遗传算法模拟退火matlab编程

遗传算法模拟退火matlab编程
遗传算法模拟退火matlab编程

单钻头退火算法matlab编程

clear

clc

a = 0.999; % 温度衰减函数的参数

t0 = 97; tf = 3; t = t0;

Markov_length = 2800; % Markov链长度

coordinates = [

];

coordinates(:,1) = [];

amount = size(coordinates,1); % 城市的数目

% 通过向量化的方法计算距离矩阵

dist_matrix = zeros(amount, amount);

coor_x_tmp1 = coordinates(:,1) * ones(1,amount);

coor_x_tmp2 = coor_x_tmp1';

coor_y_tmp1 = coordinates(:,2) * ones(1,amount);

coor_y_tmp2 = coor_y_tmp1';

dist_matrix = sqrt((coor_x_tmp1-coor_x_tmp2).^2 + ...

(coor_y_tmp1-coor_y_tmp2).^2);

sol_new = 1:amount; % 产生初始解

% sol_new是每次产生的新解;sol_current是当前解;sol_best是冷却中的最好解; E_current = inf;E_best = inf; % E_current是当前解对应的回路距离;

% E_new是新解的回路距离;

% E_best是最优解的

sol_current = sol_new; sol_best = sol_new;

p = 1;

while t>=tf

for r=1:Markov_length % Markov链长度

% 产生随机扰动

if (rand < 0.5) % 随机决定是进行两交换还是三交换

% 两交换

ind1 = 0; ind2 = 0;

while (ind1 == ind2)

ind1 = ceil(rand.*amount);

ind2 = ceil(rand.*amount);

end

tmp1 = sol_new(ind1);

sol_new(ind1) = sol_new(ind2);

sol_new(ind2) = tmp1;

else

% 三交换

ind1 = 0; ind2 = 0; ind3 = 0;

while (ind1 == ind2) || (ind1 == ind3) ...

|| (ind2 == ind3) || (abs(ind1-ind2) == 1) ind1 = ceil(rand.*amount);

ind2 = ceil(rand.*amount);

ind3 = ceil(rand.*amount);

end

tmp1 = ind1;tmp2 = ind2;tmp3 = ind3;

% 确保ind1 < ind2 < ind3

if (ind1 < ind2) && (ind2 < ind3)

;

elseif (ind1 < ind3) && (ind3 < ind2)

ind2 = tmp3;ind3 = tmp2;

elseif (ind2 < ind1) && (ind1 < ind3)

ind1 = tmp2;ind2 = tmp1;

elseif (ind2 < ind3) && (ind3 < ind1)

ind1 = tmp2;ind2 = tmp3; ind3 = tmp1;

elseif (ind3 < ind1) && (ind1 < ind2)

ind1 = tmp3;ind2 = tmp1; ind3 = tmp2;

elseif (ind3 < ind2) && (ind2 < ind1)

ind1 = tmp3;ind2 = tmp2; ind3 = tmp1;

end

tmplist1 = sol_new((ind1+1):(ind2-1));

sol_new((ind1+1):(ind1+ind3-ind2+1)) = ...

sol_new((ind2):(ind3));

sol_new((ind1+ind3-ind2+2):ind3) = ...

tmplist1;

end

%检查是否满足约束

% 计算目标函数值(即内能)

E_new = 0;

for i = 1 : (amount-1)

E_new = E_new + ...

dist_matrix(sol_new(i),sol_new(i+1));

end

% 再算上从最后一个城市到第一个城市的距离

%E_new = E_new + ...

%dist_matrix(sol_new(amount),sol_new(1));

if E_new < E_current

E_current = E_new;

sol_current = sol_new;

if E_new < E_best

% 把冷却过程中最好的解保存下来

E_best = E_new;

sol_best = sol_new;

end

else

% 若新解的目标函数值小于当前解的,

% 则仅以一定概率接受新解

if rand < exp(-(E_new-E_current)./t)

E_current = E_new;

sol_current = sol_new;

else

sol_new = sol_current;

end

end

end

t=t.*a; % 控制参数t(温度)减少为原来的a倍

end

disp('最优解为:')

disp(sol_best)

disp('最短距离:')

disp(E_best)

figure()

set(gcf,'Name','monituihuo-sol_best','Color','r')

N=length(sol_best);

scatter(coordinates(:,1),coordinates(:,2),50,'filled');

hold on

plot([coordinates(sol_best(1),1),coordinates(sol_best(N),1)],[coo rdinates(sol_best(1),2),coordinates(sol_best(N),2)])

set(gca,'Color','g')

hold on

for i=2:N

plot([coordinates(sol_best(i-1),1),coordinates(sol_best(i),1)],[c oordinates(sol_best(i-1),2),coordinates(sol_best(i),2)])

hold on

end

模拟退火算法(MATLAB实现)

实验用例: 用模拟退火算法解决如下10个城市的TSP 问题,该问题最优解为691.2 opt f 。 表1 10个城市的坐标 城市 X 坐标 Y 坐标 城市 X 坐标 Y 坐标 3 0.4000 0.4439 8 0.8732 0.6536 编程实现 用MATLAB 实现模拟退火算法时,共编制了5个m 文件,分别如下 1、swap.m function [ newpath , position ] = swap( oldpath , number ) % 对 oldpath 进 行 互 换 操 作 % number 为 产 生 的 新 路 径 的 个 数 % position 为 对 应 newpath 互 换 的 位 置 m = length( oldpath ) ; % 城 市 的 个 数 newpath = zeros( number , m ) ; position = sort( randi( m , number , 2 ) , 2 ); % 随 机 产 生 交 换 的 位 置 for i = 1 : number newpath( i , : ) = oldpath ; % 交 换 路 径 中 选 中 的 城 市 newpath( i , position( i , 1 ) ) = oldpath( position( i , 2 ) ) ; newpath( i , position( i , 2 ) ) = oldpath( position( i , 1 ) ) ; end 2、pathfare.m function [ objval ] = pathfare( fare , path ) % 计 算 路 径 path 的 代 价 objval % path 为 1 到 n 的 排 列 ,代 表 城 市 的 访 问 顺 序 ; % fare 为 代 价 矩 阵 , 且 为 方 阵 。 [ m , n ] = size( path ) ; objval = zeros( 1 , m ) ; for i = 1 : m for j = 2 : n objval( i ) = objval( i ) + fare( path( i , j - 1 ) , path( i , j ) ) ; end objval( i ) = objval( i ) + fare( path( i , n ) , path( i , 1 ) ) ; end

遗传算法MATLAB完整代码(不用工具箱)

遗传算法解决简单问题 %主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc; clear all; close all; global BitLength global boundsbegin global boundsend bounds=[-2,2]; precision=0.0001; boundsbegin=bounds(:,1); boundsend=bounds(:,2); %计算如果满足求解精度至少需要多长的染色体 BitLength=ceil(log2((boundsend-boundsbegin)'./precision)); popsize=50; %初始种群大小 Generationmax=12; %最大代数 pcrossover=0.90; %交配概率 pmutation=0.09; %变异概率 %产生初始种群 population=round(rand(popsize,BitLength)); %计算适应度,返回适应度Fitvalue和累计概率cumsump [Fitvalue,cumsump]=fitnessfun(population); Generation=1; while Generation

模拟退火算法Matlab源程序

MCM战备历程3(模拟退火算法Matlab源程序)For glory 2007-02-03 11:20:04| 分类:数学建模 | 标签:学习|字号订阅 %模拟退火算法程序 T_max=input('please input the start temprature'); T_min=input('please input the end temprature'); iter_max=input('please input the most interp steps on the fit temp'); s_max=input('please input the most steady steps ont the fit temp'); T=T_max; load d:\address.txt; order1=randperm(size(address,1))';%生成初始解。 plot(address(order1,1),address(order1,2),'*r-') totaldis1=distance(address,order1); while T>=T_min iter_num=1; s_num=1; plot(T,totaldis1) hold on while iter_numR) order1=order2; totaldis1=totaldis2; else s_num=s_num+1;

基于遗传算法的matlab源代码

function youhuafun D=code; N=50;%Tunable maxgen=50;%Tunable crossrate=0.5;%Tunable muterate=0.08;%Tunable generation=1; num=length(D); fatherrand=randint(num,N,3); score=zeros(maxgen,N); while generation<=maxgen ind=randperm(N-2)+2;%随机配对交叉 A=fatherrand(:,ind(1:(N-2)/2)); B=fatherrand(:,ind((N-2)/2+1:end)); %多点交叉 rnd=rand(num,(N-2)/2); ind=rnd tmp=A(ind); A(ind)=B(ind); B(ind)=tmp; %%两点交叉 %for kk=1:(N-2)/2 %rndtmp=randint(1,1,num)+1; %tmp=A(1:rndtmp,kk); %A(1:rndtmp,kk)=B(1:rndtmp,kk); %B(1:rndtmp,kk)=tmp; %end fatherrand=[fatherrand(:,1:2),A,B]; %变异 rnd=rand(num,N); ind=rnd[m,n]=size(ind); tmp=randint(m,n,2)+1; tmp(:,1:2)=0; fatherrand=tmp+fatherrand; fatherrand=mod(fatherrand,3); %fatherrand(ind)=tmp; %评价、选择 scoreN=scorefun(fatherrand,D);%求得N个个体的评价函数 score(generation,:)=scoreN; [scoreSort,scoreind]=sort(scoreN); sumscore=cumsum(scoreSort); sumscore=sumscore./sumscore(end); childind(1:2)=scoreind(end-1:end); for k=3:N tmprnd=rand; tmpind=tmprnd difind=[0,diff(t mpind)]; if~any(difind) difind(1)=1; end childind(k)=scoreind(logical(difind)); end fatherrand=fatherrand(:,childind); generation=generation+1; end %score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(:,4); FF4=F4-fatherrand(:,1); FF4=max(FF4,1); D(:,5)=FF4; save DData D function D=code load youhua.mat %properties F2and F3 F1=A(:,1); F2=A(:,2); F3=A(:,3); if(max(F2)>1450)||(min(F2)<=900) error('DATA property F2exceed it''s range (900,1450]') end %get group property F1of data,according to F2value F4=zeros(size(F1)); for ite=11:-1:1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; function ScoreN=scorefun(fatherrand,D) F3=D(:,3); F4=D(:,4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; %这里有待优化

模拟退火算法原理及matlab源代码

模拟退火算法模拟退火算法是一种通用的随机搜索算法,是局部搜索算法的扩展。它的思想是再1953 年由metropolis 提出来的,到1983 年由kirkpatrick 等人成功地应用在组合优化问题中。 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis 准则,粒子在温度T 时趋于平衡的概率为e- △ E/(kT),其中E为温度T时的内能,AE为其改变量,k 为Boltzmann 常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f ,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解-计算目标函数差T接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooli ng Schedule)控制,包括控制参数的初值t 及其衰减因子△ t、每个t值时的迭代次数L和停止条件S。 模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若厶t‘ <0 则接受S'作为新的当前解S,否则以概率exp(- △ t‘ /T) 接受S'作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。 可在此基础上开始下一轮试验。而当新解被判定为舍弃时,

模拟退火算法(C++版)

/* * 使用模拟退火算法(SA)求解TSP问题(以中国TSP问题为例) * 参考自《Matlab 智能算法30个案例分析》 * 模拟退火的原理这里略去,可以参考上书或者相关论文 * update: 16/12/11 * author:lyrichu * email:919987476@https://www.360docs.net/doc/123424545.html, */ #include #include #include #include #include #define T0 50000.0 // 初始温度 #define T_end (1e-8) #define q 0.98 // 退火系数 #define L 1000 // 每个温度时的迭代次数,即链长 #define N 27 // 城市数量 int city_list[N]; // 用于存放一个解 double city_pos[N][2] = {{41,94},{37,84},{53,67},{25,62},{7,64},{2,99},{68,58},{71,44},{54,62}, {83,69},{64,60},{18,54},{22,60},{83,46},{91,38},{25,38},{24,42},{58,69},{71,71}, {74,78},{87,76}, {18,40},{13,40},{82,7},{62,32},{58,35},{45,21}}; // 中国27个城市坐标 //41 94;37 84;53 67;25 62;7 64;2 99;68 58;71 44;54 62;83 69;64 60; 18 54;22 60; //83 46;91 38;25 38;24 42;58 69;71 71;74 78;87 76;18 40;13 40;82 7; 62 32;58 35;45 21

模拟退火算法算法的简介及程序

模拟退火算法 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。 模拟退火算法的模型 模拟退火算法可以分解为解空间、目标函数和初始解三部分。 模拟退火的基本思想: (1)初始化:初始温度T(充分大),初始解状态S(是算法迭代的起 点),每个T值的迭代次数L (2) 对k=1,……,L做第(3)至第6步: (3) 产生新解S′ (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数 (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)

接受S′作为新的当前解. (6) 如果满足终止条件则输出当前解作为最优解,结束程序。终止条件通常取为连续若干个新解都没有被接受时终止算法。 (7) T逐渐减少,且T->0,然后转第2步。 算法对应动态演示图: 模拟退火算法新解的产生和接受可分为如下四个步骤: 第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则

模拟退火算法及其Matlab实现

模拟退火算法及其Matlab 实现 模拟退火算法(Simulated Annealing algorithm ,简称SA )是柯克帕垂克(S. Kirkpatrick )于1982年受热力学中的固体退火过程与组合优化问题求解之间的某种“相似性”所启发而提出的,用于求解大规模组合优化问题的一种具有全局搜索 功能的随机性近似算法。与求解线性规划的单纯形法、Karmarkar 投影尺度法,求 解非线性规划的最速下降法、Newton 法、共轭梯度法,求解整数规划的分支定界法、割平面法等经典的优化算法相比,模拟退火算法在很大程度上不受制于优化问 题的具体形式和结构,具有很强的适应性和鲁棒性,因而也具有广泛的应用价值。 模拟退火算法源于对固体退火过程的模拟;采用Metropolis 接受准则;并用 一组称为冷却进度表的参数来控制算法进程,使得算法在多项式时间里给出一个近 似最优解。固体退火过程的物理现象和统计性质是模拟退火算法的物理背 景;Metropolis 接受准则使算法能够跳离局部最优的“陷阱”,是模拟退火算法能 够获得整体最优解的关键;而冷却进度表的合理选择是算法应用的关键。 1 物理退火过程 物理中的固体退火是先将固体加热至熔化,再徐徐冷却,使之凝固成规整晶体 的热力学过程。在加热固体时,固体粒子的热运动不断增加,随着温度的升高,粒子 与其平衡位置的偏离越来越大,当温度升至溶解温度后,固体的规则性被彻底破坏, 固体溶解为液体,粒子排列从较有序的结晶态转变为无序的液态,这个过程称为溶解。溶解过程的目的是消除系统中原先可能存在的非均匀状态,使随后进行的冷却 过程以某一平衡态为始点。溶解过程与系统的熵增过程相联系,系统能量也随温度 的升高而增大。 冷却时,液体粒子的热运动渐渐减弱,随着温度的徐徐降低,粒子运动渐趋有 序。当温度降至结晶温度后,粒子运动变为围绕晶体格点的微小振动,液体凝固成固体的晶态,这个过程称为退火。退火过程之所以必须“徐徐”进行,是为了使系统在每一温度下都达到平衡态,最终达到固体的基态(图1-1)。退火过程中系统的熵值

模拟退火算法和禁忌搜索算法的matlab源程序

%%% 模拟退火算法源程序 % 此题以中国31省会城市的最短旅行路径为例: % clear;clc; function [MinD,BestPath]=MainAneal(pn) % CityPosition存储的为每个城市的二维坐标x和y; CityPosition=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;... 4196 1044;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;... 1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;... 4263 2931;3429 1908;3507 2376;3394 2643;3439 3201;2935 3240;3140 3550;... 2545 2357;2778 2826;2370 2975]; figure(1); plot(CityPosition(:,1),CityPosition(:,2),'o') m=size(CityPosition,1);%城市的数目 % D = sqrt((CityPosition(:,ones(1,m)) - CityPosition(:,ones(1,m))').^2 + ... (CityPosition(:,2*ones(1,m)) - CityPosition(:,2*ones(1,m))').^2); path=zeros(pn,m); for i=1:pn path(i,:)=randperm(m); end iter_max=100;%i m_max=5;% Len1=zeros(1,pn);Len2=zeros(1,pn);path2=zeros(pn,m); t=zeros(1,pn); T=1e5; tau=1e-5; N=1; while T>=tau iter_num=1; m_num=1; while m_num

遗传算法的原理及MATLAB程序实现

1 遗传算法的原理 1.1 遗传算法的基本思想 遗传算法(genetic algorithms,GA)是一种基于自然选择和基因遗传学原理,借鉴了生物进化优胜劣汰的自然选择机理和生物界繁衍进化的基因重组、突变的遗传机制的全局自适应概率搜索算法。 遗传算法是从一组随机产生的初始解(种群)开始,这个种群由经过基因编码的一定数量的个体组成,每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部表现(即基因型)是某种基因组合,它决定了个体的外部表现。因此,从一开始就需要实现从表现型到基因型的映射,即编码工作。初始种群产生后,按照优胜劣汰的原理,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样,后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。 计算开始时,将实际问题的变量进行编码形成染色体,随机产生一定数目的个体,即种群,并计算每个个体的适应度值,然后通过终止条件判断该初始解是否是最优解,若是则停止计算输出结果,若不是则通过遗传算子操作产生新的一代种群,回到计算群体中每个个体的适应度值的部分,然后转到终止条件判断。这一过程循环执行,直到满足优化准则,最终产生问题的最优解。图1-1给出了遗传算法的基本过程。 1.2 遗传算法的特点 1.2.1 遗传算法的优点 遗传算法具有十分强的鲁棒性,比起传统优化方法,遗传算法有如下优点: 1. 遗传算法以控制变量的编码作为运算对象。传统的优化算法往往直接利用控制变量的实际值的本身来进行优化运算,但遗传算法不是直接以控制变量的值,而是以控制变量的特定形式的编码为运算对象。这种对控制变量的编码处理方式,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便地处理各种变量和应用遗传操作算子。 2. 遗传算法具有内在的本质并行性。它的并行性表现在两个方面,一是遗传

模拟退火算法求解TSP问题Matlab源码

function [f,T]=TSPSA(d,t0,tf) %TSP问题(货郎担问题,旅行商问题)的模拟退火算法通用malab源程序% f目标最优值,T最优路线,d距离矩阵,t0初始温度,tf结束温度 [m,n]=size(d); L=100*n; t=t0; pi0=1:n; min_f=0; for k=1:n-1 min_f=min_f+d(pi0(k),pi0(k+1)); end min_f=min_f+d(pi0(n),pi0(1)); p_min=pi0; while t>tf for k=1:L; kk=rand; [d_f,pi_1]=exchange_2(pi0,d); r_r=rand; if d_f<0 pi0=pi_1; elseif exp(d_f/t)>r_r pi0=pi_1; else pi0=pi0; end end f_temp=0; for k=1:n-1 f_temp=f_temp+d(pi0(k),pi0(k+1)); end f_temp=f_temp+d(pi0(n),pi0(1)); if min_f>f_temp min_f=f_temp; p_min=pi0; end t=0.87*t; end f=min_f; T=p_min; %aiwa要调用的子程序,用于产生新解 function [d_f,pi_r]=exchange_2(pi0,d) [m,n]=size(d); clear m; u=rand;

u=u*(n-2); u=round(u); if u<2 u=2; end if u>n-2 u=n-2; end v=rand; v=v*(n-u+1); v=round(v); if v<1 v=1; end v=u+v; if v>n v=n; end pi_1(u)=pi0(v); pi_1(v)=pi0(u); if u>1 for k=1:u-1 pi_1(k)=pi0(k); end end if v>(u+1) for k=1:v-u-1 pi_1(u+k)=pi0(v-k); end end if v

遗传算法的MATLAB程序实例讲解学习

遗传算法的M A T L A B 程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

M模拟退火最短距离问题 Matlab代码 亲测完美运行

模拟退火算法 基于模拟退火算法的TSP问题求解具体步骤如下: 1)随机产生一个初始解path(作为当前最优路径),计算目标函数值pathfare(fare,path)=e0,并设置初始温度t0,内循环终止方差istd,外循环终止方差ostd降温系数lam,温度更新函数tk=lam*tk-1,并令k=1,输入各城市坐标coord,计算城市间的距离fare。 2)根据控制参数更新函数来控制温度的下降过程,给定最大循环步数iLK,设置循环计数器的初始值in=1。 3)对当前的最优路径作随机变动,产生一个新路径newpath,计算新路径的目标函数值pathfare(fare,newpath)=e1和目标函数值的增量e1-e04)根据Metropolis准则,如果增量(e1-e0)<0,则接受新产生的路径newpath作为当前最优路径;如果(e1-e0)>=0,则以公式(1)来决定新路径newpath是否代替path。rand()随机产生一个在[0,1]之间的随机数。exp[-(e1-e0)/t]>rand() 4)如果目标函数值小于istd,则直接跳出内循环。 5)如果in

1. distance.m function [fare]=distance(coord) %coord为各城市的坐标 %fare为城市间的距离矩阵 [~,m]=size(coord);%m为城市的个数 fare=zeros(m); for i=1:m%外层为行 for j=1:m%内层为列 fare(i,j)=(sum((coord(:,i)-coord(:,j)).^2))^0.5; fare(j,i)=fare(i,j);%距离矩阵对称 end end 2. myplot.m function []=myplot(path,coord,pathfar) %做出路径的图形 %path为要做图的路径,coord为各个城市的坐标 %pathfar为路径path对应的费用 len=length(path); clf; hold on;

简单的遗传算法MATLAB实现

遗传算法是对达尔文生物进化理论的简单模拟,其遵循“适者生存”、“优胜略汰”的原理。遗传算法模拟一个人工种群的进化过程,并且通过选择、杂交以及变异等机制,种群经过若干代以后,总是达到最优(或近最优)的状态。 自从遗传算法被提出以来,其得到了广泛的应用,特别是在函数优化、生产调度、模式识别、神经网络、自适应控制等领域,遗传算法更是发挥了重大的作用,大大提高了问题求解的效率。遗传算法也是当前“软计算”领域的重要研究课题。 本文首先结合MATLAB对遗传算法实现过程进行详细的分析,然后通过1个实际的函数优化案例对其应用进行探讨。 1. 遗传算法实现过程 现实生活中很多问题都可以转换为函数优化问题,所以本文将以函数优化问题作为背景,对GA的实现过程进行探讨。大部分函数优化问题都可以写成求最大值或者最小值的形式,为了不是一般性,我们可以将所有求最优值的情况都转换成求最大值的形式,例如,求函数f(x)的最大值,

若是求函数f(x)的最小值,可以将其转换成 g(x)=-f(x),然后求g(x)的最大值, 这里x可以是一个变量,也可是是一个由k个变量组成的向量,x=(x1, x2, …, x k)。每个x i,i=1,2,…,k, 其定义域为D i,D i=[a i, b i]。 一般规定f(x)在其定义域内只取正值,若不满足,可以将其转换成以下形式, 其中C是一个正常数。 1.1 编码与解码 要实现遗传算法首先需要弄清楚如何对求解问题进行编码和解码。对于函数优化问题,一般来说,有两种编码方式,一是实数编码,一是二进制编码,两者各有优缺点,二进制编码具有稳定性高、种群多样性大等优点,但是需要的存储空间大,需要解码过程并且难以理解;而实数编码直接用实数表示基因,容易理解并且不要解码过程,但是容易过早收敛,从而陷入局部最优。本文以最常用的二进制编码为例,说明遗传编码的过程。

基于matlab的模拟退火法

基于matlab的模拟退火法 编写一个matlab的程序用模拟退火法求函数最优解 function [xo,fo] = Opt_Simu(f,x0,l,u,kmax,q,TolFun) % 模拟退火算法求函数f(x)的最小值点,且l <= x <= u % f为待求函数,x0为初值点,l,u分别为搜索区间的上下限,kmax为最大迭代次数 % q为退火因子,TolFun为函数容许误差 %%%%算法第一步根据输入变量数,将某些量设为缺省值 if nargin < 7 TolFun = 1e-8; end if nargin < 6 q = 1; end if nargin < 5 kmax = 100; end %%%%算法第二步,求解一些基本变量 N = length(x0); %自变量维数 x = x0; fx = feval(f,x); %函数在初始点x0处的函数值 xo = x; fo = fx; %%%%%算法第三步,进行迭代计算,找出近似全局最小点 for k =0:kmax Ti = (k/kmax)^q; mu = 10^(Ti*100); % 计算mu dx = Mu_Inv(2*rand(size(x))-1,mu).*(u - l);%步长dx x1 = x + dx; %下一个估计点 x1 = (x1 < l).*l +(l <= x1).*(x1 <= u).*x1 +(u < x1).*u; %将x1限定在区间[l,u]上 fx1 = feval(f,x1); df = fx1- fx; if df < 0||rand < exp(-Ti*df/(abs(fx) + eps)/TolFun) %如果fx1

遗传模拟退火算法matlab通用源程序

% maxpop给定群体规模% pop群体 % newpop种群 %t0初始温度 function [codmin,finmin]=fc0(cc,v0,t0) N=length(cc(1,:)); %定群体规模 if N>50 maxpop=2*N-20; end if N<=40 maxpop=2*N; end %产生初始群体 pop=zeros(maxpop,N); pop(:,1)=v0; finmin=inf; codmin=0; for i=1:maxpop Ra=randperm(N); Ra(find(Ra==v0))=Ra(1);

pop(i,:)=Ra; end t=t0; while t>0 %用模拟退火产生新的群体pop=fc1(maxpop,pop,N,cc,v0,t); %转轮赌选择种群 f=zeros(1,maxpop); for i=1:maxpop for j=1:N-1 x=pop(i,j); y=pop(i,j+1); fo1=cc(pop(i,j),pop(i,j+1)); f(i)=f(i)+fo1; end f(i)=f(i)+cc(pop(i,1),pop(i,N)); end fmin=min(f); for i=1:maxpop if fmin==inf&f(i)==inf

end if fmin~=inf|f(i)~=inf dd=fmin-f(i); end ftk(i)=exp(dd/t); end [fin1,cod]=sort(-ftk); fin=abs(fin1); %f(cod(1)) if f(cod(1))=RR); % cod newpop(i,:)=pop(cod(cod2(end)),:); end %单亲繁殖

使用MATLAB遗传算法工具实例(详细) (1)【精品毕业设计】(完整版)

最新发布的MA TLAB 7.0 Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。 本章8.1节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。 8.1 遗传算法与直接搜索工具箱概述 本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。 8.1.1 工具箱的特点 GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MA TLAB数值计算环境的性能。遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。所有工具箱函数都是MATLAB的M文件,这些文件由实现特定优化算法的MATLAB语句所写成。 使用语句 type function_name 就可以看到这些函数的MATLAB代码。我们也可以通过编写自己的M文件来实现来扩展遗传算法和直接搜索工具箱的性能,也可以将该工具箱与MATLAB的其他工具箱或Simulink结合使用,来求解优化问题。 工具箱函数可以通过图形界面或MA TLAB命令行来访问,它们是用MATLAB语言编写的,对用户开放,因此可以查看算法、修改源代码或生成用户函数。 遗传算法与直接搜索工具箱可以帮助我们求解那些不易用传统方法解决的问题,譬如表查找问题等。 遗传算法与直接搜索工具箱有一个精心设计的图形用户界面,可以帮助我们直观、方便、快速地求解最优化问题。 8.1.1.1 功能特点 遗传算法与直接搜索工具箱的功能特点如下: 图形用户界面和命令行函数可用来快速地描述问题、设置算法选项以及监控进程。 具有多个选项的遗传算法工具可用于问题创建、适应度计算、选择、交叉和变异。 直接搜索工具实现了一种模式搜索方法,其选项可用于定义网格尺寸、表决方法和搜索方法。 遗传算法与直接搜索工具箱函数可与MATLAB的优化工具箱或其他的MATLAB程序结合使用。 支持自动的M代码生成。 8.1.1.2 图形用户界面和命令行函数 遗传算法工具函数可以通过命令行和图形用户界面来使用遗传算法。直接搜索工具函数也可以通过命令行和图形用户界面来进行访问。图形用户界面可用来快速地定义问题、设置算法选项、对优化问题进行详细定义。 133

(完整版)三个遗传算法matlab程序实例

遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

相关文档
最新文档