离散时间信号分析
离散时间信号分析

实验一
学院:电气工程学院专业:测控技术与仪器班级:测仪101
实验二
学院:电气工程学院专业:测控技术与仪器班级:测仪101
实验三
学院:电气工程学院专业:测控技术与仪器班级:测仪101
实验四
学院:电气工程学院专业:测控技术与仪器班级:测仪101
实验五
学院:电气工程学院专业:测控技术与仪器班级:测仪101
%双线性变换法设计ButterWorth数字滤波器[n,Wn]=buttord(0.2,0.3,1,25,’s’);
[b,a]=butter(n,Wn,’s’);
freqs(b,a)
[bz,az]=bilinear(b,a,1);
通过本次实验,我基本掌握了双线性变换法及脉冲相应不变法设计
实验六
学院:电气工程学院专业:测控技术与仪器班级:测仪101。
Lecture 2_离散时间信号分析,华工数字信号处理课件,DSP

二、离散时间信号的运算
8
基本运算
相乘(product) 相加(addition)
wn xn yn wn xn yn wn Axn wn xn N wn x n
调制、加窗
集合平均
数乘(multiplication)
8 -6 -4 -2 0 2 4 6 10
Q: Can a sample of discrete-time signal take real (continuous) value?
4
离散信号是从哪里来的?
A discrete time sequence x[n] may be generated by periodically sampling a continuous-time signal at uniform intervals of time.
12
采样率的转换(1)
采样率转换:
从给定序列生成采样率高于或低于它的新序列的运算
设原采样率为 FT ,转换后的采样率为 FT
则采样率转换比:
FT R FT
R 1 :插值(Interpolation)
R 1
抽取(Decimation)
采样率的转换(2)
上采样(up-sampling)
序列
xn 的 Lp 范数定义:
x
L2 范数是 L1范数是
p
( x[n] )
p n
1
p
xn均方根;
xn平均绝对值; xn绝对值的峰值
L范数定义: x x max
有限长序列x的范数MATLAB计算
norm(x); norm(x,2); norm(x,1); norm(x,inf)
实验一 离散时间信号的时域分析

实验一 离散时间信号的时域分析实验1 序列的产生1. 目的:熟悉C 语言产生和绘制,熟悉MATLAB 中产生信号和绘制信号的基本命令。
2. 具体实验:2.1 单位样本和单位阶跃序列。
Q1.1 运行程序P1.1 ,以产生单位样本序列u[n]并显示它。
答:如图1-1所示。
Q1.2 命令clf , axis , title , xlabel 和ylabel 的作用是什么? 答:clf :擦除当前图形窗口中的图形。
Axis :调整坐标轴X 轴Y 轴的范围。
Title:给绘制的图形加上标题。
Xlabel:给X 轴加上标注。
Ylabel: 给Y 轴加上标注。
Q1.3 修改程序P1.1 以产生带有延时11个样本的延迟单位样本序列ud[n]。
运行修改的程序并显示产生的序列。
答:如图1-2所示。
Q1.4修改程序P1.1 以产生单位步长序列s[n]。
运行修改的程序并显示产生的序列。
答:如图1-3所示。
Q1.5修改程序P1.1 以产生带有超前7个样本的延迟单位样本序列sd[n]。
运行修改的程序并显示产生的序列。
答:如图1-4所示。
Figure 1-2 The unit sample sequence ud[n]Figure 1-1 The shifted unit sample sequence u[n]单位样本序列公式如下所示:Time index nA m p l i t u d eUnit Sample Sequence u[n]Time index nA m p l i t u d eShifted Unit Sample Sequence ud[n]1 , n=0 1 , n=k δ[n]= δ[n-k]=0 , 0≠0 0 , 0≠kFigure 1-3 The unit step sequence s[n] Figure 1-4 The shifted unit step sequence sd[n]单位阶跃序列公式如下所示:1 , n ≥0 1 , n ≥k μ[n]= μ[n-k]=0 , n <0 0 , n <k2.2 指数信号Q1.6 运行程序P1.2 ,以产生复数值的指数序列。
第三章 离散时间信号的频域分析_20111910119

-4-3-2-10123402468H(e j ω)的实部ω/π振幅-4-3-2-101234-4-2024H(e j ω)的虚部ω/π振幅-4-3-2-1123402468|H(e j ω)|幅度谱ω/π振幅-4-3-2-11234-2-1012相位谱[H(e j ω)]ω/π以弧度为单位的相位第三章 离散时间信号的频域分析学院:信息学院 专业:通信工程 姓名:马正智 学号:20111910119一、实验目的1、理解和掌握基于MATLAB 仿真研究离散时间傅里叶变换的时移性质;2、理解和掌握基于MATLAB 仿真研究离散时间傅里叶变换的频移性质;3、理解和掌握基于MATLAB 仿真研究离散时间傅里叶变换的卷积性质;4、理解和掌握基于MATLAB 仿真研究离散时间傅里叶变换的调制性质;5、理解和掌握基于MATLAB 仿真研究离散时间傅里叶变换的反转性质。
二、实验内容1、离散时间傅里叶变换Q3.1 在程序P3.1中,计算离散时间傅里叶变换的原始序列是什么?MATLAB 命令pause 的作用是什么?答:离散时间傅里叶变换的原始序列:ωωωj j j e e e H ---+=6.012)(;MATLAB 命令pause 的作用:程序执行到此命令时,图像显示到此停顿,点击键盘任意键,程序继续执行画出后面的图形。
Q3.2 运行程序P3.1,求离散时间傅里叶变换的实部、虚部以及幅度和相位普。
离散时间傅里叶变换是ω的周期函数吗?若是,周期是多少?描述这四个图形表示的对称性。
图Q3.2-1 图Q3.2-2答:离散时间傅里叶变换是ω的周期函数,周期为π2;四个图形表示偶—奇对称性。
Q3.3 修改程序P3.1,在范围πω≤≤0内计算如下序列的离散时间傅里叶变换:ωωωωωωω32327.05.03.013.05.07.0)(j j j j j j j e e e e e e e U ------+-+++-=0.10.20.30.40.50.60.70.80.911111|H(e j ω)|幅度谱ω/π振幅0.10.20.30.40.50.60.70.80.91-4-2024相位谱[H(e j ω)]ω/π以弧度为单位的相位0.10.20.30.40.50.60.70.80.91-1-0.500.51H(e j ω)的实部ω/π振幅0.10.20.30.40.50.60.70.80.91-1-0.500.51H(e j ω)的虚部ω/π振幅0.10.20.30.40.50.60.70.80.91-1-0.500.51H(e j ω)的实部ω/π振幅0.10.20.30.40.50.60.70.80.91-1-0.500.51H(e j ω)的虚部ω/π振幅0.10.20.30.40.50.60.70.80.911111|H(e j ω)|幅度谱ω/π振幅00.10.20.30.40.50.60.70.80.91-6-4-20相位谱[H(e j ω)]ω/π以弧度为单位的相位并重做习题Q3.2。
离散信号分析

下面我们来看2π/ω0与T及T0的关系,从而讨论上面所述正弦 型序列的周期性的条件意味着什么?
T0 1 1 1 = 2π = 2π = = 0T 2πf 0T f 0T T ω0
这表明,若要2π/ω0为整数,就表示连续正弦信号的周期T0应为采 样时间间隔T的整数倍;若要2π/ω0为有理数,就表示T0与T是互为 互素的整数,且有
式中, yk(n)就是系统对输入xk(n)的响应。 在证明一个系统是线性系统时,必须证明此系统同时满足可加 性和比例性,而且信号以及任何比例常数都可以是复数。
例1-1 以下系统是否为线性系统: y(n)=2x(n)+3 很容易证明这个系统不是线性的, 因为此系统不满足叠加原理。 证
T [a1 x1 (n) + a2 x2 (n)] = 2[a1 x1 (n) + a2 x2 (n)] + 3
x(n) = xa (nT )
然而,并不是所有的离散时间信号都是这样获得的。一些信号 可以认为是自然产生的离散时间序列,如每日股票市场价格、 人口统计数和仓库存量等。
1.1.1 序列的运算 1. 序列的移位 . 2. 序列的翻褶 . 3. 序列的和 . 4. 序列的乘积 . 5. 序列的标乘 . 6. 累加 .
2. 单位阶跃序列 . 单位阶跃序列u(n)
1 u ( n) = 0
n≥0 n<0
(1-2)
如图 1-5 所示。它很类似于连续时间信号与系统中的单位 阶跃函数u(t)。
u(n)
1
…
-5 -4
-3 -2
-1
0
1
2
3
4
5
6
n
图 1-5 u(n)序列
实验一离散时间信号的分析报告

工程大学信号分析与处理实验一专业:通信02班学生:瑶华学号:**********完成时间:2022年4月27日实验一: 离散时间信号的分析一、实验目的1.认识常用的各种信号,理解其数学表达式和波形表示。
2.掌握在计算机中生成及绘制数字信号波形的方法。
3.掌握序列的简单运算及计算机实现与作用。
4.理解离散时间傅立叶变换、Z 变换及它们的性质和信号的频域特性。
二、实验设备计算机,MATLAB 语言环境。
三、实验基础理论1.序列的相关概念2.常见序列● 单位取样序列⎩⎨⎧≠==0n 0,0n 1n ,)(δ ● 单位阶跃序列⎩⎨⎧<≥=0,00,1)(n n n u ● 单位矩形序列⎩⎨⎧-≤≤=其他,010,1)(N n n R N ● 实指数序列)()(n u a n x n =● 复指数序列n jw e n x )(0)(+=σ● 正弦型序列)n sin()(0ϕ+=w A n x3.序列的基本运算● 移位 y(n)=x(n-m)● 反褶 y(n)=x(-n)● 和 )()()(21n x n x n y +=● 积 )()()(21n x n x n y •=● 标乘 y(n)=mx(n)● 累加∑-∞==nm m x n y )()( ● 差分运算 ⎩⎨⎧--=∇-+=∆)1()()()()1()(x n x n x n x n x n x n 后相差分前向差分 4.离散傅里叶变换的相关概念● 定义 ∑+∞-∞=-=n jwn jwe n x e X )()(● 两个性质1) [])2()2()2()()(,2)(ππππ++∞-∞=+-+--===∑w j n nw j jw n w j jwn jw e X e n x e X e ew e X 故有。
由于的周期函数,周期为是 2) 当x (n )为实序列时,)(jw e X 的幅值)(jw e X 在π20≤≤w 区间是偶对称函数,相位)(arg jw e X 是奇对称函数。
6.离散时间信号与系统的时域分析

0, n 1 1 z ( n) x ( n) y ( n) , n 1 2 1 n 1 ( 2 )( n 1)( 2 ) , n 0
6 线性时不变离散系统的时域分析
5. 累加 设某一序列为x(n),则x(n)的累加序列 y(n)定义为
y ( n)
k
x(k ) x(n) * u(n)
n
根据上述性质可以推得以下结论:
f (n n1 ) * (n n2 ) f (n n1 n2 )
6 线性时不变离散系统的时域分析
例 已知 x1 (n) (n) 3 (n 1) 2 (n 2) x2 (n) u(n) u(n 3) 试求信号 x (n) ,它满足 x(n) x1 (n) x2 (n) 解:可利用上面讲述的性质求解。
1 1/ 2 1/4 -2 -1 0 1 1/8 ... 2
n
x(-n) 1 1/2 1/8 1/4 ... -2 -1 0
1
2
n
6 线性时不变离散系统的时域分析
3.序列的加减 两序列的加、减是指同序号(n)的序列值逐项对 应相加得一新序列。
6 线性时不变离散系统的时域分析
例:
x(n) 1 1/2 1/4 -2 -1 0 y(n) 2 1 1/4 1/2 1 2 n …
6 线性时不变离散系统的时域分析
2.单位阶跃序列
u(n)
1, u ( n) 0,
n0 n0
u(n)
...
-1 0 1 2 3 n
(n) u (n) u (n) u (n 1)
m 0
u (n) (n m) (n) (n 1) (n 2)
信号分析与处理第3章离散时间信号的分析_1-44

X (z) x(n)zn x(n)(re j )n [x(n)r n ]e j n
x
x
x
只有当 x(n)rn 符合绝对可和的收敛条件,即
x(n)r n
x=
时,x(n) 的 z 变换才有意义。对序列 x(n) ,其 z 变换 X (z)收
敛的所有 z 的集合称为 X (z)的收敛域,简记为 ROC
X (z) x(n)zn x(0) x(1)z1 x(2)z2 x0
上式是序列 x(n) 的单边 z 变换。
n<0 时样点均为零的序列称为因果序列,对因果序 列,其双边 z 变换与单边 z 变换相同。
单边 z 变换定义式表明,序列的单边 z 变换是复变 量 z 的负幂级数,该级数的系数即是序列 x(n) 本身。
1、 周期单位冲激串的傅里叶变换
周期单位冲激串,如图(a)所示。该函数在研
究信号的采样问题中经常用到,称为狄拉克梳状函数
或理想采样函数,用数学公式表示为
p(t) (t nT ) n
在 2.3 节中已得到,其傅里叶级数为 p(t) 1 ejkt
T k
上式表明,周期单位冲激串的傅里叶级数中,只包 含位于 0,0 ,20 ,…,k0 ,…处的频率分量, 每个频率分量的大小相等且都等于 1 。
两者进行相乘,如图(c) 所示,相乘结果 xS (t) x(t) p(t) 称为 x(t) 的采样信号(sampled signal),如 图(d)所示。xS (t) 中各分量的冲激强度构成的序列为 x(t) 的样本 x(n) 。
设采样间隔为TS ,采样角频率S
2
f
2 TS
。由采
样过程,有
xS (t) x(t) p(t)
为书写方便,对序列 x(n) 取 z 变换和对 X (z)取逆 z 变换常常记为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2.2.1) (2.2.2) (2.2.3)
二、采样定理(Sampling theory)
连续信号 X(t)
离散信号 X(nTs)
Nyquist(Shannon)采样定理:
要想采样后不失真地还原原信号,采样频 率必须大于原信号频谱中最高频率的两倍, 即
s 2m
1.推导过程
采样的脉冲序列
周期序列 x(n) x(n N)
N为整数
对正弦序列来说
sin( n) sin[( n N)]
令 2 m
sin( n 2 ) sin[( n N ) 2 ] sin( n 2 N 2 )
m
m
mm
等式成立的条件为 : N 2 2K m
RN (n)
1
……
0
N-1
N
n
RN (n) 和 u(n)、 (n) 的关系:
N 1
RN n un un N n k n n 1 n N 1 k 0
实指数序列
x(n) anu(n)
t
x(nTs )
0
t
Ts
2. 数学描述
xS (nTS ) x(t)T (t) x(t) (t nTS )
假设采样脉冲为理想脉冲
xS (nTS ) x(nTS ) (t nTS )
只考虑正值时间
xS ( nTS ) x( nTS ) ( t nTS )
N Km
z(n) x(n) y(n)
二、序列的运算
序列加减乘 设序列 x(n)与 y(n)
z(n) x(n) y(n) z(n) x(n) y(n)
注意: 时刻对齐
序列移位
z(n) x(n m)
序列翻转
z(n) x(n)
序列的尺度变换
y(n) x(Mn) y(n) x(n / L)
x(n)
x(0) x(2)
x(1)
0
n
x(3)
本章主要内容
离散时间信号——序列 采样定理及实现 离散时间信号的相关分析
离散时间信号的Z 域分析
离散系统描述与分析 物理可实现系统
2.1 离散时间信号——序列
一、序列的表示 单位采样序列
(n)
1 0
n0 n0
(n)
(1)翻褶
x(k)
54 3
N1=5
21
0
k
h(n) N2=3
3 2
0
n
h(-k)
3 2 1 k
(2)平移
x(k)
54 3
21
0 h(1-k)
k
3 2 1
(3)相乘 x(k)h(-k)=5×1=5 x(k)h(1-k)=5*2+4*1=14 x(k)h(2-k)=5*3+4*2+3*1=26
k 0 x(k)h(3-k)=4*3+3*2+2*1=20
x(k)h(4-k)=3*3+2*2+1*1=14 x(k)h(5-k)=2*3+1*2=8 x(k)h(6-k)=1*3=3
(4)相加
y(பைடு நூலகம்) 26
14 5
20148
3
0
n
信号转换过程
2.2 采样定理及实现
一、采样过程 1. 模拟信号
采样器
离散的脉冲信号
x(t)
x(nTs )
Ts (t)
x(t)
x(2n)
x(n)
0 1 2 34 56
n
0 1 2 34 56
n
x(n / 2)
0 1 2 3 4 5 6 7 8 9 10 11 12
n
序列的离散卷积
z(n) x(n) * y(n) x(m) y(n m) m
翻褶、移位、相乘、相加
x(n)
54 3
N1=5
21
0
n
第2章 离散时间信号分析
离散时间信号
离散时间信号(discretetime signal)是离散时间变
量n的函数,它只在规定的
离散时间点上才有函数值, 在其他点无定义。在离散 信号处理过程中,离散时 间信号表现为在时间上按 一定次序排列的不连续的 一组数的集合,故称为时 间序列(time series or sequence)。
1
T m
e dt j(ms )t
2
T
( ms )
m
(2.2.5)
X ( j)
1
[X ( j)* ( j)]
2
将(2.2.4)和(2.2.5)代入上式:
X(
j)
1
2
[ 2
T
( ms ) * X (
x(n)
a 1
x(n)
0 a 1
0 123 …
n
x(n)
a 1
0 1 2 3…
n
x(n)
1 a 0
01 23 4 …
n
0 1 2 3 4…
n
正弦序列 x(n) Asin( n) n
Asin n
n
Ts 2 fTs 2 f / fs
1
0
n
(n
k
)
1 0
(k n) (k n)
(n)
1
0
k
n
单位阶跃序列
1 n 0 u(n) 0 n 0
u(n) (n m) m0
u(n)
1
…
-1 0 1 2 …
n
矩形序列
1 0 n N 1 RN (n) 0 n 0及n N
m
j)]
1
T m
X ( j ) ( ms )d
1 T
X(
m
j
jms )
1 T
X[
m
j( m
2 T
)]
2.几点说明
(1)频谱的幅度受 1 加权
T
(2)频谱产生了周期延拓,以
2
T
e
m
jm 2 T
t
时域采样信号是原始信号x(t)与脉冲序列的乘积
X(t)的频谱:
X ( j) x(t)e jt dt
(2.2.4)
脉冲序列频谱:
( j)
T
(t)e
jt dt
1
e
jm
2 T
t
e
jt dt
T m
jm2 t
T (t) (t nT ) cme T
m
cm
1 T
T/2
jm2 t
(t nT)e T dt
T / 2 n
1
T /2
jm2 t
(t)e T dt
1
T T / 2
T
T
(t)
1 T