电化学在制备纳米材料方面的应用

合集下载

电化学方法在材料科学中的应用

电化学方法在材料科学中的应用

电化学方法在材料科学中的应用引言电化学方法是指利用电化学原理和技术手段研究物质的电化学性质和反应规律的科学方法。

在材料科学领域,电化学方法被广泛应用于材料的制备、表征和性能研究等方面,具有重要的应用价值和发展潜力。

本文将介绍电化学方法在材料科学中的几个典型应用领域。

一、电化学腐蚀和防护材料在特定环境中的电化学腐蚀及其防护是材料科学中的重要问题之一。

电化学方法可通过测量材料在腐蚀介质中的电位和电流变化,研究材料的腐蚀行为及其机理。

同时,通过电位极化、电化学阻抗等技术手段,可以对材料进行腐蚀防护和阻碍腐蚀的传导路径。

二、电化学沉积和电化学合成电化学沉积是利用电流将金属离子还原成金属自身在电极表面的方法。

电化学合成是指通过电流控制电极上的反应物的还原或氧化过程,从而合成所需的物质。

这两种方法在材料科学中被广泛应用于薄膜制备、纳米材料合成等方面。

例如,电镀技术用于镀覆金属薄层,提高材料的耐腐蚀性和导电性;电化学溶胶凝胶法制备纳米材料,用于催化剂、电极材料等领域。

三、电化学传感器电化学传感器利用电化学方法检测物质的浓度或导电性变化,通过测量电流、电位或电荷量等信号来实现检测。

该方法具有灵敏度高、选择性强、反应速度快等优点,被广泛应用于环境监测、生物传感、医疗诊断等领域。

例如,血糖仪是一种常见的电化学传感器,可通过检测血液中葡萄糖的浓度来实时监测糖尿病患者的血糖水平。

四、锂离子电池和燃料电池锂离子电池和燃料电池是目前颇受关注的能源存储和转换技术。

电化学方法在这两种电池中发挥着重要作用。

锂离子电池以电解质中锂离子的嵌入和脱嵌作用为基础,通过控制电解质中锂离子的迁移来实现电荷和放电。

燃料电池则利用氢气、甲醇等燃料在电极上与氧气反应产生电能。

电化学方法可以实时监测电池的电位和电流变化,提高电池的性能和寿命。

五、电沉积法制备电极材料电沉积法是一种通过电化学沉积方法制备电极材料的技术。

电极材料是电化学能源转换与存储设备中的重要组成部分,如电池、超级电容器等。

电化学沉积技术在材料制备中的应用

电化学沉积技术在材料制备中的应用

电化学沉积技术在材料制备中的应用电化学沉积技术是一种基于电化学原理的材料制备方法,通过在电解质溶液中施加电压,利用电流将金属或合金沉积在电极表面。

该技术广泛应用于材料工程领域,如薄膜制备、纳米材料合成、合金制备和电化学传感器等。

本文将介绍电化学沉积技术在材料制备中的应用,并探讨其优势和潜在挑战。

一、薄膜制备电化学沉积技术是一种常用的薄膜制备方法,可以制备出具有良好光学、电学和磁学性能的薄膜材料。

例如,通过调节沉积参数和电解液成分,可以制备出具有各向同性或各向异性的金属薄膜。

这些金属薄膜在光电子器件、传感器和光学涂层等领域具有广泛的应用。

二、纳米材料合成电化学沉积技术还可用于纳米材料的合成和制备。

通过控制沉积过程中的电流密度和电解液成分,可以制备出尺寸可控的纳米颗粒、纳米线和纳米薄膜。

这种方法简单易行且成本较低,因此在纳米科学和纳米技术领域备受研究者的关注。

例如,利用电化学沉积技术可以合成出高度吸附性的纳米材料,用于环境污染物的处理和废水处理。

三、合金制备电化学沉积技术还可用于合金的制备。

通过调节电流密度和电解液组成,可以在电极表面实现金属的合金化反应,得到具有不同成分和结构的合金材料。

这些合金具有优异的力学性能和化学稳定性,在航空航天、汽车制造和微电子器件等领域具有广泛应用。

四、电化学传感器电化学传感器是一种基于电化学原理的传感器,通过测量电流、电位或电荷等参数来检测和分析目标物质。

电化学沉积技术可以用于制备和改性传感器电极材料,提高传感器的灵敏度和稳定性。

例如,通过在电化学传感器的电极表面沉积金属或合金材料,可以增加电极的活性表面积,从而提高传感器的检测灵敏度。

尽管电化学沉积技术在材料制备中具有广泛的应用前景,但仍存在一些挑战。

首先,沉积过程中的电解液成分和参数需要精确控制,以获得所需的材料性能。

其次,电化学沉积技术对电极表面的几何形状和材料性能有一定要求,因此需要优化电极设计和制备工艺。

此外,沉积速率较低,生产效率较低,对于大规模制备仍需改进。

电化学沉积技术在材料制备中的应用

电化学沉积技术在材料制备中的应用

电化学沉积技术在材料制备中的应用电化学沉积技术是一种通过控制电荷转移和电极反应过程来实现材料制备的方法。

它广泛应用于金属材料、半导体材料、纳米材料等领域,并在这些领域中显示出了巨大的潜力和优势。

本文将详细介绍电化学沉积技术在材料制备中的应用,并探讨其在不同领域的特点和发展趋势。

一、电化学沉积技术在金属材料制备中的应用电化学沉积技术是制备金属材料的一种重要方法。

通过对电解液中的金属离子进行电化学还原,可以在电极表面沉积出金属薄膜。

这种方法具有工艺简单、成本低廉、生产效率高等优点。

1. 金属薄膜的制备电化学沉积技术可以制备出具有良好性能的金属薄膜。

通过调节电解液中金属离子的浓度和电位,可以控制金属薄膜的成分、厚度和结构等。

例如,在微电子器件的制备中,可以使用电化学沉积技术来制备导电金属线路,以实现电子元器件的连接和功能实现。

2. 金属纳米颗粒的制备电化学沉积技术还可以制备金属纳米颗粒,这些纳米颗粒具有较大的比表面积和特殊的物理化学性质,具有广泛的应用前景。

通过控制电化学反应条件,可以调节纳米颗粒的尺寸、形貌和分布等特性。

利用电化学沉积技术制备的金属纳米颗粒可以应用于催化、传感、生物医学等领域。

二、电化学沉积技术在半导体材料制备中的应用半导体材料在现代电子技术中起着重要的作用,电化学沉积技术也在半导体材料制备中发挥着重要的作用。

1. 薄膜的制备电化学沉积技术可以通过控制电解液中的离子浓度和电位来制备各种半导体材料的薄膜。

这是制备大面积、高质量的半导体材料薄膜的一种有效方法。

通过优化电化学沉积参数,可以实现半导体材料薄膜的均匀性、致密性和晶体结构的调控,从而提高材料的性能。

2. 纳米结构的制备电化学沉积技术还可以制备出具有特殊形貌和结构的半导体材料纳米结构。

通过调节电化学反应参数,如电解液组成、温度和电位等,可以实现半导体材料的纳米线、纳米颗粒和纳米点等结构的制备。

这些纳米结构具有较大的比表面积和量子尺寸效应,在光电转换、传感和器件制备等方面具有重要应用价值。

聚合物纳米材料的制备及应用

聚合物纳米材料的制备及应用

聚合物纳米材料的制备及应用聚合物纳米材料是基于聚合物材料技术的一种新型材料。

聚合物纳米材料广泛应用于各个领域,如医学、能源、环保、电子等。

本文就聚合物纳米材料的制备和应用做一个简单的介绍。

一、聚合物纳米材料的制备1. 自组装法自组装法是一种制备纳米材料的简便方法,它是通过聚合物溶液中的吸附和配位作用等发生的自组装过程制备纳米材料。

该方法一般适用于微反应体系中,因为其能获得大量有序的结构体系。

2. 电化学法电化学法是通过在电极表面通过电化学反应来制备聚合物纳米材料。

在电化学反应过程中,通过有机分子在电极表面上的还原和氧化,尤其是在浓缩后,可以得到纳米结构。

3. 气相电化学法气相电化学法是将聚合物气体蒸发,并将其通过电极处理后制备纳米材料。

这种方法一般速度快、操作简单、效率高。

二、聚合物纳米材料的应用1. 医学聚合物纳米材料逐渐成为高效的医学生物材料,可以在医学领域中制备各种生物材料和生物医用纳米粒子。

可以将纳米材料应用于抗癌、抗炎、抗感染等医学治疗中。

2. 能源聚合物纳米材料在能源领域中用于研究太阳能电池、二氧化碳还原等方面。

通过纳米材料的吸收及其光电导性质来提高太阳能电池的转化效率,在化学反应中改善催化作用。

3. 环保聚合物纳米材料既可以在新型超级电容器和锂离子电池的制作中使用,也可以应用于除湿材料、雾水材料等方面。

由于其自身稳定性和高效性,可以改善臭氧层消耗、排放二氧化碳等对环境有害的化学物质。

4. 电子聚合物纳米材料在电子产品的制作中也有广泛的应用,如触摸屏、显示屏等。

这些电子应用在产品性能,如扭曲度、耐久性和透明度方面都有所提高。

三、总结聚合物纳米材料在各个行业都有着非常广泛应用。

它们不仅提高了生产效率,而且还极大地改善了人类生活质量。

随着技术的进步,聚合物纳米材料将会在未来得到更广泛的应用。

电化学制备纳米结构金属材料及其应用研究

电化学制备纳米结构金属材料及其应用研究

电化学制备纳米结构金属材料及其应用研究导言纳米材料作为当今科学技术领域的热点研究对象,已经在各个领域展现出强大的应用潜力和广阔的发展空间。

而电化学制备纳米结构金属材料作为一种重要的制备方法,在纳米材料的制备和应用研究中占据着重要地位。

本文将从电化学制备纳米结构金属材料的原理和方法入手,进一步探讨其在能源储存、催化剂和生物传感等领域的应用研究。

电化学制备纳米结构金属材料的原理与方法电化学制备纳米结构金属材料是通过控制电极表面电位和电极反应速率,使金属离子在电解溶液中还原成纳米颗粒并沉积在电极表面的过程。

其原理主要基于电极反应、溶液中金属离子的还原和晶体生长过程。

一种常用的电化学制备纳米结构金属材料的方法是通过调节电解液中的配体浓度、电极电位和电解时间等参数来控制沉积的纳米金属颗粒的尺寸、形貌和分散度。

此外,还可以利用外加磁场、超声波或高温等外界因素来进一步控制纳米颗粒的形貌和结构。

应用研究:能源储存纳米结构金属材料在能源储存领域具有重要的应用价值。

以锂离子电池为例,采用电化学制备纳米结构金属材料可以显著提高材料的锂离子嵌入/脱嵌能力和循环稳定性。

通过制备纳米颗粒,可以增加金属表面积和缩短电子和离子的传输距离,提高材料的充放电速率和循环寿命。

此外,在超级电容器、燃料电池和柔性储能器件等能源储存领域,纳米结构金属材料也展现出良好的应用前景。

通过精确控制纳米颗粒的形貌和尺寸,可以实现更高的比表面积和更好的电荷传输效率,从而提高能源储存设备的性能和能量密度。

应用研究:催化剂纳米结构金属材料还可以作为催化剂在化学反应中发挥重要作用。

由于其高比表面积、丰富的表面活性位点和可调控的物理化学性质,纳米结构金属催化剂展现出出色的催化活性和选择性。

例如,在催化氧化还原反应中,纳米结构金属材料可以作为电催化剂用于氧还原反应、氢氧化反应和氢化反应等,具有高催化活性和较低的活化能。

此外,纳米结构金属催化剂还可以应用于有机合成反应、环境净化和废物处理等领域,提高反应效率和产物选择性。

无机纳米材料的制备及其应用

无机纳米材料的制备及其应用

无机纳米材料的制备及其应用一、引言无机纳米材料是目前材料学研究的前沿领域之一,其具有巨大的潜力和广泛的应用前景。

随着纳米科技的不断进步,无机纳米材料的制备技术和应用越来越成熟。

本文将介绍无机纳米材料的制备及其应用。

二、无机纳米材料的制备技术1. 水热法水热法是制备无机纳米材料的一种常见方法。

该方法利用高温高压反应条件下的溶液化学反应,形成纳米晶体结构。

水热法具有简单、快速、低成本等优点,适用于多种无机材料的制备。

2. 气相法气相法是制备无机纳米材料的一种方法,利用化学气相沉积,其原理是将气态材料经过气化后在反应室中进行反应,生成纳米材料。

气相法具有可扩展性强、纯度高等优点,适用于多种无机材料的制备。

3. 电化学法电化学法是一种制备无机纳米材料的方法,通过电解水溶液来制备纳米材料,其原理是利用电化学反应产生的氢气来还原金属离子,生成纳米级材料。

电化学法具有易控制、纯度高等优点,适用于多种无机材料的制备。

三、无机纳米材料的应用1. 光电领域无机纳米材料在光电领域具有广泛的应用,例如用于制备光电器件、用于光催化等。

利用无机纳米材料的特殊光电性质,可提高光电器件的性能。

2. 催化领域无机纳米材料在催化领域中也具有重要应用。

例如用于催化剂的制备、用于汽车尾气净化等。

利用无机纳米材料的高比表面积、活性位点等特性,可提高催化剂的效率、稳定性。

3. 生物医学领域无机纳米材料在生物医学领域中具有广泛的应用,例如用于药物输送、用于检测生物分子等。

利用无机纳米材料的生物相容性、药物包载能力等特性,可提高药物的生物利用度、诊断的准确性。

四、无机纳米材料的发展趋势随着纳米科技的不断进步,无机纳米材料将会在许多领域发挥举足轻重的作用。

未来,我们将更加关注无机纳米材料的结构设计、性能控制与应用创新等方面。

五、结论本文综述了无机纳米材料的制备技术及其应用,为进一步研究无机纳米材料提供了参考。

未来,我们将继续关注无机纳米材料的发展趋势,并推动其在各个领域的应用。

电化学沉积技术在纳米结构制备中的应用

电化学沉积技术在纳米结构制备中的应用

电化学沉积技术在纳米结构制备中的应用随着纳米科技的快速发展,纳米结构的制备成为了研究的焦点和热点。

在纳米材料的制备过程中,电化学沉积技术被广泛应用。

本文将介绍电化学沉积技术在纳米结构制备中的应用,涉及原理、方法以及相关实例。

一、电化学沉积技术的原理电化学沉积是利用电解液中的带电粒子在外加电势驱动下,在电极上发生沉积的过程。

其原理基于电解质溶液中的离子迁移速度与浓度梯度的关系,并通过外加电势对离子进行控制。

通过在电极表面提供适当的催化剂,能够使离子在电极表面发生反应,从而实现纳米结构的沉积。

二、电化学沉积技术在纳米结构制备中的方法1. 模板法模板法是利用电化学沉积技术在模板孔道内进行纳米材料的沉积。

首先,在模板表面沉积一层金属,然后将模板浸入电化学沉积体系中,通过控制电势和时间,使金属在模板孔道内沉积形成纳米结构。

模板法不仅可以制备各种形状、尺寸和组成的纳米结构,还可实现有序排列,具有较高的制备精度和结构一致性。

2. 固液界面法固液界面法是将电解质溶液均匀浸润在电极表面,并通过电化学沉积使沉积物在电极表面上沉积形成纳米结构。

利用固液界面法可以制备出具有较大比表面积和较好结晶性的纳米材料,适用于制备纳米颗粒和纳米线等形态。

3. 电极表面催化法电极表面催化法是利用电化学反应在电极表面生成催化剂,在催化剂的作用下,将溶液中的离子还原成纳米结构。

该方法具有制备简单、操作方便的优点,并可在不需要复杂设备的情况下实现对纳米结构的制备。

三、电化学沉积技术在纳米结构制备中的应用实例1. 纳米传感器电化学沉积技术被广泛应用于纳米传感器的制备中。

通过沉积纳米金属或纳米氧化物在传感器表面,可增加传感器的比表面积,提高响应速度和灵敏度。

同时,还可通过调节电化学沉积条件来控制纳米结构的形貌和大小,以满足特定传感器的需求。

2. 纳米储能器件电化学沉积技术可用于纳米储能器件的制备,例如超级电容器。

通过在电极表面沉积纳米结构材料,可以增加电极与电解质的接触面积,提高储能器件的电容量和能量密度。

利用电化学方法制备纳米材料

利用电化学方法制备纳米材料

利用电化学方法制备纳米材料随着纳米科技的不断进步和应用,纳米材料的制备和性能研究引起了人们的广泛关注。

其中,电化学方法作为一种重要的制备技术,可以高效、低成本地制备出高品质的纳米材料。

本文将介绍电化学方法的基本原理和应用,以及其在纳米材料制备中的操作流程。

一、电化学方法的基本原理电化学方法即是利用电化学反应在电极上制备材料的一种方法。

它通过将反应物溶解在电解质溶液中,然后在电极上加上外电势,使反应在电极表面上进行。

在这个过程中,反应物电离成离子,然后在电极上和电子相遇,产生化学反应,最终得到所需的纳米材料。

二、电化学方法的应用电化学方法广泛应用于纳米材料的制备中,包括金属、合金、氧化物、碳材料和半导体等多种材料。

例如,电化学沉积法可以制备纳米金属薄膜,电化学蚀刻法可以制备复杂结构的纳米管和纳米棒,还有电抛光和电化学氧化法等。

三、电化学方法在纳米材料制备中的操作流程1. 电极的制备首先,需要选定适合所需纳米材料制备的电极。

常用电极有玻碳电极、金片电极、铂片电极等。

在制备过程中,电极的表面要求平整,无明显缺陷,以减小对纳米材料制备的干扰。

2. 电解质的选择和制备电解质的选择对纳米材料的制备至关重要。

通常情况下,电解质要求纯度高、稳定性好、易溶解、不含有害物质等。

例如,对于制备纳米金属,一般采用含金离子的酸性电解质溶液。

3. 电极表面的处理在开始电化学反应前,还需要对电极表面进行处理。

这通常涉及电极的清洗和表面修饰。

清洗过程中,要求严格控制清洗液的浓度和清洗时间,以防止清洗后电极表面的粗糙度增加。

表面修饰可以在电极表面形成一层特定的化学物质,增强反应的方向性和选择性。

4. 电化学反应此时,可以开始电化学反应。

在反应中,要求控制电极的电位和电流密度,以控制反应速率和产物纳米材料的尺寸。

此外,也需要注意反应的温度、PH值、气体气氛等因素对反应过程的影响。

5. 材料的分离和纯化在得到纳米材料后,还需要对其进行分离和纯化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电化学在制备纳米材料方面的应用摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。

本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。

关键词:电化学纳米材料电沉积1 前言纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。

纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。

当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。

纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。

随着粒径减小,表面原子数迅速增加。

由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。

微观粒子具有贯穿势垒的能力称为隧道效应。

研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。

正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。

自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。

纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。

美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。

由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。

目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。

但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。

应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。

与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。

整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。

电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。

本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。

2 应用电化学技术制备纳米材料的种类2.1 电化学沉积法与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)具有很高的密度和极小的空隙率;(3)纳米晶体材料受尺寸和形状的限制很少;(4)没有溶胶凝胶繁杂的后续过程,可以直接获得大批量的纳米晶体材料;(5)投资低,产率高;(6)技术难度较小,工艺灵活,易于控制,很容易由实验室向工业现场转变[1]。

目前已有的纳米晶体的电沉积方法有直流法、脉冲法、复合共沉积法、喷射法和模板电沉积法等几种。

2.1.1 直流电沉积法直流电沉积法要采用较大的电流密度,在加入有机添加剂的条件下,通过增大阴极极化,使结晶细致,从而获得纳米晶体。

栾野梅[2]采用直流电沉积方法在表面活性剂和电解液的界面制备了硫化镉纳米膜。

通过对不同电解液体系和表面活性剂体系中纳米硫化镉膜沉积情况进行比较发现,相同条件下采用硫代乙酰胺体系为电解液蓖麻油类为表面活性剂可以在液液界面制备硫化镉纳米膜考察了表面活性剂曹胜男等[3]人,在草酸溶液中,采用二次阳极氧化法得到了多孔阳极氧化铝膜(AAO)。

以AAO 为模板,在ZnSO4、Na2SO4和H2SeO3的混合水溶液中进行直流电沉积,在孔内组装ZnSe 半导体纳米线,溶去模板后,获得粗细均匀,直径约为60 nm,长度约为0。

5μm的纳米线,与模板的孔径一致。

在制备过程中,无需对模板进行去除阻挡层,喷金或预镀金属等处理过程,是直接在纳米孔内电沉积,形成半导体纳米线阵列。

此方法工艺简单,操作方便,容易获得半导体的一维纳米材料。

SPM、TEM测试结果表明,纳米线为六方晶型结构。

2.1.2 脉冲电沉积法脉冲电沉积可以分为恒电流控制和恒电位控制两种形式,按脉冲性质及方向又可以分为单脉冲、双脉冲和换向脉冲等。

脉冲电沉积可以通过控制波形、频率、通断比及平均电流密度等参数,使得电沉积过程在很宽的范围内变化,从而获得具有一定特性的纳米晶体镀层。

由于高的瞬时脉冲电流密度提高了阴极极化作用,促使成核速率加快,晶核成长速率慢,因而镀层的结晶细微。

迟广俊[4]等采用控制双脉冲电位技术制备了Cu/Co纳米多层膜,其特点是用恒电位仪实现双脉冲电沉积,加入电解液,电镀过程中各子层厚度由相应的脉冲持续时间决定;或采用双槽法交替进行电沉积,加入电解液,子层厚度由各自的电沉积时间决定。

2.1.3 复合共沉积法复合共沉积纳米晶体多采用恒定的直流电,在电沉积金属的过程中加入纳米微粒,使之与金属共同沉积,在适当的工艺条件下,沉积的基体金属的晶粒尺寸控制在纳米范围内,即使电流密度较小,仍可以获得纳米晶体。

2.1.4 喷射电沉积法喷射电沉积是一种局部高速电沉积技术:电沉积时,一定流量和压力的电解液从阳极喷嘴垂直喷射到阴极表面,使得电沉积反应在喷射流与阴极表面冲击区发生;电解液的冲击不仅对镀层进行了机械活化,同时还有效地减少了扩散层的厚度,改善电沉积过程,使得镀层致密,晶粒细化。

2.1.5 模板电沉积法模板电沉积法最大的特点是通过改变模板孔径的大小来调节纳米管或纳米纤维的直径,利用模板法制备的纳米管或纳米纤维易于分离和收集。

杨文彬等[5]通过在含有SeSO3-2和Cd2+的室温水溶液中,用恒电位沉积法在纳米孔阵列阳极氧化铝膜模板中制备了高有序性的CdSe纳米线阵列,并对其形貌、结构和组分进行了表征。

扫描电子显微镜和透射电子显微镜结果表明,纳米线阵列中的CdSe纳米线具有相同的长度和直径,分别对应于使用的AAM模板的厚度和孔径;X-射线衍射和X-射线能谱结果表明,CdSe纳米线中Cd和Se的化学组成非常接近于1∶1,其结构为立方CdSe。

柴永存等[6]以非离子型三嵌段共聚物EO106PO70EO106(F127)/正丁醇/氯铂酸水溶液构建的溶致液晶层状相为模板,电化学沉积制备铂纳米材料。

透射电镜和扫描电镜显示,产物为具有高长径比的纳米线形成的束状结构。

刘虹雯[7]等利用聚碳酸脂有机介空模板电化学沉积方法制备了金纳米线阵列,通过时间来控制纳米线的长度,在有机介孔模板上制备了直径为90 nm的金纳米线。

该方法制备的纳米线的直径为90 nm,故表现为与块体性质相似的金属导电性。

曹林有[8]等以Au等纳米粒子组装阵列电极用电化学沉积模板制备了金核铜壳纳米阵列,选用致密的长链巯醇分子自组装和低电位,实现了金属铜在金纳米粒子上的选择性及可控性沉积。

组装有金纳米粒子的电极上发生了金属铜的沉积,沉积前后的纳米粒子有明显的变化:粒径明显增大,是因为铜沉积在金纳米粒子上;从原来的近似球状趋向变成近似立方形,与溶液相合成的铜纳米粒子及石墨电极上电沉积制备的铜纳米粒子形状均不一样[9]。

2.2 电弧法电弧法制备原理:石墨电极在电弧产生的高温下蒸发,于阴极附近沉积出纳米管,改变电极间放电场的分布,有可能在放电区改变局域的非平衡条件,这对探索一些不常见的碳纳米结构形态可能有利[10]。

传统的电弧法是在真空反应容器中充以一定量的惰性气体,在放电过程中,阳极石墨棒不断消耗,同时在阴极石墨电极上沉积出含有碳纳米管的结疤。

这种方法的特点是简单快速,但产量不高,且碳纳米管烧结成束,束中存在很多非晶碳杂质。

而韩峰[11]等通过优化工艺后,每次制得克级的碳纳米管,这种方法得以被广泛应用。

王琪琨[12]等制备碳纳米管时,在阴极沉积物中伴随有大量正常的离散碳纳米管产生,具备孪生碳纳米管、菱形碳纳米管、“Y”形短管和碳纳米纤维等几种奇异的碳纳米形态。

电弧法制备纳米管时,阳极填充物的类型,电弧电流和气氛压强对产物都有较大的影响。

如合成BxCy纳米管时,不改变其他条件,仅提高电弧电流、降低氦气的压强就不能生成含BN 的纳米管。

在阴极中将BN含量增加到一定程度,也会使原料全部气化而不能沉淀出纳米管。

所以,要制备较好的纳米管,须在电极构形选择、电弧电流、气氛压强等方面进行尝试。

电弧法具有简单快速特点,得到的纳米管多相互缠绕,只有少部分分离。

2.3 超声电化学法超声电化学是结合了电化学和超声辐照而建立起来的一种新方法,它显示了两者的优点,可以通过控制电流的大小,反应温度的高低,超声功率的强弱等参数达到控制纳米材料尺寸和形状的目的。

超声波是由一系列疏密相间的纵波构成,并通过液体介质传播,当超声波能量足够高时就会产生“超声空化”作用,空化气泡在形成与湮灭的瞬间会产生局部的高温高压。

超声波在电化学系统中通过超声能量对电极界面的扰动使电极表面得到清洁,并且使电极附近双电层内的金属离子得到更新。

超声电化学方法的主要特点是可以用来制备不同形状纯度较高的金属纳米结构材料。

近来超声电化学方法已经引起一些电化学研究者的关注,并应用相似的实验手段制备了多种纳米微粒。

例如姜立萍[13]等用0。

2 mol/L NaSeSO3溶液、Pb(Ac)2溶液和柠檬酸三钠(TSC)作为电解液,电解池置于超声清洗器中,以铂电极为工作电极电解、离心分离、洗涤、干燥,或用和0。

5mol/L NaSeSO3溶液,Pb(Ac)2溶液和氨三乙酸(NTA)钾盐溶液作为电解液电解、离心分离、洗涤、干燥。

2.4 电化学腐蚀法电化学腐蚀法是采用电化学腐蚀技术辅助下的均匀沉淀制备纳米材料的方法。

自然界中的金属电化学腐蚀发生在潮湿的空气中,是由无数的短路的原电池反应构成的。

金属表面的电势差是由杂质或晶格缺陷引起。

相关文档
最新文档