弦长公式(高二版椭圆)
椭圆过焦点的弦长公式

椭圆过焦点的弦长公式
椭圆过焦点的弦长公式是一种涉及到椭圆的数学公式,它是一个有关于椭圆的结构和形状的深入研究。
椭圆是一种双曲线(hyperbola),它可以用一组有限的四个点来定义,它的两个焦点是其重要的特点。
焦点的距离就称为椭圆的短轴,焦点到周轴的中心点的距离称为椭圆的长轴。
椭圆过焦点弦长公式描述的是椭圆的结构和形状,它的格式如下:∑ (Ea + fc + gd) = l
其中,E是椭圆的短轴,f和g是两个焦点到椭圆短轴中心的距离,d是椭圆的长轴,l是过两个焦点的弦长。
椭圆过焦点的弦长公
式可以用来计算椭圆的两个焦点之间的距离。
该公式的基本原理如下:椭圆的点经过其两个焦点和斜轴上的四个点,然后在椭圆上折线两侧至少有两个点,折线的长度就是椭圆过焦点的弦长。
即通过椭圆过焦点的弦长,可以计算椭圆的长轴、短轴、焦点到椭圆中心的距离以及椭圆的面积。
椭圆过焦点的弦长公式可以用来研究椭圆的原理以及各种物理
学和几何学问题。
例如,它可以用来研究不同角度夹角下椭圆的变化,它可以用来研究椭圆的内切圆的位置和大小的变化,也可以用来研究椭圆的变形与投影变换有关的问题,它还可以用来研究椭圆的特性以及它在几何图形中的应用等。
椭圆过焦点的弦长公式和它的计算是一种非常有用的数学公式,它可以让我们更好地理解椭圆的结构和特性,可以解决一些几何上的
问题,也可以帮助我们更好地利用椭圆的特性来解决实际的工程问题。
因此,椭圆过焦点的弦长公式在数学学术界以及工程界都具有重要的意义。
椭圆的弦长公式

椭圆的弦长公式椭圆是常见的几何图形,它与圆相似,但形状略有不同。
在本文中,我们将探讨椭圆的弦长公式及其推导过程。
椭圆的定义椭圆是在平面上定义的几何图形,它是固定点F(称为焦点)和固定直线L (称为直角边)到平面上点P的距离之和与一定的常数2a成比例的点的集合,即PF1 + PF2 = 2a其中F1和F2是一个椭圆的两个焦点,a是一个椭圆的半长轴。
椭圆的弦长弦是在椭圆内部连接两个不相邻的点的线段。
图中AB和CD是椭圆的两条弦,其长度为l。
我们的目标是推导出椭圆弦长的公式。
椭圆的标准方程为了推导椭圆的弦长公式,我们需要引入椭圆的标准方程。
标准方程是将椭圆放在坐标系中并将椭圆的中心与坐标系的原点重合时的方程。
一个椭圆的标准方程为:x²/a² + y²/b² = 1其中a和b是椭圆的半长轴和半短轴。
椭圆的弦长公式的推导现在我们来推导椭圆的弦长公式。
假设椭圆的标准方程是x²/a² + y²/b² = 1弦AB的两个端点的坐标可以表示为:A(-x1, y1)和B(x2, y2)根据标准方程,我们可以得到:y1²/b² = 1 - x1²/a² (1)y2²/b² = 1 - x2²/a² (2)将式(1)和式(2)相加:y1²/b² + y2²/b² = 2 - x1²/a² - x2²/a²将x1和x2相加,得到:x1 + x2 = -(a²/b²)(y1 + y2)/(x1 - x2)我们假设椭圆的中心为(0, 0),则坐标系中任意一点P的坐标为(x, y)。
以y1作为y坐标,可以得到:x = a²x1/(a² - b²),y = b²y1/(a² - b²)同样地,以y2作为y坐标,可以得到:x = a²x2/(a² - b²),y = b²y2/(a² - b²)令l为弦AB的长度,则:l² = (x2 - x1)² + (y2 - y1)²将x1和x2代入上式,得到:l² = (a²x2/(a² - b²)- a²x1/(a² - b²))² + (b²y2/(a² - b²)- b²y1/(a² - b²))²整理后得到:l² = a²(x2 - x1)²/(a² - b²)² + b²(y2 - y1)²/(a² - b²)²将x1 + x2 = -(a²/b²)(y1 + y2)/(x1 - x2)代入上式,得到:l² = 4a²b²(x1 - x2)²/(a² - b²)⁴ + 4a²b²(y1 + y2)²/(a² - b²)⁴将x1 + x2代入上式中的(x1 - x2)²,得到:l² = 4a²b²(x1 + x2)²/(a² - b²)⁴ + 4a²b²(y1 + y2)²/(a² - b²)⁴ - 8a²b²x1x2/(a² - b²)⁴由于x1 + x2 = -(a²/b²)(y1 + y2)/(x1 - x2),所以8a²b²x1x2/(a ² - b²)⁴可以改写为4(a² - b²)(y1 + y2)²。
椭圆内的弦长公式

椭圆内的弦长公式
椭圆内的弦长公式是椭圆的一种重要的属性,它可以用来衡量一个椭圆的形状和大小。
公式:
1、椭圆弦长公式:
椭圆的弦长(L) equal a × b × π(π=3.1415926).
其中:a:椭圆的长轴;b:椭圆的短轴。
2、椭圆弦的垂直弦长公式:
垂直弦长(PerpendicularL) equal总长 × sinθ/2,
其中:θ:椭圆的焦角。
3、椭圆弧长公式:
椭圆弧长(Arcl) equal总长 × cosθ/2,
其中:θ:椭圆的焦角。
4、椭圆扁率公式:
椭圆扁率(Flatness) equal b/a
其中:a:椭圆的长轴;b:椭圆的短轴。
总之,椭圆弦长、垂直弦长、弧长和扁率公式是椭圆传动系统研究中最重要的属性之一,对于确定椭圆传动系统的弦长、垂直弦长、弧长和扁率都可以使用以上四个公式。
高中数学椭圆的焦点弦长公式的四种推导方法及其应用

椭圆的焦点弦长公式的四种推导方法及其应用摘要 :直线与椭圆相交时的弦长问题,可以用万能的弦长公式解决即AB = 1 k 2x 1 x 2或者 AB= 1+( k 1)2y 1 y 2 ,而有一种特殊的弦是过焦点的弦,它的弦长有专门的公 式: 2ab2AB 2 2a 2b 2 ,如果记住公式,可以给我们解题带来方便 .a2 c 2 cos 2下面我们用万能弦长公式, 余弦定理, 焦半径公式, 仿射性四种方法来推导椭圆的焦点弦长公式, 这几种方法涉及到很多思想,最后举例说明其应用 .解法一 :根据弦长公式直接带入解决 .22题:设椭圆方程为 x2 y2 1,左右焦点分别为 F 1( c,0), F 2(c,0) ,直线 l 过椭圆的右焦点 F 2 交椭 ab圆于A( x 1 , y 1), B ( x 2 , y 2 )两点,求弦长 AB .22椭圆方程 x2 y 2 1可化为b 2x 2a 2y 2 a 2b 2⋯⋯①, a2b 2直线 l 过右焦点,则可以假设直线为:x my c ( 斜率不存在即为 m 0时 ) ,代入①得:(b 2m 2a 2)y 2 2mcb 2 y b 2c 2 a 2b 2 0 ,整理得, (b 2m 2 a 2)y 22mcb 2y b 4∴y1y 2b 2m 22mcb 22 ,y 1y 2 a b 4b 2m 2aAB = 1+( k 1)2y 1y 21 m2(2 2 bm 2mcb 2 )2 2)a4b 42 2 2b m a1 m 24a 2b 4(1 m 2)2 2 2 2(b m a )∴ AB2ab 22 2 2 b m a1m1)若直线 l 的倾斜角为,且不为 90o ,则1 tan ,则有:ABb 2m 2a 2b a 2 1 m 2b m a2ab 22 1 2 b 2 atan1tan 2由正切化为余弦,得到最后的焦点弦长公式为AB2ab 22 2 2 a c cos②.2)若 =90o ,则 m 0,带入 AB2 2ab 22 2 2 b m a1 m 2,得通径长为 2b 2,同样满足②式 .并且由a解法二 :根据余弦定理解决22题:设椭圆方程为 x 2 y2 1,左右焦点分别为 F 1( c,0), F 2(c,0) ,直线 l 过椭圆的右焦点 F 2 交椭 ab 圆于 A(x 1,y 1),B(x 2,y 2)两点,求弦长 AB .AB2ab 21 m2 =2a(b 2m 2a 2) 2a 32ab 22 2 21 m =2 2 2b m a b m a2a2a 2(a 22 b 22) 2a2a(a 22 b 2) 2b 2b m a a,当且仅当 m 0 即斜率不存在的时候,过焦点弦长最短为2b 22b,故可知通径是最短的焦点弦, a综上,焦点弦长公式为 AB2ab 22 2 2 a c cos22题:设椭圆方程为 x 2 y 2 a 2 b21,左右焦点分别为 F 1( c,0), F 2(c,0) ,直线 l 过椭圆的右焦点 F 2 交椭圆于 A(x 1,y 1),B(x 2,y 2)两点,求弦长 AB .解:如右图所示,连结 F 1 A, F 1B ,设 F 2A=x, F 倾斜角为 ,则由椭圆定义可得AF 1F 2 中,由余弦定理得cos( )(2c)2x 2(2a x)2,化简可得4cxBF 1F 2 中,由余弦定理同理可得b 2a ccosABb 2b 2ya ccos a ccos2ab 2222a c cos解法三:利用焦半径公式解决 解:由解法一知x 1x 2=my 1 c my 2 c m(y 1 y 2 ) 2c22 2m 2cb 2 2 2 2bm a 2c22a 22c2 .由椭圆b 2m 2a 2的第二定义可得焦半径公式,那么 F 2A a ex 1, F 2B aex 2,则弦长2 F 1A =2a x中 结 得AB③2 abkc为a2果带入③将此b 1 k 22 2 2 a 2b 2(1 k 2)2 2 2 b 2 a 2k 2b2 a 2k2 A'B'b 2m2 A'B' =b 2 a 2k 22 2 2b 2 a 2k 22 2 2b 2 a 2k 2后面分析同解法解法四 :利用仿射性解决22题:设椭圆方程为 x 2 y 2 1,左右焦点分别为 F 1( c,0), F 2(c,0) ,直线 l 过椭圆的右焦点 F 2 交椭 ab圆于 A(x 1,y 1),B(x 2,y 2)两点,求弦长 AB .b 1 k 2a 2b 2(1 k 2) 2ab 2(1 k 2),由 k tan ,带入得AB = b 1 k 2AB =b 2 a 2k 22ab 2m 2 2ab 2 故AB =a ex 1 a ex 2 2a e(x 1 x 2)2 2 2b m ax' x解:利用仿射性, 可做如下变换 a ,则原椭圆变为 (x')2 (y')2 y' ya 2,这是一个以原点为圆心,a 为半径的圆 . 假设原直线的斜率为k ,则变换后斜率为 bak .椭圆中弦长 AB = 1 k 2x 1 x 2 ,经过 变换后变为 A'B' 1 (a k)2 x 1x 2 ,带入,得变换前后弦长关系为AB =(akc )2 b 1 (a bk )2bA'B' =2 a 22ab 2a 2 c 2 cos 22ab 2(1 m 2)勾股定理求得弦长为而我们知道圆的弦长可以用垂径 定理求得 .如图所示,假设直线y a k(x c) ,圆心到直线的距 b离为 d,根据半径1 (a bk)2a4上面我们分别用了四种不同的方法,求出了椭圆中过焦点的弦长公式为: 记住这个公式,可以帮助我们快速解决一些题目,下面我们举例说明 22 例 1已知椭圆 x y25 21 AB2ab 2,2 2 2,a c cos1,过椭圆焦点且斜率为 3 的直线交椭圆于 A, B 两点,求 AB . 分析:如果直接用弦长公式解决, 因为有根号,特别繁琐,利用公式则迎刃而解解:由题, a 5,b 2 21,c 24, = , 带入 AB 3 2ab 2 222a c cos 得 AB =10. 例 2已知点 P(1, 3) 在椭圆 C :x2 2 a 22y2 1(a> b> 0)上,过椭圆 C 的右焦点 F 2 (1,0)的直线 l与b 椭圆 C 交于 M,N 两点 . 1)求椭圆的标准方程; 2)若AB 是椭圆 C 经过原点 O 的弦,且MN PAB ,W AB MN 2,试判断 W 是否为定值?若是定值,求出这个定值,若不是,说明理由 . 分析:因为 l 过焦点,故弦长可以用过焦点的弦长公式解决,显得十分简洁简单 9 2 2 2 21 ,又 a b c 4b2 1 解:(1)由题知 c 1,将点 P 带入得 12 a 2 ,解得 a 2 4,b 23 ,故椭 22 圆方程为 x y1. 43 2)假设 A(m,n) ,则 AB 2 m 2 n 2,设倾斜角为 ,则 cos m m 2 n 2 ,根据过焦点的弦长公式则 MN 2ab 22 a 22 c cos 12 2 m 22 mn3m 212(m 2 4n 2 ,故 W n 2) AB MN m 2 =4( 4 2 n )=4. 3 例3如图,已知椭圆 1的左右焦点为 F 1,F 2, 过 F 2 的直线 l 1 交椭圆于 A,C 两点,过 F 1 的直线 l 2交椭圆于 B,D 两点, l 1,l 2交于点 P ( P 在x 轴下方),且 F 1PF 2 43 ,求四边形 ABCD 的 面积的最大值 . 分析:注意到以原点为圆心,半焦距为半径的圆与椭圆没有交点,故形成F 1PF 23的点 P 在圆 内,先可以用焦点弦长公式表示出面积,再利用换元求出其最大值2解:假设 l 1 的倾斜角为,则 l 2的倾斜角为 3+,由椭圆的焦点弦长公式得: AC12 4 cosBD 12 S=1 2ACBD12 12 cos ( )4 2cos4 cos 2() 4设 f( (4 cos )(4 cos ( 7(72 cos2 )( 1 12sin 2 )4))49 7 ( sin2 44+cos 21)+ sin4 8设 sin2 cos2t(t2, 2 ) ,则sin4 t 21,带入得 f(t)49 7t+1(t 2 4481)即f(t)1t 28 7t 97 48f (t)min 99 14 2,此时 t 2,即 sin2 cos22 ,得到 综上,四边形 ABCD 的最大值为 288 2 S=99 14 2 = 8 ,得到l 2的倾斜角为 8 ,刚好两直线关于 y 轴对称,如 右图所示 .5.14 .此时。
椭圆过焦点的弦长公式

椭圆过焦点的弦长公式椭圆过焦点的弦长公式,又称椭圆过焦点的长度公式,是数学中用来描述椭圆的一种重要的公式。
它的出发点是用一条曲线来拟合一块水平或垂直的平面。
经过焦点的弦段长度与椭圆的半长轴和半短轴之比为固定值,是椭圆根据其定义后得出的结果。
首先,让我们来看看椭圆长度公式的推导过程:一般来讲,椭圆是一种曲线,可以用以下参数来定义它:半长轴a和半短轴b,以及椭圆的焦点F1和F2。
通过上述参数,关于椭圆的弦长度可以表示为: L=a2*b2*[(F1-F2)/(a2-b2)]其中,a2和b2是半长轴和半短轴的平方,F1和F2是椭圆的焦点,即处于椭圆的两端点。
以上就是椭圆长度公式的推导,尽管看起来一点也不简单,它依然是一个非常重要的公式,在许多不同领域都能起到很好的作用。
首先,椭圆长度公式可以用来确定椭圆的最短路径,这种情况尤其常见于建筑设计领域。
比如,建筑师要设计一座大楼,它的外墙需要成为一个椭圆形,而且外墙的长度必须要求在最短的路线上。
在这种情况下,椭圆长度公式就可以派上用场了,它可以帮助建筑师确定这个椭圆形外墙最短的路线,以此避免建筑物外墙被过长所带来的额外费用。
此外,椭圆长度公式还可以用来计算椭圆的面积。
计算椭圆面积只需要把椭圆长度公式中的 a2 b2别替换成椭圆的半长轴和半短轴的面积即可。
由此可见,椭圆长度公式对于测量椭圆的面积也很有用处。
另外,椭圆长度公式还有一个重要的应用,就是用来计算复杂的曲线的长度,它可以将曲线中的许多复杂的段细分成许多椭圆段,然后再通过椭圆长度公式将椭圆段的长度相加,从而得出曲线的总长度。
这种方法用于计算曲线长度相对于直接测量曲线长度,效率更高一点,且准确度也会更高。
总之,椭圆过焦点的弦长公式被广泛应用于不同的领域,是一个非常重要的数学公式。
在建筑设计、椭圆面积测量以及曲线长度测量等方面,它都能发挥出良好的作用,从而节省了大量的时间和精力。
直线与椭圆的弦长公式

直线与椭圆的弦长公式
1.椭圆与直线的关系
椭圆是一种闭合曲线,可以由一组参数来表示。
椭圆与一般的直线是可以关联的,可以根据一定的关系,通过椭圆的参数来求解椭圆与直线的弦长。
2.根据给定参数公式求解椭圆与直线的弦长
当椭圆的参数为$(h,k),a,b$时,其与直线的交点可以求得。
而这条直线与椭圆相切时对应的弦长,可以用下面的公式来计算:
\begin{equation}
S=2a\pi \cdot \int_{x_0}^{x_1} \sqrt{\frac{1+(2hx+b^2-a^2)^2}{4a^2(x-h)^2+b^2}} \, \mathrm{d}x
\end{equation}
其中,$x_{0}$和$x_{1}$是椭圆最高点$(-h,k+b)$和最低点$(-h,k-b)$的横坐标,即$x |_{0}=-h+\frac{a^2-b^2}{2h}$,$x |_{1}=-h-\frac{a^2-
b^2}{2h}$。
3.应用
椭圆与直线的弦长公式,可以应用在多种场景中,其中最常见的就是利用椭圆与直线的弦长关系来求解数学问题。
比如,根据已知的线段长度得出直线与椭圆的弦长,从而可以解决许多古代测地学、运动学和结构学中的问题。
椭圆与直线的弦长公式,也可以用来解决有关扇形、正多边形、椭圆形和抛物线的许多问题。
高中数学椭圆弦长公式推导过程

高中数学椭圆弦长公式推导过程全文共四篇示例,供读者参考第一篇示例:椭圆是数学中常见的曲线形状之一,在高中数学学习中,我们经常会接触到椭圆的相关知识,其中就包括椭圆的弦长公式。
椭圆弦长公式是求椭圆上任意两点之间的弦长的公式,通过推导可以得到其具体表达式。
下面,我将详细介绍椭圆弦长公式的推导过程。
让我们来了解一下椭圆的基本定义和性质。
椭圆可以看作是一个平面内到两个定点(焦点)的距离之和等于常数的点的轨迹。
我们用椭圆的两个焦点表示为F1和F2,椭圆的长半径为a,短半径为b,焦距为2c。
椭圆的标准方程可以表示为:\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)椭圆上的一点P(x, y)到两个焦点的距离之和等于常数2a,即:\( PF1 + PF2 = 2a \)我们将这个式子记为(1)。
接下来,我们需要推导出椭圆的弦长公式。
假设椭圆上有两点A(x1, y1)和B(x2, y2),我们要求这两点之间的弦长AB的长度。
我们需要找到连接两点A和B的直线方程。
由于椭圆是一个二次曲线,因此椭圆上的点满足椭圆的标准方程。
点A(x1, y1)和B(x2, y2)分别满足椭圆方程:连接两点A和B的直线方程可以表示为:\( (y-y1) = \frac{y2-y1}{x2-x1} \times (x-x1) \)将这个直线方程代入椭圆的标准方程,可以得到连接两点A和B的方程。
接下来,我们要求直线与椭圆的交点,即求方程组:可以得出AB弦长的计算公式为:可见,椭圆弦长公式的推导过程并不复杂,只要我们掌握了椭圆的基本性质和相关知识,就可以很轻松地推导出弦长公式。
通过这个推导过程,我们可以更加深入地理解椭圆的性质和特点,为我们深入学习和理解椭圆奠定了基础。
椭圆是数学中非常重要的一个曲线,在高中数学学习中,我们需要掌握椭圆的基本知识和相关公式。
弦长公式是椭圆的一个重要性质,通过推导过程,可以更好地理解椭圆的几何特性。
椭圆弦长公式带△的那个公式推导

椭圆弦长公式带△的公式推导椭圆是数学中常见的图形,它具有许多特殊的性质和公式。
其中一个重要的公式是椭圆上的弦长公式,它描述了椭圆上两点之间的弦长与椭圆参数之间的关系。
本文将详细推导带有△的椭圆弦长公式。
1. 弦长的定义在推导椭圆弦长公式之前,首先要明确弦长的定义。
在椭圆上,如果有两点A和B,那么从A点到B点的曲线段称为弦。
弦的长度即为弦长。
2. 椭圆的参数椭圆可以由其两个焦点F1和F2以及其长轴的长度2a定义。
椭圆的长轴是连接两个焦点并且通过椭圆中心的线段。
椭圆的焦距定义为常数c,其中c满足c^2 = a^2 - b^2,其中b是椭圆的短轴的长度的一半。
椭圆的离心率e定义为e = c/a。
3. 弦长公式的推导假设A点的坐标为(x1, y1)和B点的坐标为(x2, y2)。
为了推导带有△的椭圆弦长公式,我们可以使用解析几何的基本原理。
首先,我们需要计算AB线段的斜率k。
斜率k可以通过以下公式计算:k = (y2 - y1) / (x2 - x1)接下来,我们可以编写AB线段的方程。
假设AB线段的方程为y = mx + b,其中m是斜率,b是y轴截距。
根据A点和B点的坐标,我们可以使用点斜式计算出方程的参数m和b:m = (y2 - y1) / (x2 - x1)b = y1 - mx1由此得到AB线段的方程为:y = (y2 - y1) / (x2 - x1) * x + y1 - (y2 - y1) / (x2 - x1) * x1接下来,我们将该直线方程代入椭圆的方程中,即将y替换为椭圆方程中的y,得到:(x/a)^2 + ([(y2 - y1) / (x2 - x1) * x + y1 - (y2 - y1) / (x2 - x1) * x1]/b)^2 = 1将上述等式两边平方,消去分母并整理得到:b^2 * x^2 + a^2 * [(y2 - y1) * x + (y1 - y2) * x1]^2 - a^2 * b^2 * [(y2 - y1) * (x2 - x1)]^2 = 0利用二次方程的一般解公式,我们可以求得x的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
| PQ | 的步骤: 设 P(x1, y1), Q(x2 , y2 ) ,联立方程组(将直线方程代入椭圆方程):
y kx b2 x2
m, a2 y2
消去
a2b2 ,
y
整理成关于
x
的一元二次方程:
Ax2
Bx
C
0
,
则
x1, x2 是上式的两个根,
B2
4AC
0 ;由韦达定理得:
x1
x2
B, A
则 2k 2
m2 3 , S
2 2m m2 4
22 m 4
2 2
m
当且仅当 m 4 即 m 2 时, m
Smax
2 此时 k 2
14 .所求直线为 14 2 y 4 0 2
解法二:由题意知直线 l 的斜率存在且不为零.设直线 l 的方程为
y
kx
2,
A( x1 ,
y1
),
B(
x2
4
3(k 2 2k 2
3
1)(这里
AC
和
BD
都过
P
与椭圆相交)
故四边形 ABCD 的面积, 注意 k 2 0
(4)若已知直线恒过 x 轴上一点 (t, 0) ,且水平线不满足条件(斜率为 0),可以假设
直线为 x my t 。【反斜截式, m 1 】不含垂直于 y 轴的情况(水平线) k
2.弦长公式:若直线 l :
y
kx m 与椭圆 x2 a2
y2 b2
1(a
b 0) 相交于 P, Q 两点,求弦长
1 2
1.
(处理方法二)
x22 3
y02 2
x02 3
1 x02 2
11 26
x02
1
(Ⅱ)(ⅰ)当 BD 的斜率 k 存在且 k 0 时, BD 的方程为 y k(x 1) ,代入椭圆方程
x2 y2 1,并化简得 (3k 2 2)x2 6k 2 x 3k 2 6 0 . 48(k 2 1) 0 32
(1
k2)
A2
【注意:如果联立方程组消去 x 整理成关于 y 的一元二次方程: Ay2 By C 0 ,则
| PQ |
(1
1 k 2 )( y2
y1 ) 2
1 (1 k 2 ) A2
反斜截式
(1 m2 ) A2 】
3、其他常见问题处理 (1)等腰(使用垂直平分),平行四边形(使用向量的平行四边形法则或者对角线中点重合)
例 1.(2007 山东卷)已知椭圆的中心在坐标原点 O,焦点在 x 轴上,椭圆的短轴端点和焦
点所组成的四边形为正方形,两准线(注:左右准线方程为 x
a2 )间的距离为 4 c
(Ⅰ)求椭圆的方程;(Ⅱ)直线 l 过点 P(0,2)且与椭圆相交于 A、B 两点,当ΔAOB 面积取 得最大值时,求直线 l 的方程.
1 2k 2
2 2k 2 1 2k 2
3
.下同解法一.
解法
2: S
AOB
S
POB
S
POA
1 2 || 2
x2
||
x1
||
|x2x1源自|=22 2k 2 3 。 1 2k 2
例
2:已知椭圆
x2 3
y2 2
1的左、右焦点分别为 F1 ,F2 .过 F1 的直线交椭圆于 B,D 两点,
过 F2 的直线交椭圆于 A,C 两点,且 AC BD ,垂足为 P .
又由韦达定理得 x1 x2
1
8k 2k
2
, x1 x2
1
6 2k
2
,
| AB |
(1
k
2
)
8(2k 2 (1 2k 2
3) )2
点 O 到直线 l 的距离 d
2, 1 k2
S
AOB
1| 2
AB | d
8(2k2 3) 1 2k 2
2
2 2k 2 3 1 2k 2 .
令 m 2k2 3(m 0) ,
(Ⅰ)设 P
(x0,y0 ) ,证明:
x02 3
y02 2
1 ;(Ⅱ)求四边形
ABCD 的面积的最小值.
例 2:解:(Ⅰ)椭圆的半焦距 c 3 2 1,由 AC ⊥ BD 知点 P 在以线段 F1F2 为直径
的圆上,故 x02
y02
1,所以
(处理方法一)
x22 3
y02 2
≤
x02 2
y02 2
圆锥曲线综合问题
1. 直线方程的处理:若直线方程未给出,应先假设。
(1)若已知直线过点 (x0 , y0 ) ,则假设方程为 y y0 k(x x0 ) ;
(2)若已知直线的斜率 k ,则假设方程为 y kx m ;
(3)若仅仅知道是直线,则假设方程为 y kx m
【注】以上三种假设方式都要注意斜率是否存在的讨论;
设
B(x1,y1) ,
D(x2,y2 ) ,则
x1
x2
6k 2 3k 2
2
,
x1x2
3k 2 3k 2
6 2
BD
(k 2
1)
48(k (3k 2
2 1) 2)2
4
3(k 2 1) 3k 2 2
;因为
AC
与 BC 相交于点 P
,且
AC
的斜率
为
1 ,同理可得 k
AC
4
3
1 k2
1
3
1 k2
2
x1 x2
C, A
又 P, Q 两点在直线 l 上,故 y1 kx1 m, y2 kx2 m ,则 y2 y1 k (x2 x1) ,从而
| PQ | (x2 x1)2 ( y2 y1)2 (x2 x1)2 k 2 (x2 x1)2 (1 k 2 )(x2 x1)2
(1 k 2 )[(x1 x2 )2 4x1x2 ]
,
y2
)
,则直线
l
与
x
轴的交点
D(
2 k
,
0)
,
由解法一知 k 2
3 2
且
x1
x2
8k
1 2k 2
, x1 x2
6 1 2k2
,
解法 1: S
AOB
1 | OD | | 2
y1
y2
|
1| 2
2 k
|
|
kx1
2
kx2
2|
=| x1 x2
|
(x2 x2 )2 4x1x2
16k 2 24 2
(2)直径(圆周角为直角,向量垂直或斜率乘积等于 1),其次考虑是否需要求圆的方程。
(3)锐角和钝角使用数量积正负求解;涉及到其它角的问题使用正切值,转化为斜率求解;
(4)三角形内切圆的半径与三角形面积的关系: S rp, (这里p a b c) ; 2
(5)圆的弦长用垂径定理;(6)涉及到焦点要联想到定义; (7)三点共线,长度之比尽量使用相似三角形转化为坐标之比,利用韦达定理。
例 1.解:(1) x2 y2 1. 2
(Ⅱ)由题意知直线 l 的斜率存在,设直线 l 的方程为 y kx 2, A(x1, y1), B(x2, y2 )
由
y kx
x2
2
y
2
2
2
,消去
y
得关于
x
的方程:
(1
2k
2
)x2
8kx
6
0
由直线 l 与椭圆相交于 A、B 两点, 64k 2 24(1 2k 2 ) 8(2k 2 3) 0 解得 k 2 3 2