电火花放电沉积的原理是利用脉冲电路的充放电原理

合集下载

特种加工技术论文.(优选)

特种加工技术论文.(优选)

特种加工技术概论摘要:特种加工技术是直接借助电能、热能等各种能量进行材料加工的重要工艺方法。

本文简介了电火花加工,电化学加工,超声波加工等各种不同的特种加工技术,并介绍了特种加工技术的特点及未来发展方向趋势。

关键词:特种加工电火花加工电化学加工离子束加工超声波加工快速成形一.前言:近年来,计算机技术、微电子技术、自动控制技术、国防军工和航空航天技术发展迅速,与此同时,高度、高韧性、高强度和高脆性等难切削材料的应用日益广泛,制造精密细小、形状复杂和结构特殊工件的求也在日益增加。

社会需求与技术进步的结合促使特种加工技术不断进步和快速发展。

所谓特种加工,是一种利用化学能、电能、声能、机械能以及光能和热能对金属或非金属材料进行加工的方法。

其工作原理不同于传统的机械切削方法,即加工过程中工件与所用工具之间没有明显的切削力,工具材料的硬度也可低于工件材料的硬度。

特种加工技术在国内外各行各业的应用中取得了巨大成效,它们有着各自的特点,特殊材料或特殊结构工件的加工工艺性发生了根本变化,解决了传统加工方法所遇到的各种问题,已经成为现代工业领域中不可缺少的重要加工手段和关键制造技术。

二.特种加工的特点特种加工与一般机械切削加工相比,有其独特的优点,在某种场合上,它是一般机械切削加工的补充,扩大了机械加工的领域。

它具有以下较为突出的特点(1)不用机械能,与加工对象的机械性能无关,有些加工方法,如激光加工、电火花加工、等离子弧加工、电化学加工等,是利用热能、化学能、电化学能等,这些加工方法与工件的硬度强度等机械性能无关,故可加工各种硬、软、脆、热敏、耐腐蚀、高熔点、高强度、特殊性能的金属和非金属材料。

(2)非接触加工,不一定需要工具,有的虽使用工具,但与工件不接触,因此,工件不承受大的作用力,工具硬度可低于工件硬度,故使刚性极低元件及弹性元件得以加工。

(3)微细加工,工件表面质量高,有些特种加工,如超声、电化学、水喷射、磨料流等,加工余量都是微细进行,故不仅可加工尺寸微小的孔或狭缝,还能获得高精度、极低粗糙度的加工表面。

电火花加工的原理

电火花加工的原理

电火花加工的原理电火花加工是一种以电热进行材料加工的先进工艺,在制造业中应用广泛。

它的原理主要涉及电脉冲和放电火花的生成。

电火花加工的基本原理电火花加工的原理是利用电脉冲的高压电场在工件和电极之间产生放电火花,通过火花的冲击和化学反应来实现材料的加工。

电脉冲的产生电火花加工中使用的电脉冲是由脉冲发生器产生的高压、高能量电流。

脉冲发生器包括高压电源、电容器和放电装置等。

当电容器充电至设定的电压后,通过放电装置将电容器的能量释放出来,形成电脉冲。

放电火花的生成电脉冲通过电极输入到工件上,形成高压电场。

当电场达到致放电点的电压时,势阱区(即放电通道)中的空气将被电离形成等离子体,即放电火花。

放电火花在极短的时间内释放大量能量,在其通道周围产生高温和高压力。

放电火花的冲击作用放电火花的突然释放能量产生震荡波,使工件表面发生局部的融化和蒸发,从而实现材料的剥离和加工。

火花的能量可控制,可以通过调整放电参数来进行不同的加工操作。

放电火花的化学反应作用除了冲击作用,放电火花还能引起化学反应。

在放电过程中,放电通道中的气体或液体环境会发生化学变化,例如氧化、氮化等。

这种化学反应可以利用于工件的表面改性,例如增加硬度、改善耐磨性等。

电火花加工的应用领域电火花加工在制造业中有广泛的应用。

它主要用于硬质材料和细密材料的加工,例如钨碳合金、陶瓷、金属模具等。

电火花加工的特点是可以在硬度较高的材料上进行加工,且可以实现复杂形状的加工。

因此,电火花加工在航空航天、汽车制造、模具制造等领域中得到了广泛的应用。

结论电火花加工通过电脉冲和放电火花的生成实现了材料的高精度加工。

其原理是利用电脉冲产生的高压电场在工件和电极之间产生放电火花,通过火花的冲击和化学反应来剥离和改变材料。

电火花加工的应用非常广泛,为制造业的发展提供了重要的技术支持。

电火花放电沉积的原理是利用脉冲电路的充放电原理

电火花放电沉积的原理是利用脉冲电路的充放电原理

脉冲电路的充放电原理脉冲电路的充放电原理电火花放电沉积的原理是利用脉冲电路的充放电原理,采用导电材料(硬质合金、石墨、合金钢、铝和铜等)作为工具电极(阳极),在空气或特殊的气体中使之与被强化的金属工件(阴极)之间产生火花放电。

当工具电极与工件达到某个距离电场强度足以使介质电离击穿时两者之间就产生火花放电,使电极端部与工件表面微区发生熔化甚至气化,熔融金属在热作用,电磁力和机械力的作用下沉积在工件表面。

电极与工件的放电间隙频繁发生变化,电极与工件间不断发生火花放电,从而实现放电沉积。

1.2 极性效应在电火花放电加工过程中,无论是正极还是负极,都会受到不同程度的电蚀。

这种单纯由于正、负极性不同而彼此电蚀量不一样的现象叫做极性效应。

因此,当采用窄脉冲、精加工时应选用正极性加工;当采用长脉冲、粗加工时,应采用负极性加工,此时可得到较高的蚀除速度和较低的电极损耗。

从提高加工生产率和减小工具损耗的角度来看,极性效应愈显著愈好,故在电火花加工中必须充分利用。

当用交变的脉冲电流加工时,单个脉冲的极性效应便相互抵消,增加了工具的损耗,因此,电火花加工一般采用单向脉冲电源。

1.3 电火花加工中电极损耗分析与解决措施电火花在整个加工过程中要受到各种干扰因素的影响, 这些干扰因素直接或间接地影响着加工质量。

在电火花加工过程中电极损耗分为绝对损耗和相对损耗。

造成电极损耗的原因有:小面积精加工,加工件结构尺寸偏小,加工时间过长,电极装夹不当等因素。

因此为了减少电极的损耗一般有以下方法:(1)有效排除电蚀物(2)电极材料和加工参数的合理选用(3)提高加工技能和安全操作意念等等。

电火花加工电极损耗和变形是一个复杂的过程。

为了降低电极损耗程度, 减少变形, 除了充分利用放电过程的极性效应和吸附效应外, 同时也要选用适宜的电极材料, 并且在实际的加工过程中要根据具体的加工对象实施一定的加工技巧和选择合适的加工参数。

1.4 电火花加工的发展趋势电火花线切割加工技术在相当长的时间里间都是采用精规准参数进行一次切割成型,其切割速度与加工表面质量之间存在着一定的矛盾。

电火花加工的工作原理

电火花加工的工作原理

电火花加工的工作原理电火花加工是一种常见的金属加工工艺,它通过在金属工件上产生电火花放电进行加工,以实现对工件的精细加工和形状加工。

本文将详细介绍电火花加工的工作原理。

1. 电火花加工的基本原理电火花加工是一种非接触加工方法,它利用电脉冲在金属工件和电极之间的放电产生高能量的电火花,并通过电火花的放电烧蚀作用来实现对金属工件的加工。

电火花加工主要包括放电、烧蚀和冲击排屑三个过程。

2. 放电过程电火花加工中的放电过程是指通过电极与工件之间形成的电场,使放电电流通过工作介质(通常是去离子水或油)的间隙,产生电压梯度的作用下进行放电。

当电极与工件之间的间隙达到一定程度时,间隙中的工作介质将发生电离,形成等离子体通道,导电性增强。

此时,通过电极施加的电压会引发电流,在通道内形成电火花放电。

3. 烧蚀过程电火花加工中的烧蚀过程是指电火花放电产生的高温等离子体通道在工件表面产生的热量,使金属工件局部受热电离。

高温等离子体通道中的电子、离子与金属工件表面发生碰撞,将表面金属冲击、碰撞、冲蚀和蒸发,从而实现工件的烧蚀加工。

4. 冲击排屑过程电火花加工中的冲击排屑过程是指工件在电火花放电的作用下,由于放电能量的冲击和烧蚀作用,使工件表面的金属材料产生蒸发、冲击、碰撞和冲蚀现象,将被加工材料冲击除去,形成悬浮于工作介质中的微小颗粒,实现对工件的冲击排屑。

5. 工作参数对加工效果的影响在电火花加工过程中,工作参数的设置将直接影响加工效果。

其中,电极间距、电压、电流、工作介质质量等是常见的工作参数。

合理的工作参数设置可以改善加工效果,提高加工质量。

6. 电火花加工的应用领域由于电火花加工能够对各种金属材料进行高精度加工,因此在许多领域都有广泛的应用。

电火花加工常用于模具制作、精密零件加工、刀具加工等领域。

它能够加工出复杂形状的零件,并且具有良好的表面质量和尺寸精度。

总结:电火花加工是一种通过电火花放电进行加工的金属加工工艺。

电火花加工的原理和应用

电火花加工的原理和应用

电火花加工的原理和应用一、电火花加工的原理电火花加工是一种非接触加工方法,通过放电产生的高温和脉冲能量来消融工件材料,并采用局部放电的方式在工件表面形成微小的坑穴。

具体的原理如下:1.放电原理: 电火花加工利用脉冲电流和脉冲电压之间的间隔放电原理。

当电极与工件之间的间隙达到一定数值时,由于间隙中的电介质不能绝缘放电,从而在电极和工件之间产生脉冲放电。

2.火花裂纹和焊覆制造: 在电火花放电时,放电能量会聚集在放电区域,使材料发生瞬时融化、汽化和轰炸,形成微小的坑穴。

通过控制放电时间和间隔,可以实现花纹制造、裂纹加强和焊接修复等操作。

3.放电能量和能量密度: 电火花加工的放电能量取决于脉冲电流和脉冲电压的幅值。

较高的能量密度可以实现更高的加工速度和更深的放电深度,但也会导致较高的加工表面粗糙度。

二、电火花加工的应用电火花加工由于其特殊的加工原理和优越的加工性能,在许多领域都有广泛的应用。

以下是一些常见的应用领域:1.模具加工: 电火花加工可用于模具的制造和修复。

通过电火花加工,可以在金属材料上形成复杂的模具形状,如细小的孔、溜槽和异形表面。

此外,还可以利用电火花加工修复损坏的模具,提高模具的使用寿命。

2.航空航天: 电火花加工在航空航天行业中广泛应用于复杂零件的制造。

例如,通过电火花加工可以在高温合金中制造出精确的涡轮叶片、燃烧室喷雾孔和气动导向槽等关键零部件。

3.微细加工: 电火花加工可以用于微尺度的加工。

由于电火花加工的非接触性和微弧形成机制,可以实现微观损伤的最小化,并精确地制造微细结构,如光学纤维连接器、微孔板和微芯片等。

4.医疗器械: 电火花加工在医疗器械的制造中有着重要的应用价值。

例如,通过电火花加工可以实现精密的切削、激光烧蚀和微弧形成,这些技术可以用于制造心脏起搏器、人工关节和牙科植入物等。

5.汽车制造: 电火花加工在汽车制造中被广泛应用于发动机零件、传动系统和制动系统等关键部件的加工。

电火花机床加工原理

电火花机床加工原理

电火花机床加工原理电火花机床是一种利用电火花放电原理进行加工的机床。

它是在工件与刀具之间通过电火花放电来加工材料的机床。

电火花机床主要适用于硬质、脆性材料的加工,如钢铁、硬质合金、陶瓷等。

电火花机床加工原理如下:1. 放电击穿原理:电火花机床通过在工件和刀具之间产生高电压,使放电电极与工件之间产生高电场强度。

当电场强度超过电工学击穿场强度时,工件表面的绝缘层会被击穿,从而形成半导体放电通道。

这个通道称为电火花放电通道。

2. 电火花放电过程:电火花机床通过稳定的电源提供稳定的电压和电流。

当电压升高到一定程度时,针尖与工件之间的电火花放电通道就会形成。

随着电流的流动,通道内电子与离子发生碰撞,产生高温高压等离子体。

这个等离子体可以使绝缘层上的物质被蒸发或氧化。

3. 脉冲放电原理:电火花机床是通过脉冲放电来完成加工的。

脉冲电源会周期性地提供高电压和电流,使放电通道在工件表面形成周期性的脉冲放电。

这种脉冲放电方式可以使加工效果更好,避免材料过热和烧死。

4. 电火花放电的加工效果:电火花机床加工的过程中,工件表面的金属材料会被蒸发、溶解、氧化和熔化。

通过控制电极的形状、电流和脉冲的参数,可以实现不同形状和尺寸的加工效果。

同时,电火花加工也会在工件表面形成一层新的氧化物,起到提高表面硬度和耐磨性的作用。

电火花机床的加工特点如下:1. 高精度:电火花机床加工的精度可以达到0.01毫米,适用于高精度的工件加工。

2. 加工范围广:电火花机床可以加工各种材料,包括硬质合金、陶瓷和石材等。

3. 不受材料硬度限制:电火花机床加工不受材料硬度限制,可以加工各种硬度的材料。

4. 无切削力:电火花加工过程中,刀具不会接触工件表面,不存在加工切削力,不会产生变形。

5. 加工效率低:电火花加工是一种慢速加工过程,加工效率低于传统切削加工。

6. 表面质量好:电火花加工可以在工件表面形成一层氧化物,提高工件的表面质量,减少后续的抛光加工。

电火花加工的基本原理及四个阶段

电火花加工的基本原理及四个阶段

电火花加工的基本原理及四个阶段概述电火花加工(Electrical Discharge Machining, EDM)是一种使用离子流引发的电火花来加工材料的非传统加工方法。

它具有高精度、无需机械接触、适用于硬质材料等优点,在模具制造、航空航天、医疗器械等领域得到广泛应用。

本文将介绍电火花加工的基本原理以及涉及的四个阶段。

基本原理电火花加工是通过在工件和电极之间施加高电压产生的强电场中,通过离子击穿和放电放大的作用,使工件表面的材料蒸发、熔化、氧化和脱落,从而实现对工件进行加工的一种方法。

电火花加工的基本原理可分为以下几个步骤:一、电极初始化电极初始化是电火花加工的第一个阶段,也是整个加工过程非常重要的一步。

在电极初始化阶段,电极与工件之间的间隙会被填充上介质,通常为绝缘油。

电极初始化的主要目的是为了保证加工过程中电极与工件之间的电气隔离,并提供离子形成通道所需的条件。

二、击穿阶段击穿阶段是电火花加工的第二个阶段。

在这个阶段,施加在电极和工件之间的高电压会导致液体介质中形成离子通道,并在高电场的作用下形成离子击穿。

离子通道的形成可以导致液相电导率的急剧增加,从而产生电流,使电火花放电得以发生。

三、脉冲放电阶段脉冲放电阶段是电火花加工的第三个阶段。

在击穿阶段之后,电火花会在电极和工件之间发生放电,产生强大的电流。

电火花放电的时间通常在几十微秒到几百微秒之间,而间歇时间则在几微秒到几毫秒之间。

通过周期性的充电和放电过程,电火花能够不断地冲击、腐蚀和剥离工件表面的材料。

四、冲击腐蚀阶段冲击腐蚀阶段是电火花加工的最后一个阶段,也是整个加工过程的主要阶段。

在这个阶段,电火花不断地冲击和腐蚀工件表面的材料,使其熔化、蒸发、氧化和脱落。

通过不断重复脉冲放电和冲击腐蚀过程,工件的形状和尺寸最终得以加工完成。

总结电火花加工以其高精度、无需机械接触、适用于硬质材料等优点在工业领域得到广泛应用。

在电火花加工的过程中,电极初始化、击穿阶段、脉冲放电阶段和冲击腐蚀阶段是不可或缺的四个阶段。

放电加工的原理

放电加工的原理

放电加工的原理放电加工 (EDM,Electric Discharge Machining)简称电火花加工,是一项采用有限数量的放电电涌火花反应削减金属物体的特种加工工艺,是金属切削加工的完全不同的材料切削方式。

它的生产原理简单,其基本加工要素有工件及工件上浸渍介质(如合金油或烷油)、电极及放电源。

它对不可加工件 (如硬质合金、铬合金)、非线性曲面和精密腔形等具有特殊加工优势,同时可实现窄槽放电、薄壁放电及“死角”等加工内容,在精密机械加工 fabrication行业具有重要的作用。

放电加工是通过利用脉冲电流放电来把工件上的铝合金表面削掉,形成抛光光滑、尺寸精确以及直角精度高的可性表面。

放电加工主要是利用负电极形状的电极与金属工件相互触动,通过电路脉冲把一定量的能量输入工件,从而在液体介质中形成细小气泡,使高压脉冲电液成为细小电晕,根据机床补偿电液的削减原理,实现削型的效果,这可以把金属层上的物质分解出来,极限的化学反应;并发出火花,达到切削目的。

放电加工分为无润滑放电加工、少量润滑放电加工、少量噪声放电加工、少量润滑噪声放电加工、双层放电加工等,针对容易受潮、易腐蚀的期望或需要单边完成加工的情况,经常采用放电加工。

表面处理精度高的放电加工连续利用60HZ的电液放电法实现金属表面光洁,但因为削型表面有油污,因此在机加工后,要进行清洗和抛光。

由于放电加工的表面处理精度高、放电衣物连续,容易生成有害物质,因此还应考虑控制环境污染。

放电加工法可以节省时间,采用脉冲放电加工方式可以减少加工时间,减少传统机械加工过程中的损耗,也可以保持速度的稳定。

由于放电加工的表面不会产生抛光涂层,强度也会比其他机械加工方式要强,它可以解决加工繁琐,准确性低,正确率低等问题,满足更高精度要求,得到用户的一致好评。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电火花放电沉积的原理是利用脉冲电路的充放电原理电火花放电沉积的原理是利用脉冲电路的充放电原理,采用导电材料(硬质合金、石墨、合金钢、铝和铜等)作为工具电极(阳极),在空气或特殊的气体中使之与被强化的金属工件(阴极)之间产生火花放电。

当工具电极与工件达到某个距离电场强度足以使介质电离击穿时两者之间就产生火花放电,使电极端部与工件表面微区发生熔化甚至气化,熔融金属在热作用,电磁力和机械力的作用下沉积在工件表面。

电极与工件的放电间隙频繁发生变化,电极与工件间不断发生火花放电,从而实现放电沉积。

1.2 极性效应在电火花放电加工过程中,无论是正极还是负极,都会受到不同程度的电蚀。

这种单纯由于正、负极性不同而彼此电蚀量不一样的现象叫做极性效应。

因此,当采用窄脉冲、精加工时应选用正极性加工;当采用长脉冲、粗加工时,应采用负极性加工,此时可得到较高的蚀除速度和较低的电极损耗。

从提高加工生产率和减小工具损耗的角度来看,极性效应愈显著愈好,故在电火花加工中必须充分利用。

当用交变的脉冲电流加工时,单个脉冲的极性效应便相互抵消,增加了工具的损耗,因此,电火花加工一般采用单向脉冲电源。

1.3 电火花加工中电极损耗分析与解决措施电火花在整个加工过程中要受到各种干扰因素的影响, 这些干扰因素直接或间接地影响着加工质量。

在电火花加工过程中电极损耗分为绝对损耗和相对损耗。

造成电极损耗的原因有:小面积精加工,加工件结构尺寸偏小,加工时间过长,电极装夹不当等因素。

因此为了减少电极的损耗一般有以下方法:(1)有效排除电蚀物(2)电极材料和加工参数的合理选用(3)提高加工技能和安全操作意念等等。

电火花加工电极损耗和变形是一个复杂的过程。

为了降低电极损耗程度, 减少变形, 除了充分利用放电过程的极性效应和吸附效应外, 同时也要选用适宜的电极材料, 并且在实际的加工过程中要根据具体的加工对象实施一定的加工技巧和选择合适的加工参数。

1.4 电火花加工的发展趋势电火花线切割加工技术在相当长的时间里间都是采用精规准参数进行一次切割成型,其切割速度与加工表面质量之间存在着一定的矛盾。

中国特有的高速走丝电火花线切割机长期存在的加工质量问题, 可以采用多次切割工艺来解决。

现目前中速走丝电火花线切割机是一种价格较低, 加工精度、粗糙度、加工效率介于高速走丝与慢走丝的一种机床,具有很好的发展前景。

2.电化学加工电化学加工是利用电化学反应(或称电化学腐蚀)对金属材料进行加工的方法。

与机械加工相比,电化学加工不受材料硬度、韧性的限制,已广泛用于工业生产中。

常用的电化学加工有电解加工、电磨削、电化学抛光、电镀、电刻蚀和电解冶炼等。

近期,电化学加工工艺技术研究涉及的方向主要集中在超纯水电解加工、微细加工、加工间隙的检测与控制、数字化设计与制造技术等重第2/6页点领域。

2.1 电解加工的优缺点(1)加工范围广不受金属材料本身力学性能的限制(2)电解加工的生产效率高(3)可以达到较好的表面粗糙度(4)加工过程中阴极工具在理论上不会损耗(5)加工过程中没有切削力可以不会产生残余应力和变形。

但是任何一种加工方式都有它的弊端,在电化学加工过程中也有缺点和其局限性:(1)不易达到较高的加工精度和加工稳定性(2)电极工具的设计和修正比较麻烦(3)电极加工的附属设备较多。

(4)电解产物需要进行妥善的处理,否则将污染环境。

2.2 未来展望近阶段,电解加工的研究重点及应用领域主要会集中在以下几个方向:(1) 电化学微精加工的深入研究电化学加工技术具有加工机理的独特优势以及在微精甚至在纳米加工领域进一步研究探索的空间,但还必须在自身工艺规律认识和完善的基础上不断创新。

具体应关注: ①进一步完善硬件系统,如微进给系统及微控工作台的性能及可靠性的提升;加工过程自动检测与适应控制研发的深化; ②微精加工机理的研究,尤其是中、高频率脉冲电流条件下,微精加工电化学反应系统动力学等方面的深入研究。

(2) 脉冲电源的深化研发微秒级脉冲电源的工程化完善以及在工业领域的大力推广应用。

纳秒级脉冲电源、群脉冲电源、逆变式脉冲电源的性能完善。

(3) 理论成果向实际应用的转化。

诸如加工间隙的检测与控制、阴极数字化设计、电解加工过程的模拟与仿真等均是电化学加工的关键技术,不能仅仅在各种基金支持下获得理论成果即束之高阁,而应尽快由实验室向工业生产现场转移。

3.离子束加工聚焦离子束技术是一种集形貌观测、定位制样、成分分析、薄膜淀积和无掩膜刻蚀各过程于一身的新型微纳加工技术。

离子束纳米加工,具有传统加工方法无可比拟的优势而逐渐成为新一代精加工方法,在微纳米加工、操纵以及器件的研制等方面具有重要应用。

纳米测量学在纳米科技中起着信息采集和分析的不可替代的重要作用,纳米加工是纳米尺度制造业的核心,发展纳米测量学和纳米加工的一个重要方法就是电子束与离子束技术。

4.超声波加工超声加工是利用超声频作小振幅振动的工具,并通过它与工件之间游离于液体中的磨料对被加工表面的捶击作用,使工件材料表面逐步破碎的特种加工。

超声加工常用于穿孔、切割、焊接、套料和抛光。

其加工原理是超声波发生器将工频交流电能转变为有一定功率输出的超声频电振荡,换能器将超声频电振荡转变为超声机械振动,通过振幅扩大棒(变幅杆)使固定在变幅杆端部的工具振产生超声波振动,迫使磨料悬浮液高速地不断撞击、抛磨被加工表第3/6页面使工件成型。

超声加工的主要特点:不受材料是否导电的限制;工具对工件的宏观作用力小、热影响小,因而可加工薄壁、窄缝和薄片工件;被加工材料的脆性越大越容易加工,材料越硬或强度、韧性越大则越难加工;由于工件材料的碎除主要靠磨料的作用,磨料的硬度应比被加工材料的硬度高,而工具的硬度可以低于工件材料;可以与其他多种加工方法结合应用,如超声振动切削、超声电火花加工和超声电解加工等。

4.1 高效超声波光整技术原理高效超声波光整技术是利用超声波振动冷压加工原理。

它是将一台高效超声波表面光整设备装于车床刀架上,利用工件的回转,磨头对零件表面作高频率短促的往复振动冲击运动,以一定的冲击力敲击被加工表面的加工方法。

其冷压加工是充分利用金属的塑性,使零件的表面层金属在外力作用下产生细微塑性残余变形,从而达到改变其表面性能,形状和尺寸的目的。

5.快速成形快速成形技术的基本原理是基于“离散—堆积”的成形方法, 借助三维CAD 软件, 或用实体反求方法采集得到有关原型或零件的几何形状、结构和材料的组合信息, 从而获得目标原型的概念并以此建立数字化描述CAD 模型, 之后经过一定的转换或修改, 将三维虚拟实体表面转换为用一系列三角面片逼近的表面, 生成面片文件, 再按虚拟三维实体某一方向将CAD 模型离散化, 分解成具有一定厚度的层片文件, 由三维轮廓转换为近似的二维轮廓, 然后根据不同的快速成形工艺对文件进行处理, 对层片文件进行检验或修正并生成正确的数控加工代码, 通过专用的CAM 系统控制材料有规律地、精确地叠加起来(堆积) 而成一个三维实体制件,快速成形技术的成形方法多达十余种,目前应用较多的有立体光固化法,选择性激光烧结、分层实体制造、熔积成形等。

这些工艺方法都是在材料叠加成形的原理基础上,结合材料的物理化学特性和先进的工艺方法而形成的,它与其他学科的发展密切相关。

5.1 快速成形技术特点:(1)制造快速(2)技术高度密集(3)自由成形制造(4) 制造过程高柔度性(5) 可选材料的广泛性(6)广泛的应用领域(7) 突出的技术经济效益5.2 快速成形制造技术的发展趋势最近随着新材料技术、新工艺及信息网络化等方面的进步,许多新快速成型制造技术不断涌现并应用在各领域,主要出现在快速模具,纳米制造、仿生制造和集成制造等领域。

6.磨料水射流切割技术随着我国经济的迅猛发展,各行各业对切割技术的需求越来越大,对切割质量的要求也越来越高。

水射流都已成为新型的切割加工方法之一。

水射流切割分为纯水射流切割和磨料水射流切割两种。

纯水射流切割是以纯水作为能量载第4/6页体, 其结构简单,喷嘴磨损慢, 但切割能力差。

磨料水射流切割以水和磨料的混合液作为能量载体, 切割能力强,能切割几乎所有的材料,其卓越的应用效果越来越被人们7. 液中放电成形加工液中放电成形加工:它是利用液电效应对金属进行冲压成形的工艺方法。

当高压脉冲放电在液体中发生时,液体内会产生强烈的爆炸,其冲击压力可达102~104M Pa,这就是所谓的液电效应,也叫电水锤效应。

该法具有成形速度高,可用于高强高硬的金属材料;工件回弹小,加工精度高;能同时完成拉伸、冲孔、剪切、压印、翻边等多种工序等优点。

该法适合形状复杂及高强高硬金属工件的冲压成形。

液电冲压成形法在国外的机械加工行业中已有应用,并已有这种成形设备的系列产品面世。

8.特种加工的发展趋势为进一步提高特种加工技术水平及扩大其应用范围, 当前特种加工技术的发展趋势主要包括以下几点:1) 采用自动化技术。

充分利用计算机技术对特种加工设备的控制系统、电源系统进行优化,使加工设备向自动化、柔性化方向发展, 这是当前特种加工技术的主要发展方向。

2) 趋向精密化研究。

高新技术的发展促使高新技术产品向超精密化与小型化方向发展, 对产品零件的精度与表面粗糙度提出更严格的要求。

为适应这一发展趋势, 特种加工的精密化研究已引起人们的高度重视, 3) 开发新工艺方法及复合工艺。

为适应产品的高技术性能要求与新型材料的加工要求, 需要不断开发新工艺方法, 包括微细加工和复合加工, 尤其是质量高、效率高、经济型的复合加工, 如工程陶瓷、复合材料以及聚晶金刚石等。

相关文档
最新文档