静脉注射纯度级别人血浆丙种球蛋白(IgG)纯化流程

合集下载

丙球蛋白制作过程

丙球蛋白制作过程

丙球蛋白制作过程丙球蛋白是一种重要的免疫球蛋白,它在人体中具有重要的免疫调节功能。

丙球蛋白的制备过程主要包括采集血浆、分离、纯化和灭菌等步骤。

下面将详细介绍丙球蛋白的制作过程。

丙球蛋白的制备需要采集血浆。

血浆是血液中没有凝固的部分,它含有丰富的蛋白质和其他营养物质。

采集血浆的过程一般通过静脉采血实现,采血后将血液置于离心机中离心分离,得到血浆。

接下来,需要对血浆进行分离。

分离的目的是将血浆中的各种成分分离出来,以得到丙球蛋白。

分离的方法有多种,其中最常用的是冷沉淀法。

该方法通过在低温下将血浆进行冷冻,然后将冷冻的血浆进行离心,将沉淀物与上清分离开来。

分离后的上清中含有丙球蛋白,但其中还夹杂着其他蛋白质和杂质。

因此,需要对上清进行纯化。

纯化的目的是去除杂质,提高丙球蛋白的纯度。

纯化的方法有多种,常用的是离子交换层析法和凝胶过滤法。

离子交换层析法是利用离子交换树脂的特性,将血浆中的蛋白质分离开来。

这种方法可以根据蛋白质的电荷大小来进行分离,从而得到纯净的丙球蛋白。

凝胶过滤法则是利用凝胶的孔隙大小来分离蛋白质,将丙球蛋白与其他蛋白质分离开来。

经过纯化后,得到的丙球蛋白需要进行灭菌处理,以确保其无菌。

灭菌的方法有多种,常用的是高温灭菌法和紫外线灭菌法。

高温灭菌法是将丙球蛋白置于高温环境中,使其中的微生物被杀灭。

紫外线灭菌法则是利用紫外线的杀菌作用,对丙球蛋白进行灭菌处理。

经过灭菌处理的丙球蛋白就可以进行包装和贮存了。

包装的目的是保护丙球蛋白不受外界环境的污染,贮存的目的是延长丙球蛋白的保质期。

常见的包装方式有玻璃瓶和注射器等,贮存一般在低温下进行,以确保丙球蛋白的质量。

丙球蛋白的制备过程包括采集血浆、分离、纯化、灭菌和贮存等步骤。

这个过程需要严格的操作和控制,确保丙球蛋白的质量和安全性。

丙球蛋白的制备是一项复杂的工艺,但通过科学的方法和技术,可以获得高纯度和高活性的丙球蛋白,为临床应用提供重要的免疫治疗药物。

血清免疫球蛋白G的分离纯化及鉴定

血清免疫球蛋白G的分离纯化及鉴定

血清免疫球蛋白G的分离纯化及鉴定实验八血清免疫球蛋白G的分离纯化及鉴定为了初步掌握蛋白质的分离纯化技术,选择了从家畜血清中分离纯化免疫球蛋白G (Immunoglobulin G,简称IgG)的实验。

血清中的蛋白质有数十种之多,IgG是球蛋白的一种。

分离纯化蛋白质的方法是利用不同蛋白质的某些物理、化学性质(如在一定条件下带电的情况、分子量、溶解度等)的不同而建立起来的,其中有盐析、离子交换、凝胶过滤、亲和层析、制备电泳和超速离心等。

在分离纯化时,要根据情况选用几种方法互相配合才能达到分离纯化一种蛋白质的目的。

本实验采用硫酸铵盐析、DEAE-纤维素离子交换及凝胶过滤等方法,提取家畜血清中IgG。

其原理及操作如下:㈠硫酸铵盐析1.试剂饱和硫酸铵溶液pH7.0:称取(NH4)2SO4760g,加蒸馏水至1000ml,加热至5℃,使绝大部分硫酸铵溶解,置室温过夜,取上清液,用氢氧化铵调pH至7.0。

(内含0.15mol/L NaCl,简称PBS):取0.2mol/L Na2HPO4磷酸缓冲溶液(0.01mol/L,pH7.0)溶液30.5ml,0.2mol/L NaH2PO4溶液19.4ml,加NaCl8.5g,加蒸馏水至1000ml。

磷酸缓冲溶液(0.0175mol/L,pH6.7)(不含NaCl,简称PB):取0.2mol/L Na2HPO4溶液43.5ml,0.2mol/L NaH2PO4溶液56.6ml混合,用蒸馏水稀释至1000ml。

2.操作①取家畜血清5ml,加磷酸缓冲溶液(0.1mol/L,pH7.0)5ml,混匀,滴加(边摇边搅拌)饱和硫酸铵4ml(此时溶液硫酸铵饱和度约为20%)。

静置20min,以3000r/min 离心15min,沉淀为纤维蛋白(弃去),上清液中含清蛋白、球蛋白。

②取上清液,再加饱和硫酸铵溶液6ml(方法同前),此时溶液硫酸铵饱和度为50%,静置20min,以3000r/min 离心15min,上清液中含清蛋白,沉淀为球蛋白。

大量纯化蛋白的简易步骤

大量纯化蛋白的简易步骤

纯化蛋白的简易步骤纯化1.配制培养基LB, 挑取菌种至含有抗生素的LB液体培养基中(50ml+1管菌种),37 ℃ 220rpm培养。

2.取10mL培养的菌液转接到1000 mL新鲜的LB抗性培养基中,37 ℃220 rpm培养至OD600≈0.4-0.5。

3.将培养箱温度调至20℃,转速调至180rpm,继续培养约0.5h-1h(取出1mL菌液作为诱导前对照)。

之后加入1 M IPTG至终浓度为0.1-1 mM(本次实验的浓度为0.1mM),继续诱导培养大约9-10小时(取出1mL菌液作为诱导后对照)。

4.4℃,4000rpm离心,15min收集菌体。

沉淀可冻于-80℃保存(做蛋白结晶尽量不要冻存)。

5.配制buffer A,如下6.加入适当的buffer A (含有100mM PMSF 1:100、10mg/mL Dnase 1: 1000、2M MgCl21:2000)。

1000mL菌液收的菌,加入30mL即可,太少超声时容易起泡。

7.混匀后冰上放置20Min,期间不时的震荡。

混合物使用液压破碎(比超声破碎好)。

8.离心10000rpm,4℃,45min,彻底去除菌体碎片,取上清备用。

(一定不要菌体碎片!取4ul+4ulLB 作为binding前的对照)9.Ni beads的预处理:取适量beads,加入适量的buffer A,如800uL beads(1000mL菌液沉淀)加入1mL buffer A,800rpm,2.5min,洗3次。

10.将步骤6所得的上清与预处理好的beads加入50mL的离心管中,封口膜封口后,静音混匀器4℃binding1-2h(时间过长蛋白易降解)。

11.将binding后的溶液过柱(取4ul+4ulLB 作为binding后的对照),加入10CV wash buffer,放置10min后冲洗(取4ul+4ulLB 作为wash后的对照)。

Wash buffer: buffer A+20mM imidazole12.洗好的beads加入适量(5CV)的elution buffer,放置10min后洗脱。

人血丙种球蛋白制造及检定规程

人血丙种球蛋白制造及检定规程

人血丙种球蛋白制造及检定规程本品系由乙型肝炎疫苗免疫健康人的血浆或血清经低温乙醇法提取的免疫球蛋白制剂。

含两种球蛋白90%以上。

用于常见病毒性感染的被动免疫,主要用于预防麻疹和传染性肝炎。

1 制造1.1制造要求与《人血白蛋白(低温乙醇法)制造及检定规程》中1.1项规定相同。

1.2制造工艺1.2.1采用低温乙醇法。

可含适宜稳定剂(如含甘氨酸,应为0.3或0.4mol/L)。

1.2.2分批每批制品最少应由1000名以上健康献血员的血浆(清)混合制成。

同一制造工艺同一空中溶解稀释的制品作为一批,不同滤器除菌过滤或不同机柜冻干的制品应分为亚批。

1.2.3半成品检定液体制剂于除菌过滤后应做理化检查(残余乙醇含量≤0.03%)及热原质试验,并按亚批抽样做无菌试验。

直接分装时应留样做上述实验。

1.2.4 冻干半成品经检定合格后及时分装,并按《人血白蛋白(低温乙醇法)制造及检定规程》1。

2。

5项规定进行冻干,但制品温度不得超过35℃。

1.3剂型与规格1.3.1剂型分为液体及冻干两种。

1.3.2规格液体制剂蛋白质浓度为10%。

液体和冻干制剂每瓶(支)蛋白质装量均为150mg、300mg。

1.4制品重滤和再制与《人血白蛋白(低温乙醇法)制造及检定规程》中1.4项相同。

2 成品检定2.1抽样每批成品应抽样做全面检定,不同机柜冻干的制品应分别抽样做无菌试验及水分测定。

2.2物理检查2.2.1外观冻干制剂应为白色或灰白色的疏松体,无融化迹象。

液体制剂和冻干制剂溶解后溶液应为接近无色,可带乳光,或淡黄色澄明液体,不应含有异物、混浊或摇不散的沉淀。

2.2.2冻干制剂溶解时间冻干制剂加入20~25℃标示量的灭菌注射用水后,应在15分钟内完全溶解。

2.2.3热稳定性试验液体制剂置57±0.5℃水浴保温4小时后,应无凝胶化或絮状物。

2.3化学检定按《生物制品化学检定规程》进行。

2.3.1水分冻干制剂的水分含量应≤3%(g/g)。

丙种球蛋白的制备综述

丙种球蛋白的制备综述
丙种球蛋白的电泳制备
—预习方案
指导老师:韦平和 彭佳平
组别:第二组
成员:张婉月 臧赢 徐洁 严梦迎
陈孝颜
丙种球蛋白概念
• 中文简称:“丙球” 英文名称:γ-globulin、 gamma globulin 别名: 免疫血清球蛋白,普通免 疫球蛋白,人血丙 种球蛋白,丙种球蛋白,静脉 注射用人免疫球蛋白 (pH4) 丙种球蛋白预防传 染性肝炎,预防麻疹等病毒性疾 病感染,治疗先 天性丙种球蛋白缺乏症 ,与抗生素 合并使用,可 提高对某些严重细菌性和病毒性疾病 感染的疗效。 注:由于人血中的免疫球蛋白大多数为丙种球蛋 白 (γ-球蛋白),有时丙种球蛋白也被混称为 “免疫球 蛋白”(immunoglobulin) 。
• 垂直平板: 1多个样品在同一块凝胶上,电泳条 件一致--便于利用各 种鉴定方法,直接比较各 种样品区带,保证结果的准确可靠 2可以进行双 向电泳 3电泳时热量容易消散,凝胶结果便于照 相和易于制成干胶 圆盘电泳: 1、缺点是由于聚 合效应,凝胶的长度和直径有细微差别, 即使同 一样品在两个凝胶柱上以同样的条件电泳,其结 果也 会不同 2、但是研究工作中还会用到圆盘电 泳,例如 测定放射性标 记的样品测定蛋白质的生 物活性;测定蛋白质分离的最适pH, 凝胶浓度; 双向电泳中第一相的分离。
电泳
• 作用:用于分离蛋白质和寡核苷酸。 原理 聚丙烯酰胺凝胶为网状结构,具有分子筛 效应。 它有两种形式:非变性聚丙烯酰胺 凝胶及SDS-聚丙烯 酰胺凝胶(SDSPAGE);非变性聚丙烯酰胺凝胶, 在电 泳的过程中,蛋白质能够保持完整状态, 并依 据蛋白质的分子量大小、蛋白质的形 状及其所附带 的电荷量而逐渐呈梯度分开。
实验步骤
• (1)溶液的配制 a) a贮液为49.5%T,3%C b) b贮液为49.5%T,6%C。 c) 胶缓冲液为3molTris d) 0.3g/LSDS用HCl调pH值至8145 e) 阳极缓 冲液为0.2molTris f) 用HCl调pH值至8.9。 g) 阴极缓冲液为0.1molTris h) 0.1molTricine i) 0.13g/LSDS用HCl 调pH值至8125。 j) 样品缓冲液 为3molTris(pH8.45) k) 0.8gSDS l) 0.3molDTT m) 少许溴酚蓝,定容至 10ml。 n) 胶的制备:按文献分别配制分离胶、间隙胶和浓缩胶,依次 灌胶。 • (2)样品处理 • 去除血清Байду номын сангаас蛋白后的样品与2倍体积 U9缓冲液 (9molUrea,2%CHAPS,1%DTT) 混匀,400~600r/min冰浴振荡30min 变性。取变性后样品与样品缓冲液 等体积混匀,60℃水浴加热5min。 • (3)电泳 • 内槽装阴极缓冲液,外槽用阳极缓冲液恒压 电泳,先40V约1.5h,当样品 进入分离胶时,电 压升至60V约1.5h。

丙型肝炎病毒抗体(胶体金法)标准操作规程

丙型肝炎病毒抗体(胶体金法)标准操作规程

丙型肝炎病毒抗体(胶体金法)标准操作规程1.检验目的用于体外定性检测人血清或血浆样本中的丙型肝炎病毒(HCV)抗体。

2.检验程序的原理和方法采用胶体金免疫层析技术,应用间接法原理定性检测人血清(浆)HCV抗体。

在玻璃纤维素膜上预包被金标鼠抗人IgG抗体(anti-IgGAb),在硝酸纤维素膜上检测线和对照线处分别包被重组丙肝混合抗原(Core、NS3、NS4、NS5,源自大肠杆菌)和人IgG 抗体(丙种球蛋白)。

检测阳性样本时,血清样本中HCV-Ab与胶体金标记鼠抗人IgG 抗体结合形成复合物,由于层析作用复合物沿纸条向前移动,经过检测线时与预包被的抗原结合形成“Au-anti-IgGAb-HCVAb-HCVAg”夹心物而凝聚显色,游离金标鼠抗人IgG抗体则在对照线处与人IgG抗体结合而富集显色。

阴性标本则仅在对照线处显色,15分钟内观察结果即可。

3.性能特征3.1用国家参考品测定,产品性能应符合以下要求。

3.1.1阴性参考品符合率:对20份阴性参考品进行检测,要求在15分钟内全部显示阴性结果。

3.1.2阳性参考品符合率:对20份阳性参考品进行检测,要求在15分钟内全部显示阳性结果。

3.1.3最低检出量:灵敏度1号1:8进行检测,要求在15分钟内显示阳性结果。

灵敏度2号1:64进行检测,要求在15分钟内显示阳性结果。

3.1.4精密性:用精密性参考品平行检测10次,均在15分钟内显示出清晰可辨的检测线,且显色深度无显著差别。

3.1.5稳定性:试剂盒置37℃20天,阴性参考品符合率、阳性参考品符合率、最低检出量和精密性均应符合要求。

3.2乙肝、人类免疫缺陷病毒(HIV)、甲肝、庚肝、戊肝、类风湿因子(RF)、红斑狼疮等各种类型的标本不会对测试产生干扰。

3.3胆红素(342.0μmol/L)、胆固醇(20.7mmol/L)、血红蛋白(5.0g/L)、甘油三酯(28.2mmol/L)),不影响检测结果。

蛋白质分离纯化的一般程序可分为以下几个步骤

蛋白质分离纯化的一般程序可分为以下几个步骤

蛋白质分离纯化的一般程序可分为以下几个步骤:(一)材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。

所以要采用适当的方法将组织和细胞破碎。

常用的破碎组织细胞的方法有: 1. 机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。

常用设备有,高速组织捣碎机、匀浆器、研钵等。

2. 渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。

3. 反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。

这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。

4. 超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。

5. 酶法如用溶菌酶破坏微生物细胞等。

(二) 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。

抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。

如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。

在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。

(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。

比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。

常用的有下列几种方法:1. 等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。

2. 盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。

被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。

3. 有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。

能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。

此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。

由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。

实训 血浆中IgG的分离纯化

实训  血浆中IgG的分离纯化

实训血浆中IgG的分离纯化[任务描述]IgG是免疫球蛋白(简称IgG)的主要成分之一,分子量约为15万~16万。

IgG是动物和人体血浆的重要成分之一。

血浆蛋白质的成分多达70余种,要从血浆中分离出IgG,首先要进行尽可能除去其他蛋白质成分的粗分离程序,使IgG 在样品中比例大为增高,然后再纯化而获得IgG。

盐析法是粗分离蛋白质的重要方法之一,是利用各种蛋白质所带电荷不同、相对分子质量不同,致使在高浓度的盐溶液中溶解度就不同,因此一个含有几种蛋白质的混合液,就可用不同浓度的中性盐来使其中各种蛋白质先后分别沉析下来,达到分离纯化的目的,这种方法称为分级盐析。

其中最常用的盐析剂是硫酸铵,本实训任务利用硫酸铵饱和溶液沉淀并分离目的蛋白质。

[任务实施]一、准备工作1.建立工作小组,制定工作计划,确定具体任务,任务分工到个人,并记录到工作表。

2.收集硫酸铵盐析血浆中的IgG工作中的必须信息,掌握相关知识及操作要点,与指导教师共同确定出一种最佳的工作方案。

3.完成任务单中实际操作前的各项准备工作。

(1)材料准备新鲜动物血清(2)试剂饱和硫酸铵溶液:取化学纯(NH4)2SO4800g,加蒸馏水1000ml,不断搅拌下加热至50~60℃,并保持数分钟,趁热过滤,滤液在室温中过夜,有结晶析出,即达到100%饱和度,使用时用浓NH4OH调至PH7.0。

0.2mol/L pH7.2的磷酸盐缓冲液(PBS)其配制方法如下:①配A液:0.2mol/L 磷酸氢二钠溶液(称取磷酸氢二钠5.37g加去离子水定容至100mL)②配B液:0.2mol/L磷酸二氢钠溶液(称取磷酸二氢钠3.12g加去离子水定容至100mL)③取A液约72mL,取B液约28mL,然后将这两种溶液边混合边用高精度pH试纸检测,调配成约100mL浓度为0.2mol/L pH7.2的磷酸盐缓冲液备用。

(3)器具离心机、烧杯(500mL和250mL)、高精度pH试纸、大容量瓶、移液管、玻璃棒等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A chromatographic method forthe production of a humanimmunoglobulin G solution forintravenous useK. Tanaka, E. Sawatani, Divisão de Produção e Desenvolvimento Industrial,E.M. Shigueoka, Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, SP, BrasilT.C.X.B. Campos,H.C. Nakao, G.A. Dias,R.K. Fujita and F. ArashiroAbstractCorrespondence Immunoglobulin G (IgG) of excellent quality for intravenous use was Key wordsK. Tanaka obtained from the cryosupernatant of human plasma by a chromato-•Immunoglobulin G Divisão de Produção e productiongraphic method based on a mixture of ion-exchange, DEAE-SepharoseDesenvolvimento Industrial •Hemoderivate productionFF and arginine Sepharose 4B affinity chromatography and a finalFundação Pró-Sangue Hemocentro •Intravenous gammapurification step by Sephacryl S-300 HR gel filtration. The yield of 10de São Pauloglobulin productionexperimental batches produced was 3.5 g IgG per liter of plasma. AAv. Enéas C. Aguiar, 155, 1º andar•Industrial chromatography05403-000 São Paulo, SP solvent/detergent combination of 1% Tri (n-butyl) phosphate and 1%•Downstream processTriton X-100 was used to inactivate lipid-coated viruses. Analysis of the final product (5% liquid IgG) based on the mean for 10 batches Publication supported by FAPESP.showed 94% monomers, 5.5% dimers and 0.5% polymers and aggregates.Anticomplementary activity was 0.3 CH50/mg IgG and prekallikreinactivator levels were less than 5 IU/ml. Stability at 37o C for 30 days in theliquid state was satisfactory. IgG was stored in flasks (2.5Received April 28, 1998 Accepted August 18, 1998 g/flask) at 4 to 8o C. All the characteristics of the product wereconsistent with the requirements of the 1997 Pharmacopée Européenne.Introduction or purification by ion-exchange and gel filtrationchromatography (4,5). The IgG iso-Commercially available liquid or lyo-lated from human plasma in the 1940’s and philizedimmunoglobulins G (IgG) are pro-1950’s by the method of fractionation with duced from pooledhuman plasma from a cold ethanol of Cohn and Oncley (2,6,7) was large number of donors,usually more than suitable for intramuscular use and could not one thousand, so that a widevariety of anti-be administered intravenously because of bodies will be present in the product (1). undesirable effects due to the modifications Several production processes are employed, in the IgG molecule, such as aggregates re-most of them based on the method of Cohn sulting from the fractionation process with (2), i.e., fractionation with cold ethanol, with ethanol and other agents which increased its polyethyleneglycol (PEG) precipitation (3) anticomplement activity (8,9).Thus, the major goal of IgG producers was to develop methods that would guarantee intravenous tolerance, eliminating or preventing the aggregation of molecules without affecting the activity of the antibodies present in the IgG preparation. The first process for the production of intravenous(iv) IgG was based on treatment of IgG with a quantity of pepsin (10) or plasmin (11) that caused enzymatic cleavage of IgG molecules. This process, corresponding to the preparation of first-generation iv IgG, is today considered to be obsolete (9).Specific structural changes of IgG were introduced in the enzymatic methods to re-duce anticomplementary activity. The prod-ucts thus obtained usually have reduced in vivo survival times and their continuous use may cause an antigen response depending on the enzyme used (12). The second-gen-eration iv IgG consisted of chemically modi-fied preparations with more or less impaired Fc-related effector functions (9). From 1975 to 1989, the chemical modification of the protein was probably the most successful approach to the preparation of iv IgG (12). The reagents used for this modification range from ß-propiolactone (13) to reducing/alkylating agents (12,14), reducing/amidating agents (15) and reducing/sulfonating agents (16).Today, all of these preparations are being replaced with third-generation products con-taining intact IgG molecules which retain effector functions. The latest generation in-cludes preparations that are free of comple-ment-activating aggregates thanks to the use of small or trace amounts of pepsin, pH 4.0, PEG and bulk adsorption with ion-exchange gel (9). This development was encouraged by the fact that the chromatographic method provides a safe and effective iv IgG product meeting the 1982 requirements of the World Health Organization Committee (17). The choice of a third-generation preparation which exhibits all the functions of the IgG molecule will be determined on the basis of safety in terms of viral transmission and absence of contaminants. Furthermore, the preparation should contain a normal distri-bution of IgG subclass molecules and have a half-life after infusion (9) which is in the physiological range of 21 to 36 days. Material and MethodsProduction equipmentPharmacia liquid chromatography equip-ment was employed using a Bio Process controller (Uppsala, Sweden). The following columns were used: step 1, desalting, gel filtration on Sephadex G-25, 1 column, mo-del BPSS 400/600 (60 cm in height by 40 cm in diameter). Step 2, anion-exchange DEAE-Sepharose FF, 1 column, model PS-370/15 (15 cm in height and 37 cm in diameter). Step 3, affinity gel Arginine Sepharose 4B (40%) + anion-exchange DEAE-Sepharose FF (60%), 1 column, model PS-370/15 (15 cm in height by 37 cm in diameter) and cation-exchange CM-Sepharose FF, 1 column, model Index 200/500 (15 cm in height and 20 cm in diameter). Step 4, cation-exchange CM-Sepharose FF, 1 column, model Index 200/500. Step 5, gel filtration on Sephacryl S-300, 1 column, model BPG 200/ 950 (95 cm in height and 20 cm in diameter).Other instruments used were a tangential flow ultrafiltration Pellicon cassette system and a filtration system with a stainless steel sanitary filter holder, 293 mm in diameter (Millipore, Bedford, MA, USA), and a con-tinuous flow centrifuge model AG BKA-6 (Westphalia Separator, Oeld, Germany). Details about the buffer solutions are given in Table 1.Preparation of immunoglobulin G Approximately 1200 human plasma bagsstored at -30o C were thawed at a temperature of 2 to 4o C in order to form a 200-l pool. Thawed plasma was centrifuged at 2o C toBraz J Med Biol Res 31(11) 1998obtain a cryoprecipitate to be used for the production of factor VIII. The supernatant of the cryoprecipitate was cleared by filtration through a 30-S depth filter (Zeta Plus, Cuno, Meriden, CT, USA) and desalted with coarse Sephadex G-25 filtration gel on a BPSS 400/ 600 column using 5 mM sodium acetate as elution solution. The pH was adjusted to 5.2 with 1 M CH 3CO 2H and the protein solution (410 l) was allowed to stand overnight in a cold chamber at 4oC for euglobulin precipi tation. On the following day the preparation was centrifuged at 4oC to remove the pre cipitated euglobulins and the supernatant was cleared by filtration. The pH was readjusted to 5.2 with 1 M CH 3CO 2H and conductivity was adjusted to 1.4 mS/cm with NaCl. The sample was applied to a PS-370/ 15 column containing DEAE-Sepharose FF in order to separate gamma-globulin (unadsorbed) from other plasma proteins such as albumin, etc.The gamma-globulin fraction was submitted to chromatography for the preparation of IgG as described below. The albumin fraction was further purified by a chromatographic method (18). The pH of the gamma-globulin fraction (480 l) was adjusted to pH6.0 with 1 M NaOH and conductivity was adjusted to 1.4 mS/cm. The fraction was then applied to two columns, PS-370/15 and Index 200/500, coupled in series. The first column was packed with a mixture of two gels, 40% arginine Sepharose 4B and 60% DEAE-Sepharose FF, and the second with 8 l of CM-Sepharose FF gel.Arginine + DEAE-Sepharose and CM-Sepharose FF Equilibration 20 mM sodium acetate, pH 6.0, and conductivity 1.4 mS/cm Elution of arginine + DEAE-Sepharose FF 0.5 M sodium acetate, pH 7.0, and conductivity >20 mS/cm Elution of CM-Sepharose FF 1.0 M NaCl, pH 7.0 Cleaning and storage 0.5 M NaOH and 10 mM NaOHCM-Sepharose FF (after virusinactivation) Equilibration 10 mMglycine, pH 7.0 Elution 0.1 M glycine + 0.15 M NaCl, pH 9.0 Cleaning and storage 0.5 M NaOH and 10 mM NaOHSephacryl S-300 HR 1st Equilibration 0.1 M sodium acetate + 50 mM NaCl, pH 6.0 2nd Equilibration 0.15 M NaCl, pH 6.0 Elution with2nd equilibration buffer Cleaning and storage 0.5 M NaOH and 10 mM NaOHTable 1 - Buffer solutions used. Sephadex G-25 C Equilibration 5 mM sodium acetate, pH 7.0, and conductivity 0.37 mS/cmElutionwith equilibration buffer Cleaning and storage 0.5 M NaOH and 10 mM NaOHDEAE-Sepharose FFEquilibration 20 mM sodium acetate, pH 5.2, and conductivity 1.4 mS/cm1st Elution with equilibration buffer2nd Elution25 mM sodium acetate, pH 4.5, and conductivity 1.75 mS/cmThe proteins not of interest for the presentstudy, IgM, IgA, transferrin, etc, wereadsorbed to the first column. IgG wasadsorbed to the second column and eluted andconcentrated to 5% (w/v) using the-Thawing 4o CCryoprecipitate-CentrifugationCryosupernatantDesalting on Sephadex G-25 CSephadex fraction -Euglobulin precipitation at pH 5.2 -Kept overnight at 4o C -Centrifugation -Filtration SupernatantAlbumin fraction -Purification Unadsorbed + Gamma-globulin 60% DEAE-Sepharose FF 40% Arginine-Sepharose 4 BUnadsorbed protein fractionCM-Sepharose FFIgG -Concentration to 5% (w/ v) -S/D Virus inactivationCM-Sepharose FFIgG without S/D-Enzyme treatment (0.1 mg pepsin/g of IgG, pH 4) -Temperature 37o C/12 h -pH adjustment to 6.0 with 1.0 M NaOHSephacryl S-300IgG without enzyme or polymers-Concentration to 7% (w/v) -Formulation-Sterilization by filtrationFigure 1 - Flow diagram for the production of liquid intravenous IgG.Pellicon Cassette System 30,000 NMWL. The pH of the IgG solution (16 l) was adjusted to 5.5 and the material was submitted to viral inactivation with a solvent/detergent combination (19), i.e., 1% Tri (n-butyl) phosphate and 1% Triton X-100 at 35o C for 10 h. After viral inactivation, the solvent/deter-gent combination was removed by ion-ex-change chromatography on CM-Sepharose FF in an Index 200/500 column containing 8 l of gel. The IgG solution was concentrated to 7%, pepsin was added (0.1 mg/g protein), pH 4.0, and the solution was heated at 37o C for 10 h. The preparation was cooled to 20o C and then applied to a BPG 200/950 column containing 20 l of Sephacryl S-300 HR fil tration gel to remove the aggregated IgG molecules and pepsin. The eluted IgG solution was concentrated to 6.5% and then formulated as follows: the pH was adjusted to5.0 with 1 N HCl, the conductivity to 9 to 10 mS/cm with solid NaCl, and 7.5% (w/v) maltose and 0.1 M glycine were added as stabilizers (12,20). The material was steril-ized by filtration through a 0.22-µm mem-brane (Millipore) and the final product (14 l), containing 5% protein (w/v), was bottled in 50-ml type I (neutral) flasks, with 2.5 g IgG per flask and was stored at 4 to 8o C (see Figure 1).Analytical methodsThe characteristics of normal liquid 5% IgG for intravenous use were evaluated by the methods described in the Pharmacopée Européenne (1) and in Regulation No. 2.419 of 12/17/1996 of the Brazilian Ministry of Health.The immunochemical tests were carried out by cellulose acetate electrophoresis, by the micro-Ouchterlony method and by im-munoelectrophoresis using anti-total human protein and anti-animal protein antisera of domestic species such as horses, cows and sheep. Protein concentration was determined by the biuret method, pH was measured by Braz J Med Biol Res 31(11) 1998diluting to 1% in a 0.9% sodium chloride solution, and anti-A and anti-B hemaggluti-nins were determined by the indirect Coombs method. The presence of other plasma proteins such as IgA and IgM and of the IgG subclasses IgG1, IgG2, IgG3 and IgG4 was determined by radial immunodiffusion on Bindarid plates (The Binding Site Inc., San Diego, CA, USA).Anticomplementary activity was deter-mined by the method of Mayer using guinea pig complement and sheep red cells. The prekallikrein activator was determined using the S2302 chromogenic substrate of Chro-mogenix (Mölndal, Sweden).The biological safety of the product was evaluated by tests for the detection of anti-HIV, anti-HTLV-1 and 2, anti-HCV, and HB antigens at the Serology Laboratory of Fundação Pró-Sangue Hemocentro de São Paulo. Sterility was evaluated by the Steritest membrane method (Sterility Testing System, Millipore). Pyrogenicity and toxicity were tested at Medlab, São Paulo, Brazil.The distribution of monomers, dimers and polymers was evaluated by HPLC, and anti-polio I, II and III, anti-measles and anti-herpes activities were determined at Instituto Adolfo Lutz, São Paulo, Brazil. Anti-rubeola, anti-CMV and anti-streptolysin O activities were determined at the Immunology Laboratory of IAMSPE, São Paulo, Brazil. Stability was evaluated by incubating the preparation at 57o C for 4 h and observing the presence of jelling.Results and DiscussionThe size distribution of the product, evaluated by HPLC, indicated 94% monomers, 5.5% dimers and 0.5% polymers, corresponding to standard values. The profile of the IgG molecule did not show any alterations when the IgG preparation was incubated at 37o C for one month; the anticomplementary activ ity was 0.3 CH50/mg IgG, in agreement with the specifications that determine a value of less than 1 CH50/mg IgG, and the functional activity of Fc was unchanged, presenting an index of 125 to 128% of Fc, meeting the recommendationof Pharmacopée Européenne, whichrequires >60%. On the basis of these evaluations,we concluded that the product contained intactmolecules. The subclasses determined were IgG1= 65.6%, IgG2 = 28.7%, IgG3 = 4.2%, and IgG4= 1.4%, with no significant variations comparedto normal plasma. For prekallikrein activator(PKA) determination we used a reference PKAfrom the FDA and the S2302 chromogenicsubstrate of Chromogenix. Values of less than 5IU/ml 5% (w/v) IgG were obtained, well belowthe specification limit of 35 IU/ml of PKA. Theremaining data which characterize the productare presented in Tables 2 and 3, and celluloseacetateTable 2 - Characteristics of liquid intravenous IgG.N = 10. ND, Not detected. *Pharmacopée Européenne(1).Table 1 - Buffer solutions used.Sephadex G-25 CEquilibration 5 mM sodium acetate, pH 7.0, and conductivity 0.37mS/cmElution with equilibration bufferCleaning and storage 0.5 M NaOH and 10 mM NaOHDEAE-Sepharose FFEquilibration 20 mM sodium acetate, pH 5.2, and conductivity 1.4mS/cm1st Elution with equilibration buffer2nd Elution 25 mM sodium acetate, pH 4.5, and conductivity 1.75mS/cm3rd Elution 0.15 M sodium acetate, pH 4.0, and conductivity 8.0mS/cmCleaning and storage 0.5 M NaOH and 10 mM NaOHAnalysis Results Specifications*Protein concentration 5.0 ±0.2% >90 to <110%pH determination 4.5-5.0 4.0-7.4PKA determination <5.0 IU/ml <35 IU/mlPurity (electrophoresis) >99% >95%IgA ND -IgM ND -Anti-A hemagglutinin ≤1:8 <1:64Anti-B hemagglutinin ≤1:8 <1:64 Anticomplementaryactivity<0.3 CH50/mg IgG <1 CH50/mg IgGAluminum <20 µg/ml -Fc function 125-128% >60%electrophoresis and immunoelectrophoresis data are shown in Figures 2 and 3, respectively.We describe the preparation of intravenous 5% immunoglobulins in the liquid state from a pool of human plasma from 1200 donors by the chromatographic method. The analysesperformed for quality control showed that the IgG met international specifications. In thestability test involving heat-Table 3 - Antibodies detected in liquid intravenous IgG.N = 10.Antibody Method Titer and/or uniting to 57o C for 4 h there was no jelling, and in the quarantine test involving incubation in an oven at 37o C for 4 weeks, again there were no alterations in the IgG molecule.Viral inactivation was performed with a solvent/detergent system (19), i.e., 1% Tri (n-butyl) phosphate and 1% Triton X-100, pH 5.5, at 35o C for 10 h, which was then removed by the ion-exchange gel, CM-Sepharose FF. The protein aggregates gener ated during the process were removed by gel filtration chromatography through Sephacryl S-300 HR. Thus, the product obtained consisted mainly of the monomer, presenting only trace amounts of polymers, consistent with low anticomplementary activity, i.e.,less than 1 CH50/mg IgG.Anti-polio I Neutralization test 1:256 Anti-polio II Neutralization test 1:128 Of the several stabilizing agents tested,Anti-polio III Neutralization test 1:64 glucose, sucrose and maltose, the last one at Anti-measles Hemagglutination inhibition 1:64a 7.5% concentration, and 0.1 M glycine, pH Anti-rubeola ELISA 756 IU/ml5.0 (12,20), were found to be the most ap Anti-herpes Immunofluorescence 1:128 Anti-cytomegalovirus ELISA 898 IU/ml propriate. The IgG solution was limpid andAnti-streptolysin O Nephelometry 716 IU/mltransparent with no detectable molecular al-terations even when stored for more than 2years at 5 to 8o C.On the basis of in vitro and in vivo laboratorytests, we conclude that the product fullysatisfies all the requirements of thePharmacopée Européenne (1), as well as thenorms of the Brazilian Ministry of Health(Regulation No. 2419 of December 17, 1996).We are awaiting the results of clinical testscurrently underway to liberate the productfor use.Acknowledgments009 009Figure 2 - Cellulose acetate electrophoresis. a, Plasma pool (25 µl of 10 g/l); b, immunoglo-The authors wish to thank Dr. Hiroyoshi bulin G (25 µl of 30 g/l). Protein was detected with Ponceau S and the data are reported asIto from the Japanese Red Cross, Chitose, percent of total densitometer units.Hokkaido, Dr. Komei Ohashi fromKaketsuken, Kumamoto, and Dr. KentaroNakamura from Green Cross, Osaka, forFigure 3 - Immunoelectrophoretheir helpful suggestions and the opportunitysis. a , Plasma pool (2 µl of 10 g/ l); b , immunoglobulin G (2 µl ofof training at theirPlasmaFractionation a30 g/l). Protein was detected Plants inJapan, and Dr. Erica Kitahara, withlight green stain.bPharmacia Biotech, forsupplying the reagents.Braz J Med Biol Res 31(11) 199814. Pappenhagen A, Lundblad J & Schroeder D (1975). Pharmaceutical compositionscomprising intravenously injectable modified serum globulin, its production and use. US Patent No. 3,903,262.15. Schmidtberger R (1978). Amidated immune globulins and process for preparing them. US Patent No. 4,118,379.16. Masuho Y, Tomibes S, Matsuzawa K & Ohtdu A (1977). Development of an intravenous gamma-globulin with Fc activities.I. Preparation and characterization of S-sulfonated human gamma-globulin. VoxSanguinis , 32: 175-181.17. WHO Expert Committee on Biological Standardization (1982). Report of an informal meeting on intravenous immunoglobulins (human), Geneva.18. Tanaka K, Sawatani E, Nakao HC, Dias GA & Arashiro F (1996). An alternative column chromatographic process for the productionof human albumin. Brazilian Journal of Medical and Biological Research , 29: 185-191.19. Horowitz B, Wieb ME, Lippin A & Stryker H (1985). Inactivation of viruses in labile blood derivatives. Transfusion , 25: 516522. 20. McCue JP, Hein RH & Tendold R (1986). Three generations of immunoglobulin G preparations for clinical use. Reviews of InfectiousDiseases , 8 (Suppl 4): 374-381.Table 1 - Buffer solutions used. Sephadex G-25 C Equilibration 5 mM sodium acetate, pH 7.0, and conductivity 0.37 mS/cmElutionwith equilibration buffer Cleaning and storage 0.5 M NaOH and 10 mM NaOHDEAE-Sepharose FFEquilibration 20 mM sodium acetate, pH 5.2, and conductivity 1.4 mS/cm1st Elution with equilibration buffer2nd Elution 25 mM sodium acetate, pH 4.5, and conductivity 1.75 mS/cm3rd Elution0.15 M sodium acetate, pH 4.0, and conductivity 8.0 mS/cmCleaning and storage 0.5 M NaOH and 10 mM NaOH AnalysisResults Specifications* Protein concentration 5.0 ± 0.2% >90 to <110% pH determination 4.5-5.0 4.0-7.4 PKA determination <5.0 IU/ml <35 IU/ml Purity (electrophoresis) >99% >95% IgA ND - IgMND - Anti-A hemagglutinin ≤1:8 <1:64 Anti-B hemagglutinin ≤1:8<1:64Anticomplementary activity <0.3 CH 50/mg IgG <1 CH 50/mg IgG Aluminum <20 µg/ml - Fc function125-128%>60%Molecular distributionMonomers 94.0% mono + dimers = 90%Dimers5.5%A PRIVATE BRAZILIAN BIOTECHNOLOGY COMPANYLEADER IN THE BRAZILIAN INSULINMARKETDO YOU KNOW OUR COMPANY?If you don't know us or, if you already know us, did you realize we do all that? Call us! It will be a pleasure toserve you. BIOBRÁS S.A. Fax: 55-31-335-79-88。

相关文档
最新文档