0.5 (3)0.5 (4)0 【解析】用x 表示命中的环数,由频率表可得. (1)(10)0.2P x ==;(2)(8)P x P >=(9x =或10x =)(9)(10)0.30.20.5P x P x ==+==+=; (3)(9)(6)(7)(8)0.10.150.250.5P x P x P x P x <==+=+==++=; (4)(5)1(6)1(0.10.150.250.30.2)0P x P x =-=-++++=.3.(2021·全国高一课时练习)判断下列说法是否正确,若错误,请举出反例 (1)互斥的事件一定是对立事件,对立事件不一定是互斥事件; (2)互斥的事件不一定是对立事件,对立事件一定是互斥事件;(3)事件A 与事件B 中至少有一个发生的概率一定比A 与B 中恰有一个发生的概率大;(4)事件A 与事件B 同时发生的概率一定比A 与B 中恰有一个发生的概率小.【答案】(1)错误,举例见解析;(2)正确;(3)错误,举例见解析;(4)错误,举例见解析. 【解析】(1)错误;(2)正确;(3)错误:(4)错误. 设某试验的样本空间为{1,2,3,4}Ω=.(1)中反例,取{1},{2}A B ==,则A ,B 互斥但不对立. (2)由互斥事件与对立事件的定义可知(2)正确(3)中反例,取{1},A B ==∅,则1()()4P A B P A ⋃==1()()()4P AB AB P AB P A ⋃===. (4)中反例,取{1},{1,2}A B ==,则1()()4P AB P A ==,1()()4P AB AB P AB ⋃==.4.(2020·全国高一课时练习)甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,求下列事件的概率: (1)两人都中靶; (2)恰好有一人中靶; (3)两人都脱靶; (4)至少有一人中靶.【答案】(1)0.72 (2)0.26 (3)0.02 (4)0.98【解析】设A =“甲中靶”, B =“乙中靶”,则A =“甲脱靶”,B =“乙脱靶”,由于两个人射击的结果互不影响,所以A 与B 相互独立,A 与B ,A 与B ,A 与B 都相互独立 由已知可得,()()()()0.8,0.9,0.2,0.1P A P B P A P B ====. (1)AB = “两人都中靶”,由事件独立性的定义 得()()()0.80.90.72P AB P A P B =⋅=⨯= (2)“恰好有一人中靶” ABAB =,且AB 与AB 互斥根据概率的加法公式和事件独立性定义,得()()()P ABAB P AB P AB=+()()()()P A P B P A P B =⋅+⋅ 0.80.10.20.90.26=⨯+⨯=(3)事件“两人都脱靶”AB =, 所以()()()P AB P A P B =⋅()()10.810.90.02=-⨯-=(4)方法1:事件“至少有一人中靶”AB ABAB =,且AB ,AB 与AB 两两互斥,所以()P ABAB AB()()()P AB P AB P AB =++ ()()P AB P ABAB =+0.720.260.98=+=方法2:由于事件“至少有一人中靶”的对立事件是“两人都脱靶” 根据对立事件的性质,得事件“至少有一人中靶”的概率为()110.020.98P AB -=-=5.(2020·全国高一课时练习)已知n 是一个三位正整数,若n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如135,256,345等)现要从甲乙两名同学中,选出一个参加某市组织的数学竞赛,选取的规则如下:从由1,2,3,4,5,6组成的所有“三位递增数”中随机抽取1个数,且只抽取1次,若抽取的“三位递增数”是偶数,则甲参加数学竞赛;否则,乙参加数学竞赛.(1)由1,2,3,4,5,6可组成多少“三位递增数”?并一一列举出来. (2)这种选取规则对甲乙两名学生公平吗?并说明理由. 【答案】(1)见解析;(2)不公平,理由见解析.【解析】(1)由题意知,所有由1,2,3,4,5,6组成的“三位递增数共有20个.分别是123,124,125,126,134,135,136,145,146,156,234,235,236,245,246,256,345,346,356,456.(2)不公平由(1)知,所有由1,2,3,4,5,6组成的“三位递增数”有20个,记“甲参加数学竟赛”为事件A ,记“乙参加数学竞赛”为事件B.则事件A 含有基本事件有:124,134,234,126,136,146,156,236,246,256,346,356,456共13个. 由古典概型计算公式,得13()20A P A ==事件含有的基本事件的个数试验所有基本事件的总数,又A 与B 对立,所以137()1()12020P B P A =-=-=, 所以()()P A P B >.故选取规则对甲、乙两名学生不公平.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.1 随机事件与概率(精练)【题组一 有限样本空间与随机事件】1.(2020·全国高一课时练习)下列事件是必然事件的是( ) A .连续两次掷一枚硬币,两次都出现正面向上 B .异性电荷相互吸引C .在标准大气压下,水在1℃时结冰D .任意掷一枚骰子朝上的点数是偶数 【答案】B【解析】四个选项都是随机事件,根据定义只有B 选项是一定会发生的,是必然事件.故选:B . 2.(2020·全国高一课时练习)下列事件中,是必然事件的是( ) A .对任意实数x ,有x 2≥0 B .某人练习射击,击中10环C .从装有1号,2号,3号球的不透明的袋子中取一球是1号球D .某人购买彩票中奖 【答案】A【解析】选项B C D ,,中的事件都不确定发生,因此都不是必然事件; A 选项,当x R ∈时,总有20x ≥发生,是必然事件.故选:A.3.(2021·全国高一课时练习)关于样本点、样本空间,下列说法错误的是( ) A .样本点是构成样本空间的元素 B .样本点是构成随机事件的元素 C .随机事件是样本空间的子集D .随机事件中样本点的个数可能比样本空间中的多 【答案】D【解析】由定义知A ,B ,C 均正确.因为随机事件是样本空间的子集,所以由子集的定义可知D 错.故选:D 4.(2020·全国高一课时练习)一个家庭有两个小孩,把第一个孩子的性别写在前边,第二个孩子的性别写在后边,则所有的样本点有( ) A .(男,女),(男,男),(女,女) B .(男,女),(女,男)C .(男,男),(男,女),(女,男),(女,女)D .(男,男),(女,女) 【答案】C【解析】由题知所有的样本点是(男,男),(男,女),(女,男),(女,女).故选:C. 5.(2021·全国高一课时练习)指出下列事件是必然事件、不可能事件还是随机事件: (1)某人购买福利彩票一注,中奖500万元; (2)三角形的内角和为180;(3)没有空气和水,人类可以生存下去; (4)同时抛掷两枚硬币一次,都出现正面向上;(5)从分别标有1、2、3、4的四张标签中任取一张,抽到1号标签; (6)科学技术达到一定水平后,不需任何能量的“永动机”将会出现.【答案】(1)随机事件;(2)必然事件;(3)不可能事件;(4)随机事件;(5)随机事件;(6)不可能事件.【解析】(1)购买一注彩票,可能中奖,也可能不中奖,所以是随机事件; (2)所有三角形的内角和均为180,所以是必然事件;(3)空气和水是人类生存的必要条件,没有空气和水,人类无法生存,所以是不可能事件; (4)同时抛掷两枚硬币一次,不一定都是正面向上,所以是随机事件; (5)任意抽取,可能得到1、2、3、4号标签中的任一张,所以是随机事件; (6)由能量守恒定律可知,不需任何能量的“永动机”不会出现,所以是不可能事件.6.(2020·全国高一课时练习)在所有考试中,小明同学的语文、数学、英语这三科的成绩都是优秀或良好,随机抽取一次考试的成绩,记录小明同学的语文,数学,英语这三科成绩的情况. (1)写出该试验的样本空间;(2)用集合表示下列事件:A =“至少有两科成绩为优秀”;B =“三科成绩不都相同” 【答案】(1)详见解析(2)详见解析【解析】解:分别用123,,x x x 表示语文,数学,英语的成绩,则样本点表示为{}123,,x x x .用1表示优秀,用0表示良好,则{}123,,0,1x x x ∈. (1)该试验的样本空间可表示为(){}{}123123,,,,0,1x x x x x x Ω=∈,用列举法表示为()()()()()()()(){}0,0,0,1,0,0,0,1,0,0,0,1,1,1,0,1,0,1,0,1,1,1,1,1Ω=.(2)()()()(){}1,1,0,1,0,1,0,1,1,1,1,1A =;()()()()()(){}1,0,0,0,1,0,0,0,1,1,1,0,1,0,1,0,1,1B =.7.(2020·全国高一课时练习)如图,一个电路中有A ,B ,C 三个电器元件,每个元件可能正常,也可能失效,把这个电路是否为通路看成是一个随机现象,观察这个电路中各元件是否正常.(1)写出试验的样本空间;(2)用集合表示下列事件:M =“恰好两个元件正常”;N =“电路是通路”;T =“电路是断路” 【答案】(1)详见解析(2)详见解析【解析】分别用12,x x 和3x 表示元件A ,B 和C 的可能状态,则这个电路的工作状态可用()123,,x x x 表示,进一步地,用1表示元件的“正常”状态,用0表示“失效”状态。

(1)则样本空间()()()()()()()(){}0,0,0,1,0,0,0,1,0,0,0,1,1,1,0,1,0,1,0,1,1,1,1,1Ω=如图,还可以借助树状图帮助我们列出试验的所有可能结果(2)“恰好两个元件正常”等价于()123,,x x x ∈Ω,且123,,x x x 中恰有两个为1,所以()()(){}1,1,0,1,0,1,0,1,1M =.“电路是通路”等价于()123,,x x x ∈Ω,11x =,且23,x x 中至少有一个是1,所以()()(){}1,1,0,1,0,1,1,1,1N =.同理,“电路是断路”等价于()123,,x x x ∈Ω,10x =,或1231,0x x x ===.所以()()()()(){}0,0,0,0,1,0,0,0,1,0,1,1,1,0,0N =.8.(2020·全国高一课时练习)如图,由A ,B 两个元件分别组成串联电路(图(1))和并联电路(图(2)),观察两个元件正常或失效的情况.(1)写出试验的样本空间;(2)对串联电路,写出事件M =“电路是通路”包含的样本点; (3)对并联电路,写出事件N =“电路是断路”包含的样本点. 【答案】(1)详见解析(2)详见解析(3)详见解析【解析】 A ,B 两个元件中每个元件都有正常(用1表示)或失效(用0表示)两种可能结果:(1)故该试验的样本空间可以表示为()()()(){}0,0,0,1,1,0,1,1Ω=;(2)对串联电路,只有当A ,B 都正常时电路才是通路,故M 包含的样本点为()1,1; (3)对并联电路,只有当A ,B 都失效时电路才是断路,故N 包含的样本点为()0,0.9.(2020·全国高一课时练习)连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.(与先后顺序有关)(1)写出这个试验的样本空间及样本点的个数; (2)写出事件“恰有两枚正面向上”的集合表示.【答案】(1)8个,见解析(2){(正,正,反),(正,反,正),(反,正,正)}.【解析】(1)这个试验的样本空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)},样本点的个数是8.(2)记事件“恰有两枚正面向上”为事件A ,则A ={(正,正,反),(正,反,正),(反,正,正)}. 10.(2020·全国高一课时练习)从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(),x y ,其中x 为第1次取到的数字,y 为第2次取到的数字.(1)写出样本空间;(2)写出“第1次取出的数字是2”这一事件的集合表示.【答案】(1)()()()()()(){}0,1,1,0,0,2,2,0,1,2,2,1Ω=;(2)()(){}2,0,2,1. 【解析】(1)用有序数对(),x y 表示事件,所以()()()()()(){}0,1,1,0,0,2,2,0,1,2,2,1Ω=.(2)根据题意可知,0,1,2这3个数字中,不放回地取两次,第一次取出2,则第二次取出的只能是0或1,所以“第1次取出的数字是2”这一事件为:()(){}2,0,2,1.11.(2021·全国高一课时练习)从含有两件正品12,a a 和一件次品1b 的3件产品中每次任取1件,每次取出后不放回,连续取两次. (1)写出这个试验的样本空间;(2)下列随机事件由哪些样本点构成:事件A :取出的两件产品都是正品;事件B :取出的两件产品恰有1件次品. 【答案】(1)()()()()()(){}121121211112,,,,,,,,,,,a a a b a a a b b a b a Ω=(2)()(){}1221,,,A a a a a =;()()()(){}11112112,,,,,,,B a b b a a b b a =【解析】1)该试验的样本空间()()()()()(){}121121211112,,,,,,,,,,,a a a b a a a b b a b a Ω=(2)事件()(){}1221,,,A a a a a =,包含2个样本点.事件()()()(){}11112112,,,,,,,B a b b a a b b a =,包含4个样本点.【题组二 事件的关系和运算】1.(2020·全国高一课时练习)在试验“连续抛掷一枚硬币3次,观察落地后正面、反面出现的情况”中,设事件A 表示随机事件“第一次出现正面”,事件B 表示随机事件“3次出现同一面”,事件C 表示随机事件“至少1次出现正面”. (1)试用样本点表示事件A B ,A B ,A C ,A C ;(2)试用样本点表示事件AB ,AB ,AC ,A C ;(3)试判断事件A 与B ,A 与C ,B 与C 是否为互斥事件.【答案】(1)详见解析(2)详见解析(3)A 与B 不互斥,A 与C 不互斥,B 与C 不互斥 【解析】用H 代表“出现正面”,用T 代表“出现反面”.{},,,,,,,HHH HHT HTT HTH THH THT TTH TTT Ω=, {},,,A HHH HHT HTT HTH =,{},B HHH TTT =,{},,,,,,C HHH HHT HTT HTH THH THT TTH =.(1){},,,,AB HHH HHT HTT HTH TTT =,{}A B HHH =,{},,,,,,A C HHH HHT HTT HTH THH THT TTH =, {},,,A C HHH HHT HTT HTH =.(2){},,,,AB THH THT TTH TTT HHH =,{}A B TTT =,{},,,,A C HHH HHT HTT HTH TTT =,A C =∅.(3){}A B HHH =≠∅,{},,,A C HHH HHT HTT HTH =≠∅,{}B C HHH =≠∅,∴A 与B 不互斥,A 与C 不互斥,B 与C 不互斥.2.(2020·全国高一课时练习)抛掷一颗质地均匀的骰子,有如下随机事件:i C =“点数为i ”,其中1,2,3,4,5,6i =;1D =“点数不大于2”,2D =“点数大于2”,3D =“点数大于4”;E =“点数为奇数”,F =“点数为偶数”.判断下列结论是否正确.(1)1C 与2C 互斥;(2)2C ,3C 为对立事件;(3)32C D ⊆;(4)32D D ⊆;(5)12D D =Ω,12D D =∅;(6)356D C C =;(7)135E C C C =;(8)E ,F 为对立事件;(9)232D D D =;(10)233D D D =【答案】(1)正确;(2)错误;(3)正确;(4)正确;(5)正确;(6)正确;(7)正确;(8)正确;(9)正确;(10)正确.【解析】该试验的样本空间可表示为{}1,2,3,4,5,6Ω=,由题意知{}i C i =,{}11,2D =,{}23,4,5,6D =,{}35,6D =,{}1,3,5E =,{}2,4,6F =. (1){}11C =,{}22C =,满足12C C =∅,所以1C 与2C 互斥,故正确;(2){}22C =,{}33C =,满足23C C =∅但不满足23C C ⋃=Ω.所以为互斥事件,但不是对立事件,故错误;根据对应的集合易得,(3)正确;(4)正确;(5)正确;(6){}565,6C C =,所以356D C C =,故正确;(7){}1351,2,3C C C =,故135E C C C =正确;(8)因为E F ⋂=∅, E F ⋃=Ω,所以E ,F 为对立事件,故正确;(9)正确;(10)正确.3.(2020·全国高一课时练习)一个袋子中有大小和质地相同的4个球,其中有有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球.设事件1R =“第一次摸到红球”,2R =“第二次摸到红球”,R =“两次都摸到红球”,G =“两次都摸到绿球”,M =“两个球颜色相同”,N =“两个球颜色不同”.(1)用集合的形式分别写出试验的样本空间以及上述各事件; (2)事件R 与1R ,R 与G ,M 与N 之间各有什么关系?(3)事件R 与事件G 的并事件与事件M 有什么关系?事件1R 与事件2R 的交事件与事件R 有什么关系? 【答案】(1)详见解析(2)事件1R 包含事件R ;事件R 与事件G 互斥;事件M 与事件N 互为对立事件(3)事件M 是事件R 与事件G 的并事件;事件R 是事件1R 与事件2R 的交事件. 【解析】(1)所有的试验结果如图所示,用数组()12,x x 表示可能的结果,1x 是第一次摸到的球的标号,2x 是第二次摸到的球的标号,则试验的样本空间()()()()()()()()()()()(){}1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3Ω=事件1R =“第一次摸到红球”,即11x =或2,于是()()()()()(){}11,2,1,3,1,4,2,1,2,3,2,4R =;事件2R =“第二次摸到红球”,即21x =或2,于是()()()()()(){}22,1,3,1,4,1,1,2,3,2,4,2R =.同理,有()(){}1,2,2,1R =, ()(){}3,4,4,3G =,()()()(){}1,2,2,1,3,4,4,3M =,()()()()()()()(){}1,3,1,4,2,3,2,4,3,1,3,2,4,1,4,2N =.(2)因为1R R ⊆,所以事件1R 包含事件R ; 因为R G =∅,所以事件R 与事件G 互斥;因为MN =Ω,M N ⋂=∅,所以事件M 与事件N 互为对立事件.(3)因为R G M =,所以事件M 是事件R 与事件G 的并事件;因为12R R R =,所以事件R 是事件1R 与事件2R 的交事件.4.(2020·全国高一课时练习)抛掷一枚质地均匀的骰子,记事件A =“出现的点数是1或2”,事件B =“出现的点数是2或3或4”,则事件“出现的点数是2”可以记为( ) A .AB B .A BC .A B ⊆D .A B =【答案】B【解析】由题意可得:{}1,2A =,{}3,4B =,{}1,2,3,4A B ∴=,{}2A B ⋂=.故选B.5.(2020·全国高一课时练习)打靶3次,事件i A =“击中i 发”,其中0,1,2,3i =.那么123A A A A =表示( ) A .全部击中B .至少击中1发C .至少击中2发D .全部未击中【答案】B 【解析】123A A A 表示的是123,,A A A 这三个事件中至少有一个发生,即可能击中1发、2发或3发.故选:B.6.(2020·全国高一课时练习)一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件: 事件A :恰有一件次品; 事件B :至少有两件次品; 事件C :至少有一件次品; 事件D :至多有一件次品. 并给出以下结论: ①A B C =;②BD 是必然事件;③A B C =;④A D C =.其中正确结论的序号是()A.①②B.③④C.①③D.②③【答案】A【解析】解析:事件A B:至少有一件次品,即事件C,所以①正确;事件A B=∅,③不正确;事件B D:至少有两件次品或至多有一件次品,包括了所有情况,所以②正确;事件A D:恰有一件次品,即事件A,所以④不正确.故选:A【题组三互斥与对立】1.(2020·全国高一课时练习)袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个【答案】D【解析】对于A,“至少有一个白球”说明有白球,白球的个数可能为1或2,而“都是白球”说明两个全是白球,这两个事件可以同时发生,故A不是互斥的;对于B,当两球一个白球一个红球时,“至少有一个白球”与“至少有一个红球”均发生,故不互斥;对于C,“恰有一个白球”,表示黑球个数为0或1,这与“一个白球一个黑球”不互斥;对于D,“至少一个白球”发生时,“红、黑球各一个”不会发生,故互斥,但不对立,故选:D2.(2020·全国高一课时练习)一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.两次都不中靶B.两次都中靶C.只有一次中靶D.至多有一次中靶【答案】A【解析】对A,“两次都不中靶”与“至少有一次中靶”不可能同时发生,故A正确.对B,“至少有一次中靶”包含“两次都中靶”的情况.故B错误.对C, “至少有一次中靶”包含“只有一次中靶”的情况.故C错误.对D, “至少有一次中靶”和“至多有一次中靶”均包含“一次中靶”的情况.故D错误.故选:A3(2021·全国高一课时练习)一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷一次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()A .A 与B 是互斥而非对立事件 B .A 与B 是对立事件C .B 与C 是互斥而非对立事件D .B 与C 是对立事件【答案】D【解析】事件A 包含1,3,5,共3个基本事件. 事件B 包含1,2,3,共3个基本事件. 事件C 包含4,5,6,共3个基本事件. 因为{AB =出现点数1或3},所以A 与B 不互斥也不对立. 因为BC =∅,{1,2,3,4,5,6}B C =,所以B 与C 是对立事件. 故选:D4.(2020·全国高一课时练习)一袋中装有除颜色外完全相同的5个白球,3个黄球,从中有放回地摸球,用1A 表示第一次摸得黄球,2A 表示第二次摸得白球,则事件1A 与2A ( ) A .是相互独立事件 B .不是相互独立事件 C .是互斥事件 D .是对立事件【答案】A【解析】由于采用有放回地摸球,因此1A 与2A 相互独立,于是事件1A 与2A 是相互独立事件.故选:A 5.(2021·全国高一课时练习)从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则互为对立事件的是( )A .“至少一个红球”与“至少一个黄球”B .“至多一个红球”与“都是红球”C .“都是红球”与“都是黄球”D .“至少一个红球”与“至多一个黄球”【答案】B【解析】从装有完全相同的4个红球和2个黄球的盒子中任取2个小球, 各种情况为:两红,一红一黄,两黄,三种情况,“至少一个红球”即一红一黄或两红,“至少一个黄球”即一红一黄或两黄,所以这两个事件不是对立事件; “至多一个红球”即一黄一红或两黄,与“都是红球”互为对立事件; “都是红球”与“都是黄球”仅仅是互斥事件;“至少一个红球”即一红一黄或两红,“至多一个黄球”即一红一黄或两红,不是对立事件.故选:B6.(2020·全国高一课时练习)如果事件A,B互斥,记A,B分别为事件A,B的对立事件,那么(). A.A B是必然事件B.A B⋃是必然事件C.A与B一定互斥D.A与B一定不互斥【答案】B【解析】用集合的Venn图解决此类问题较为直观,如图所示,A B⋃是必然事件.故选:B.7.(2020·全国高一课时练习)把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是A.对立事件B.互斥但不对立事件C.不可能事件D.以上都不对【答案】B【解析】因为事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,所以它们是互斥事件,因为事件“甲分得红牌”与事件“乙分得红牌”不包含所有的可能事件,所以它们不是对立事件,所以它们是互斥但不对立事件,故选B.8.(2021·全国高一课时练习)一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是A.两次都中靶 B.至少有一次中靶C.两次都不中靶 D.只有一次中靶【答案】A【解析】一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是两次都中靶.故选:A.9.(2020·全国高一课时练习)从装有3个红球和3个白球的口袋里任取3个球,那么互斥而不对立的两个事件是( )A.至少2个白球,都是红球B.至少1个白球,至少1个红球C.至少2个白球,至多1个白球D.恰好1个白球,恰好2个红球【答案】A【解析】选项A中,“至少2个白球”包括“2个白球”和“2个白球和个红球”两种情况,“都是红球”即为“3个红球”.故这两个事件不可能同时发生,而这两个事件的和事件不是必然事件,故A正确.选项B中,“至少1个白球”包括“1个白球2个红球”、“2个白球和1个红球”、“3个白球”三种情况;“至少1个红球”包括“1个红球2个白球”、“2个红球和1个白球”、“3个红球”三种情况.所以这两个事件不互斥,所以B不正确.选项C中,“至少2个白球”包括“2个白球1个红球”、“3个白球”两种情况;“至多1个白球”包括“1个白球和2个红球”、“3个红球”两种情况,所以这两个事件为对立事件,故C不正确.选项D中,“恰好1个白球”和“恰好2个红球”为同一事件,所以D不正确.故选A.10.(2020·全国高一课时练习)将一枚质地均匀的骰子向上抛掷1次.设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件【答案】D【解析】对于A、B中,当向上的一面出现点数1时,事件,A B同时发生了,所以事件A与B不是互斥事件,也不是对立事件;对于事件B与C不能同时发生且一定有一个发生,所以事件B与C是对立事件,故选D.【题组四古典概型】1.(2020·全国高一课时练习)某袋中有编号为1,2,3, 4,5,6的6个小球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是()A.56B.16C.15D.3536【答案】A【解析】甲先从袋中摸出一个球,有6种可能的结果,乙再从袋中摸出一个球,有6种可能的结果如果按(甲,乙)方法得出总共的结果为:36个甲、乙两人所摸出球的编号不同的结果为30个∴甲、乙两人所摸出球的编号不同的概率是305 366=,故选:A.2.(2020·全国高一课时练习)在长分别为1cm、2cm、3cm、4cm的四条线段中,任取三条,这三条线段能构成三角形的概率为()A .12B .13C .14D .0【答案】C【解析】从四条线段中任意取三条,共有:()1,2,3cm cm cm ,()1,2,4cm cm cm ,()1,3,4cm cm cm ,()2,3,4cm cm cm ,四种情况,三条线段能构成三角形共有:()2,3,4cm cm cm 一种情况,故能构成三角形的概率为14.故选:C 3.(2021·全国高一课时练习)为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[)[)[)[)[]27.5,32.5,32.5,37.5,37.5,42.5,42.5,47.5,47.5,52.5分为5组,其频率分布直方图如图所示.(1)求图中a 的值;(2)估计这种植物果实重量的平均数x 和方差2s (同一组中的数据用该组区间的中点值作代表); (3)已知这种植物果实重量不低于32.5克的即为优质果实.若所取样本容量40n =,从该样本分布在[)27.5,32.5和[]47.5,52.5的果实中,随机抽取2个,求抽到的都是优质果实的概率.【答案】(1)0.050a =;(2)40,28.75;(3)17. 【解析】(1)组距5d =,由()50.0200.0400.0750.0151a ⨯++++=,得0.050a =. (2)各组中点值和相应的频率依次为:所以300.1350.2400.375450.25500.07540x =⨯+⨯+⨯+⨯+⨯=,()()222222100.150.200.37550.25100.07528.75s =-⨯+-⨯+⨯+⨯+⨯=.(3)由已知,果实重量在[)27.5,32.5和[]47.5,52.5内的分别有4个和3个,分别记为1234,,,A A A A 和123,,,B B B 从中任取2个的取法有: 12131411121323,,,,,,A A A A A A A B A B A B A A , 24212223343132,,,,,,A A A B A B A B A A A B A B , 33414243121323,,,,,,A B A B A B A B B B B B B B ,共21种取法,其中都是优质果实的取法有121323,,B B B B B B ,共3种取法, 所以抽到的都是优质果实的概率31217P ==. 4.(2020·全国高一课时练习)某大学为调研学生在A ,B 两家餐厅用餐的满意度,在A ,B 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[)0,10,[)10,20,[)20,30,[)30,40,[)40,50,[]50,60,得到A 餐厅分数的频率分布直方图,和B 餐厅分数的频数分布表:(1)在抽样的100人中,求对A 餐厅评分低于30的人数;(2)从对B 餐厅评分在[)0,20范围内的人中随机选出2人,求2人中恰有1人评分在[)0,10范围内的概率; (3)求学生对A 餐厅评分的平均数. 【答案】(1)20;(2)35;(3)41.9. 【解析】(1)由A 餐厅分数的频率分布直方图,得对A 餐厅评分低于30的频率为()0.0030.0050.012100.2++⨯=, 所以,对A 餐厅评分低于30的人数为1000.220⨯=. (2)对B 餐厅评分在[)0,10范围内的有2人,设为12,M M , 对B 餐厅评分在[)10,20范围内的有3人,设为123,,N N N 从这5人中随机选出2人的选法为:()12,M M ,()11,M N ,()12,M N ,()13,M N ,()21,M N ,()22,M N ,()23,M N ,()12,N N ,()13,N N ,()23,N N 共10种其中,恰有1人评分在[)0,10范围内的选法为:()11,M N ,()12,M N ,()13,M N ,()21,M N ,()22,M N ,()23,M N .共6种.故2人中恰有1人评分在[)0,10范围内的概率为63105P ==. (3)平均数为:0.0350.05150.12250.2350.2450.455⨯+⨯+⨯+⨯+⨯+⨯0.150.753792241.9=+++++=.5.(2020·全国高一课时练习)由于受疫情的影响,某国某市的一个小区505人参加某次核酸检测,根据年龄段使用分层抽样的方法从中随机抽取101人,记录其核酸检测结果(阴性或阳性).现将核酸检测呈阴性的人员,按年龄段分为5组:(0,20],(20,40],(40,60],(60,80],(80,100],得到如图所示频率分布直方图,其中年龄在(20,40]的有20人.(1)估计核酸检测呈阴性人员的年龄的中位数; (2)用样本估计该小区此次核酸检测呈阳性的人数;(3)若此次核酸检测呈阳性的人中,男女比例为3:2,从中任选两人,求至少选到一名男性的概率 【答案】(1)50;(2)5;(3)910. 【解析】(1)由频率直方图可知()0.00750.01200.35+⨯=,()0.00750.010.015200.65++⨯=因0.350.50.65<<,所以所求中位数在(40,60],不妨设中位数为x ,则()0.35400.0150.5x +-⨯=,得50x =. 所以核酸检测呈阴性人员年龄的中位数为50;(2)因样本中核酸检测呈阴性的人员中年龄在(20,40]有20人, 设样本中核酸检测呈阴性的人数为n ,则200.0120n =⨯,即100n =,用样本估计总体,所以该小区此次核酸检测呈阳性的人数为505(505100)=5101-⨯, 即该小区此次核酸检测呈阳性的人数为5;(3)由(2)可知,此次核酸检测呈阳性的人数为5,又因其男女比例为3:2, 所以其中男性为3人,女性为2人,将其3名男性分别记为1,2,3,2名女性记为a,b ,从中任选两人的基本事件有(1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b ),共10种,其中至少有一名男性的基本事件有(1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),共9种.所以至少选到一名男性的概率910P =. 6.(2020·全国高一课时练习)海关对同时从,,A B C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 三个地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率. 【答案】(1)1,3,2;(2)415. 【解析】(1)由题意,样品中来自A 地区商品的数量为650150150100⨯=++,来自B 地区商品的数量为6150350150100⨯=++,来自C 地区商品的数量为6100250150100⨯=++; (2)设来自A 地区的样品编号为a ,来自B 地区的样品编号为1b ,2b ,3b , 来自C 地区的样品编号为1c ,2c ,则从6件样品中抽取2件产品的所有基本事件为:()1,a b ,()2,a b ,()3,a b ,()1,a c ,()2,a c ,()12,b b ,()13,b b ,()11,b c ,()12,b c ,()23,b b ,()21,b c ,()22,b c ,()31,b c ,()32,b c ,()12,c c ,共15个;抽取的这2件产品来自相同地区的基本事件有:()12,b b ,()13,b b ,()23,b b ,()12,c c ,共4个;故所求概率415P =. 【题组五 概率的基本性质】1.(2020·吴起高级中学)气象台预报“本市明天降雨概率是70%”,下列说法正确的是( ) A .本市明天将有70%的地区降雨 B .本市有天将有70%的时间降雨 C .明天出行不带雨具淋雨的可能性很大 D .明天出行不带雨具肯定要淋雨【答案】C【解析】气象台预报“本市明天降雨概率是70%”,则本市明天降雨的可能性比较大.与降水地区面积和降水时间无关,所以A,B错误.降水概率是事件发生的可能,不是一定会发生的事情,所以D错误.而由降水概率是70%,可知降水概率较大,所以明天出行不带雨具淋雨的可能性很大,所以C正确.故选:C.2.(2021·全国高一课时练习)某种彩票中奖的概率为110000,这是指A.买10000张彩票一定能中奖B.买10000张彩票只能中奖1次C.若买9999张彩票未中奖,则第10000张必中奖D.买一张彩票中奖的可能性是1 10000【答案】D【解析】彩票中奖的概率为110000,只是指中奖的可能性为110000,不是买10000张彩票一定能中奖,概率是指试验次数越来越大时,频率越接近概率.所以选D.3.(2020·全国高一课时练习)抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,则一次试验中,事件A或事件B至少有一个发生的概率为()A.23B.13C.12D.56【答案】A【解析】事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,∴P(A)2163==,P(B)2163==,又小于5的偶数点有2和4,不小于5的点数有5和6,所以事件A和事件B为互斥事件,则一次试验中,事件A或事件B至少有一个发生的概率为P(A∪B)=P(A)+P(B)112 333 =+=,故选:A.4(2020·全国高一课时练习)柜子里有3双不同的鞋,分别用121212,,,,,a a b b c c 表示6只鞋,如果从中随机地取出2只,那么 (1)写出试验的样本空间;(2)求下列事件的概率,并说明它们的关系; ①A=“取出的鞋不成双” ②B=“取出的鞋都是左脚的”; ③C=“取出的鞋都是一只脚的”;④D=“取出的鞋子是一只左脚一只右脚的,但不是一双鞋”. 【答案】(1)见解析;(2)①4()5P A =;②1()5P B =;③2()5P C =;④2()5P D =.,B C A D A ⊆⊆⊆,B 与D 互斥,C 与D 互斥,C D A ⋃=. 【解析】1)该试验的样本空间可表示为()()({)()()()()()()()()()()()()}121112111221222122121112212212,,,,,,,,,,,,,,,,,,,,,,,,,,,,a a a b a b a c a c a b a b a c a c b b b c b c b c b c c c Ω=,(2)由(1)得()15n Ω=. ①()()(){}()121212,,,,,,3A a a b b c c n A =∴=.()()12415312,155n A P A ∴⋅=-=∴==. ②()()(){}()111111,,,,,,3B a b a c b c n B =∴=,()31155P B ∴==. ③()()()()()({)}111111222222,,,,,,,,,,,C a b a c b c a b a c b c =()()626,155n C P C ∴=∴==. ④()()()()()({)}121221211221,,,,,,,,,,,D a b a c a b a c b c b c =,()()626,155n D P D ∴=∴== A ,B ,C ,D 之间有如下关系:,B C A D A ⊆⊆⊆,B 与D 互斥,C 与D 互斥,C D A ⋃=.5.(2020·全国高一课时练习)有一批货物需要用汽车从城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:(1)为进行某项研究,从所用时间为12h 的60辆汽车中随机抽取6辆.(ⅰ)若用分层随机抽样的方法抽取,求从通公路1和公路2的汽车中各抽取几辆;(ⅱ)若从(ⅰ)的条件下抽取的6辆汽车中,再任意抽取2辆汽车,求这2辆汽车至少有1辆通过公路1的概率.(2)假设汽车A 只能在约定时间的前11h 出发,汽车B 只能在约定时间的前12h 出发.为了尽最大可能在各自允许的时间内将货物从城市甲运到城市乙,汽车A 和汽车B 应如何选择各自的道路? 【答案】(1)(i )通过公路1的汽车中抽取2(辆),从通过公路2的汽车中抽取4(辆).(ii )35(2)汽车A 应选择公路1;汽车B 应选择公路2 【解析】(1)(ⅰ)由分层随机抽样的特点,易得从通过公路1的汽车中抽取20622040⨯=+(辆),从通过公路2的汽车中抽取40642040⨯=+(辆).(ⅱ)记通过公路1的2辆汽车分别为12,A A ,通过公路2的4辆汽车分别为1234,,,B B B B ,从6辆汽车中任意抽取2辆汽车共有15种可能的情况:()()()()()()()()()()()1211121314212223241213,,,,,,,,,,,,,,,,,,,,,,A A A B A B A B A B A B A B A B A B B B B B ()()()()14232434,,,,,,,B B B B B B B B .其中至少有1辆通过公路1的情况有9种,所以至少有1辆通过公路1的概率为93155=. (2)作出频率分布表,如下:。

相关文档
最新文档