遗传算法模拟退火matlab编程
(仅供参考)现代算法(遗传算法,退火算法)含(matlab程序和工具箱介绍)

-271-第二十三章 现代优化算法现代优化算法是80年代初兴起的启发式算法。
这些算法包括禁忌搜索(tabu search ),模拟退火(simulated annealing ),遗传算法(genetic algorithms ),人工神经网络(neural networks )。
它们主要用于解决大量的实际应用问题。
目前,这些算法在理论和实际应用方面得到了较大的发展。
无论这些算法是怎样产生的,它们有一个共同的目标-求NP-hard 组合优化问题的全局最优解。
虽然有这些目标,但NP-hard 理论限制它们只能以启发式的算法去求解实际问题。
启发式算法包含的算法很多,例如解决复杂优化问题的蚁群算法(Ant Colony Algorithms )。
有些启发式算法是根据实际问题而产生的,如解空间分解、解空间的限制等;另一类算法是集成算法,这些算法是诸多启发式算法的合成。
现代优化算法解决组合优化问题,如TSP (Traveling Salesman Problem )问题,QAP (Quadratic Assignment Problem )问题,JSP (Job-shop Scheduling Problem )问题等效果很好。
§1 模拟退火算法1.1 算法简介模拟退火算法得益于材料的统计力学的研究成果。
统计力学表明材料中粒子的不同结构对应于粒子的不同能量水平。
在高温条件下,粒子的能量较高,可以自由运动和重新排列。
在低温条件下,粒子能量较低。
如果从高温开始,非常缓慢地降温(这个过程被称为退火),粒子就可以在每个温度下达到热平衡。
当系统完全被冷却时,最终形成处于低能状态的晶体。
如果用粒子的能量定义材料的状态,Metropolis 算法用一个简单的数学模型描述了退火过程。
假设材料在状态i 之下的能量为)(i E ,那么材料在温度T 时从状态i 进入状态j 就遵循如下规律:(1)如果)()(i E j E ≤,接受该状态被转换。
matlab模拟退火法

模拟退火算法是一种基于物理中退火过程的优化算法,适用于解决全局优化问题。
以下是一个基本的MATLAB模拟退火算法实现示例:
matlab
function SA()
% 参数设置
T = 1000; % 初始温度
alpha = 0.95; % 降温系数
x = rand(1,10); % 初始解
f = @(x) sum(x.^2 - 10*cos(2*pi*x) + 10); % 目标函数
while T > 1e-5
% 随机生成新解
x_new = x + randn(1,10);
% 计算新解的函数值
f_new = f(x_new);
% 计算接受概率
p = exp(-(f_new - f(x))/T);
% 以概率p接受新解,否则拒绝
if rand() < p
x = x_new;
f = f_new;
end
% 降温
T = T*alpha;
end
% 输出最优解和最优值
fprintf('最优解:%f\n', x);
fprintf('最优值:%f\n', f);
end
这个示例中,我们定义了一个目标函数f,它是一个简单的多峰函数。
我们使用一个随机生成的初始解作为初始解x,然后在一个循环中不断生成新的解,并计算其函数值。
我们根据接受概率决定是否接受新解,如果新解更好,则接受;否则,我们以一定的概率接受新解。
在每次迭代中,我们都会降低温度T,直到达到预设的终止条件。
最后,我们输出最优解和最优值。
模拟退火算法及其Matlab实现

模拟退⽕算法及其Matlab实现1基本原理:模拟退⽕算法源于固体的退⽕过程,当把⼀个固体的加热使其升温,其内部分⼦出现⽆序状态,内能增⼤⽽降温时,所有粒⼦趋于有序,冷却到最低温度时内能达到最少。
当某⼀状态下系统内能减少,则完全接受这⼀新的状态,否则对于这⼀状态采样概率接受,温度越⾼,接受的概率越⼤。
当温度由初始值逐渐降到最低温度时,即可得到最低的内能,也就是算法的最优解。
2算法步骤:(1)设置算法的参数:初始温度,结束温度,温度衰减系数,每个温度下的扰动次数,初始状态,初始解(2)对状态产⽣扰动,计算新状态下的解,⽐较两个解的⼤⼩,判断是否接受新的状态(3)在此温度下,对步骤(2)按设置的扰动次数重复进⾏扰动(4)对温度进⾏衰减,并在新的温度下重复(2)(3),直到结束温度(5)输出记录最优状态和最优解,算法结束3实例计算:采⽤TSP问题中的eil51数据,官⽅的最优解为426,编写Matlab程序,进⾏计算4Matlab代码:clc,clear %清空环境中的变量ticiter = 1; % 迭代次数初值a=0.99; %温度衰减系数t0=120; %初始温度tf=1; %最后温度t=t0;Markov=10000; %Markov链长度load data1.txt %读⼊城市的坐标city=data1;n = size(city,1); %城市距离初始化D = zeros(n,n);for i = 1:nfor j = 1:nD(i,j) = sqrt(sum((city(i,:) - city(j,:)).^2));endendroute=1:n;route_new=route;best_length=Inf;Length=Inf;best_route=route;%%while t>=tffor j=1:Markov%进⾏扰动,长⽣新的序列route_new;if (rand<0.7)%交换两个数的顺序ind1=0;ind2=0;while(ind1==ind2&&ind1>=ind2)ind1=ceil(rand*n);ind2=ceil(rand*n);endtemp=route_new(ind1);route_new(ind1)=route_new(ind2);route_new(ind2)=temp;elseind=zeros(3,1);L_ind=length(unique(ind));while (L_ind<3)ind=ceil([rand*n rand*n rand*n]);L_ind=length(unique(ind));endind0=sort(ind);a1=ind0(1);b1=ind0(2);c1=ind0(3);route0=route_new;route0(a1:a1+c1-b1-1)=route_new(b1+1:c1);route0(a1+c1-b1:c1)=route_new(a1:b1);route_new=route0;end%计算路径的距离,Length_newlength_new = 0;Route=[route_new route_new(1)];for j = 1:nlength_new = length_new+ D(Route(j),Route(j + 1)); endif length_new<LengthLength=length_new;route=route_new;%对最优路线和距离更新if length_new<best_lengthiter = iter + 1;best_length=length_new;best_route=route_new;endelseif rand<exp(-(length_new-Length)/t)route=route_new;Length=length_new;endendroute_new=route;endt=t*a;end%--------------------------------------------------------------------------%% 结果显⽰tocRoute=[best_route best_route(1)];plot([city(Route ,1)], [city(Route ,2)],'o-');disp('最优解为:')disp(best_route)disp('最短距离:')disp(best_length)disp('最优解迭代次数:')disp(iter)for i = 1:n%对每个城市进⾏标号text(city(i,1),city(i,2),['' num2str(i)]);endxlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['模拟退⽕算法(最短距离):' num2str(best_length) ''])5运⾏结果:最短距离:436.7146,其和最优解426接近TSP图:。
遗传算法matlab程序代码

遗传算法matlab程序代码
遗传算法(GA)是一种用于求解优化问题的算法,其主要思想是模拟
生物进化过程中的“选择、交叉、变异”操作,通过模拟这些操作,来寻
找最优解。
Matlab自带了GA算法工具箱,可以直接调用来实现遗传算法。
以下是遗传算法Matlab程序代码示例:
1.初始化
首先定义GA需要优化的目标函数f,以及GA算法的相关参数,如种
群大小、迭代次数、交叉概率、变异概率等,如下所示:
options = gaoptimset('PopulationSize',10,...
'Generations',50,...
2.运行遗传算法
运行GA算法时,需要调用MATLAB自带的ga函数,将目标函数、问
题的维度、上下界、约束条件和算法相关参数作为输入参数。
其中,上下
界和约束条件用于限制空间,防止到无效解。
代码如下:
[某,fval,reason,output,population] = ga(f,2,[],[],[],[],[-10,-10],[10,10],[],options);
3.结果分析
最后,将结果可视化并输出,可以使用Matlab的plot函数绘制出目
标函数的值随迭代次数的变化,如下所示:
plot(output.generations,output.bestf)
某label('Generation')
ylabel('Best function value')
总之,Matlab提供了方便易用的GA算法工具箱,开发者只需要根据具体问题定义好目标函数和相关参数,就能够在短时间内快速实现遗传算法。
模拟退火算法和遗传算法

模拟退⽕算法和遗传算法爬⼭算法在介绍这两种算法前,先介绍⼀下爬⼭算法。
爬⼭算法是⼀种简单的贪⼼搜索算法,该算法每次从当前解的临近解空间中选择⼀个最优解作为当前解,直到达到⼀个局部最优解。
爬⼭算法实现很简单,其主要缺点是会陷⼊局部最优解,⽽不⼀定能搜索到全局最优解。
如图1所⽰:假设C点为当前解,爬⼭算法搜索到A点这个局部最优解就会停⽌搜索,因为在A点⽆论向那个⽅向⼩幅度移动都不能得到更优的解。
模拟退⽕算法(SA)为了解决局部最优解问题, 1983年,Kirkpatrick等提出了模拟退⽕算法(SA)能有效的解决局部最优解问题。
模拟退⽕其实也是⼀种贪⼼算法,但是它的搜索过程引⼊了随机因素。
模拟退⽕算法以⼀定的概率来接受⼀个⽐当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。
算法介绍我们知道在分⼦和原⼦的世界中,能量越⼤,意味着分⼦和原⼦越不稳定,当能量越低时,原⼦越稳定。
“退⽕”是物理学术语,指对物体加温在冷却的过程。
模拟退⽕算法来源于晶体冷却的过程,如果固体不处于最低能量状态,给固体加热再冷却,随着温度缓慢下降,固体中的原⼦按照⼀定形状排列,形成⾼密度、低能量的有规则晶体,对应于算法中的全局最优解。
⽽如果温度下降过快,可能导致原⼦缺少⾜够的时间排列成晶体的结构,结果产⽣了具有较⾼能量的⾮晶体,这就是局部最优解。
因此就可以根据退⽕的过程,给其在增加⼀点能量,然后在冷却,如果增加能量,跳出了局部最优解,这本次退⽕就是成功的。
算法原理模拟退⽕算法包含两个部分即Metropolis算法和退⽕过程。
Metropolis算法就是如何在局部最优解的情况下让其跳出来,是退⽕的基础。
1953年Metropolis提出重要性采样⽅法,即以概率来接受新状态,⽽不是使⽤完全确定的规则,称为Metropolis准则。
状态转换规则温度很低时,材料以很⼤概率进⼊最⼩能量状态模拟退⽕寻优⽅法注意事项理论上,降温过程要⾜够缓慢,使得在每⼀温度下达到热平衡。
模拟退火算法(MATLAB实现)

实验用例:用模拟退火算法解决如下10个城市的TSP 问题,该问题最优解为691.2 opt f 。
表1 10个城市的坐标城市 X 坐标 Y 坐标 城市 X 坐标 Y 坐标3 0.4000 0.4439 8 0.8732 0.6536编程实现用MATLAB 实现模拟退火算法时,共编制了5个m 文件,分别如下 1、swap.mfunction [ newpath , position ] = swap( oldpath , number ) % 对 oldpath 进 行 互 换 操 作% number 为 产 生 的 新 路 径 的 个 数 % position 为 对 应 newpath 互 换 的 位 置 m = length( oldpath ) ; % 城 市 的 个 数 newpath = zeros( number , m ) ;position = sort( randi( m , number , 2 ) , 2 ); % 随 机 产 生 交 换 的 位 置 for i = 1 : numbernewpath( i , : ) = oldpath ;% 交 换 路 径 中 选 中 的 城 市newpath( i , position( i , 1 ) ) = oldpath( position( i , 2 ) ) ;newpath( i , position( i , 2 ) ) = oldpath( position( i , 1 ) ) ; end2、pathfare.mfunction [ objval ] = pathfare( fare , path ) % 计 算 路 径 path 的 代 价 objval% path 为 1 到 n 的 排 列 ,代 表 城 市 的 访 问 顺 序 ; % fare 为 代 价 矩 阵 , 且 为 方 阵 。
[ m , n ] = size( path ) ; objval = zeros( 1 , m ) ; for i = 1 : mfor j = 2 : nobjval( i ) = objval( i ) + fare( path( i , j - 1 ) , path( i , j ) ) ; endobjval( i ) = objval( i ) + fare( path( i , n ) , path( i , 1 ) ) ; end3、distance.mfunction [ fare ] = distance( coord )% 根据各城市的距离坐标求相互之间的距离% fare 为各城市的距离,coord 为各城市的坐标[ ~ , m ] = size( coord ) ; % m 为城市的个数fare = zeros( m ) ;for i = 1 : m % 外层为行for j = i : m % 内层为列fare( i , j ) = ...( sum( ( coord( : , i ) - coord( : , j ) ) .^ 2 ) ) ^ 0.5 ;fare( j , i ) = fare( i , j ) ; % 距离矩阵对称endend4、myplot.mfunction [ ] = myplot( path , coord , pathfar )% 做出路径的图形% path 为要做图的路径,coord 为各个城市的坐标% pathfar 为路径path 对应的费用len = length( path ) ;clf ;hold on ;title( [ '近似最短路径如下,费用为' , num2str( pathfar ) ] ) ;plot( coord( 1 , : ) , coord( 2 , : ) , 'ok');pause( 0.4 ) ;for ii = 2 : lenplot( coord( 1 , path( [ ii - 1 , ii ] ) ) , coord( 2 , path( [ ii - 1 , ii ] ) ) , '-b');x = sum( coord( 1 , path( [ ii - 1 , ii ] ) ) ) / 2 ;y = sum( coord( 2 , path( [ ii - 1 , ii ] ) ) ) / 2 ;text( x , y , [ '(' , num2str( ii - 1 ) , ')' ] ) ;pause( 0.4 ) ;endplot( coord( 1 , path( [ 1 , len ] ) ) , coord( 2 , path( [ 1 , len ] ) ) , '-b' ) ;x = sum( coord( 1 , path( [ 1 , len ] ) ) ) / 2 ;y = sum( coord( 2 , path( [ 1 , len ] ) ) ) / 2 ;text( x , y , [ '(' , num2str( len ) , ')' ] ) ;pause( 0.4 ) ;hold off ;5、mySAA.m% 模拟退火算法( Simulated Annealing Algorithm ) MATLAB 程序% 程序参数设定Coord = ... % 城市的坐标Coordinates[ 0.6683 0.6195 0.4 0.2439 0.1707 0.2293 0.5171 0.8732 0.6878 0.8488 ; ...0.2536 0.2634 0.4439 0.1463 0.2293 0.761 0.9414 0.6536 0.5219 0.3609 ] ;t0 = 1 ; % 初温t0iLk = 20 ; % 内循环最大迭代次数iLkoLk = 50 ; % 外循环最大迭代次数oLklam = 0.95 ; % λ lambdaistd = 0.001 ; % 若内循环函数值方差小于istd 则停止ostd = 0.001 ; % 若外循环函数值方差小于ostd 则停止ilen = 5 ; % 内循环保存的目标函数值个数olen = 5 ; % 外循环保存的目标函数值个数% 程序主体m = length( Coord ) ; % 城市的个数mfare = distance( Coord ) ; % 路径费用farepath = 1 : m ; % 初始路径pathpathfar = pathfare( fare , path ) ; % 路径费用path fareores = zeros( 1 , olen ) ; % 外循环保存的目标函数值e0 = pathfar ; % 能量初值e0t = t0 ; % 温度tfor out = 1 : oLk % 外循环模拟退火过程ires = zeros( 1 , ilen ) ; % 内循环保存的目标函数值for in = 1 : iLk % 内循环模拟热平衡过程[ newpath , ~ ] = swap( path , 1 ) ; % 产生新状态e1 = pathfare( fare , newpath ) ; % 新状态能量% Metropolis 抽样稳定准则r = min( 1 , exp( - ( e1 - e0 ) / t ) ) ;if rand < rpath = newpath ; % 更新最佳状态e0 = e1 ;endires = [ ires( 2 : end ) e0 ] ; % 保存新状态能量% 内循环终止准则:连续ilen 个状态能量波动小于istd if std( ires , 1 ) < istdbreak ;endendores = [ ores( 2 : end ) e0 ] ; % 保存新状态能量% 外循环终止准则:连续olen 个状态能量波动小于ostd if std( ores , 1 ) < ostdbreak ;endt = lam * t ;pathfar = e0 ;% 输 入 结 果fprintf( '近似最优路径为:\n ' )%disp( char( [ path , path(1) ] + 64 ) ) ; disp(path)fprintf( '近似最优路径费用\tpathfare=' ) ; disp( pathfar ) ;myplot( path , Coord , pathfar ) ;一次运行结果如下:0.10.20.30.40.50.60.70.80.90.10.20.30.40.50.60.70.80.91近似最短路径如下,费用为2.6907我试着运行了几次(只是改变了一下初温,也可以更改一下其他参数),发现初始温度t0=1时程序的最后结果与最优解差距小的概率比较大。
模拟退火算法原理及matlab源代码

模拟退火算法模拟退火算法是一种通用的随机搜索算法,是局部搜索算法的扩展。
它的思想是再1953年由metropolis提出来的,到1983年由kirkpatrick等人成功地应用在组合优化问题中。
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
第二步是计算与新解所对应的目标函数差。
因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。
事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
模拟退火算法及其Matlab实现

模拟退火算法及其Matlab 实现模拟退火算法(Simulated Annealing algorithm ,简称SA )是柯克帕垂克(S. Kirkpatrick )于1982年受热力学中的固体退火过程与组合优化问题求解之间的某种“相似性”所启发而提出的,用于求解大规模组合优化问题的一种具有全局搜索功能的随机性近似算法。
与求解线性规划的单纯形法、Karmarkar 投影尺度法,求解非线性规划的最速下降法、Newton 法、共轭梯度法,求解整数规划的分支定界法、割平面法等经典的优化算法相比,模拟退火算法在很大程度上不受制于优化问题的具体形式和结构,具有很强的适应性和鲁棒性,因而也具有广泛的应用价值。
模拟退火算法源于对固体退火过程的模拟;采用Metropolis 接受准则;并用一组称为冷却进度表的参数来控制算法进程,使得算法在多项式时间里给出一个近似最优解。
固体退火过程的物理现象和统计性质是模拟退火算法的物理背景;Metropolis 接受准则使算法能够跳离局部最优的“陷阱”,是模拟退火算法能够获得整体最优解的关键;而冷却进度表的合理选择是算法应用的关键。
1 物理退火过程物理中的固体退火是先将固体加热至熔化,再徐徐冷却,使之凝固成规整晶体的热力学过程。
在加热固体时,固体粒子的热运动不断增加,随着温度的升高,粒子与其平衡位置的偏离越来越大,当温度升至溶解温度后,固体的规则性被彻底破坏,固体溶解为液体,粒子排列从较有序的结晶态转变为无序的液态,这个过程称为溶解。
溶解过程的目的是消除系统中原先可能存在的非均匀状态,使随后进行的冷却过程以某一平衡态为始点。
溶解过程与系统的熵增过程相联系,系统能量也随温度的升高而增大。
冷却时,液体粒子的热运动渐渐减弱,随着温度的徐徐降低,粒子运动渐趋有序。
当温度降至结晶温度后,粒子运动变为围绕晶体格点的微小振动,液体凝固成固体的晶态,这个过程称为退火。
退火过程之所以必须“徐徐”进行,是为了使系统在每一温度下都达到平衡态,最终达到固体的基态(图1-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单钻头退火算法matlab编程
clear
clc
a = 0.999; % 温度衰减函数的参数
t0 = 97; tf = 3; t = t0;
Markov_length = 2800; % Markov链长度
coordinates = [
];
coordinates(:,1) = [];
amount = size(coordinates,1); % 城市的数目
% 通过向量化的方法计算距离矩阵
dist_matrix = zeros(amount, amount);
coor_x_tmp1 = coordinates(:,1) * ones(1,amount);
coor_x_tmp2 = coor_x_tmp1';
coor_y_tmp1 = coordinates(:,2) * ones(1,amount);
coor_y_tmp2 = coor_y_tmp1';
dist_matrix = sqrt((coor_x_tmp1-coor_x_tmp2).^2 + ...
(coor_y_tmp1-coor_y_tmp2).^2);
sol_new = 1:amount; % 产生初始解
% sol_new是每次产生的新解;sol_current是当前解;sol_best是冷却中的最好解; E_current = inf;E_best = inf; % E_current是当前解对应的回路距离;
% E_new是新解的回路距离;
% E_best是最优解的
sol_current = sol_new; sol_best = sol_new;
p = 1;
while t>=tf
for r=1:Markov_length % Markov链长度
% 产生随机扰动
if (rand < 0.5) % 随机决定是进行两交换还是三交换
% 两交换
ind1 = 0; ind2 = 0;
while (ind1 == ind2)
ind1 = ceil(rand.*amount);
ind2 = ceil(rand.*amount);
end
tmp1 = sol_new(ind1);
sol_new(ind1) = sol_new(ind2);
sol_new(ind2) = tmp1;
else
% 三交换
ind1 = 0; ind2 = 0; ind3 = 0;
while (ind1 == ind2) || (ind1 == ind3) ...
|| (ind2 == ind3) || (abs(ind1-ind2) == 1) ind1 = ceil(rand.*amount);
ind2 = ceil(rand.*amount);
ind3 = ceil(rand.*amount);
end
tmp1 = ind1;tmp2 = ind2;tmp3 = ind3;
% 确保ind1 < ind2 < ind3
if (ind1 < ind2) && (ind2 < ind3)
;
elseif (ind1 < ind3) && (ind3 < ind2)
ind2 = tmp3;ind3 = tmp2;
elseif (ind2 < ind1) && (ind1 < ind3)
ind1 = tmp2;ind2 = tmp1;
elseif (ind2 < ind3) && (ind3 < ind1)
ind1 = tmp2;ind2 = tmp3; ind3 = tmp1;
elseif (ind3 < ind1) && (ind1 < ind2)
ind1 = tmp3;ind2 = tmp1; ind3 = tmp2;
elseif (ind3 < ind2) && (ind2 < ind1)
ind1 = tmp3;ind2 = tmp2; ind3 = tmp1;
end
tmplist1 = sol_new((ind1+1):(ind2-1));
sol_new((ind1+1):(ind1+ind3-ind2+1)) = ...
sol_new((ind2):(ind3));
sol_new((ind1+ind3-ind2+2):ind3) = ...
tmplist1;
end
%检查是否满足约束
% 计算目标函数值(即内能)
E_new = 0;
for i = 1 : (amount-1)
E_new = E_new + ...
dist_matrix(sol_new(i),sol_new(i+1));
end
% 再算上从最后一个城市到第一个城市的距离
%E_new = E_new + ...
%dist_matrix(sol_new(amount),sol_new(1));
if E_new < E_current
E_current = E_new;
sol_current = sol_new;
if E_new < E_best
% 把冷却过程中最好的解保存下来
E_best = E_new;
sol_best = sol_new;
end
else
% 若新解的目标函数值小于当前解的,
% 则仅以一定概率接受新解
if rand < exp(-(E_new-E_current)./t)
E_current = E_new;
sol_current = sol_new;
else
sol_new = sol_current;
end
end
end
t=t.*a; % 控制参数t(温度)减少为原来的a倍
end
disp('最优解为:')
disp(sol_best)
disp('最短距离:')
disp(E_best)
figure()
set(gcf,'Name','monituihuo-sol_best','Color','r')
N=length(sol_best);
scatter(coordinates(:,1),coordinates(:,2),50,'filled');
hold on
plot([coordinates(sol_best(1),1),coordinates(sol_best(N),1)],[coo rdinates(sol_best(1),2),coordinates(sol_best(N),2)])
set(gca,'Color','g')
hold on
for i=2:N
plot([coordinates(sol_best(i-1),1),coordinates(sol_best(i),1)],[c oordinates(sol_best(i-1),2),coordinates(sol_best(i),2)])
hold on
end。