机器人四大系统组成部分

合集下载

工业机器人-机器人系统由哪些部分组成?

工业机器人-机器人系统由哪些部分组成?

工业机器人-机器人系统由哪些部分组成?导语:机器人系统是由机器人和作业对象及环境共同构成的,其中包括机械系统、驱动系统、控制系统和感知系统四大部分。

机械系统工业机器人的机械系统包括机身、臂部、手腕、末端操作器和行走机构等部分,每一部分都有若干自由度,从而构成一个多自由度的机械系统。

此外,有的机器人还具备行走机构。

若机器人具备行走机构,则构成行走机器人;若机器人不具备行走及腰转机构,则构成单机器人臂。

末端操作器是直接装在手腕上的一个重要部件,它可以是两手指或多手指的手爪,也可以是喷漆枪、焊枪等作业工具。

工业机器人机械系统的作用相当于人的身体(如骨髓、手、臂和腿等)。

驱动系统驱动系统主要是指驱动机械系统动作的驱动装置。

根据驱动源的不同,驱动系统可分为电气、液压和气压三种以及把它们结合起来应用的综合系统。

该部分的作用相当于人的肌肉。

电气驱动系统在工业机器人中应用得较普遍,可分为步进电动机、直流伺服电动机和交流伺服电动机三种驱动形式。

早期多采用步进电动机驱动,后来发展了直流伺服电动机,交流伺服电动机驱动也逐渐得到应用。

上述驱动单元有的用于直接驱动机构运动:有的通过谐波减速器减速后驱动机构运动,其结构简单紧凑。

液压驱动系统运动平稳,且负载能力大,对于重载搬运和零件加工的机器人,采用液压驱动比较合理。

但液压驱动存在管道复杂、清洁困难等缺点,因此限制了它在装配作业中的应用。

无论电气还是液压驱动的机器人,其手爪的开合都采用气动形式。

气压驱动机器人结构简单、动作迅速、价格低廉,但由于空气具有可压缩性,其工作速度的稳定性较差。

但是,空气的可压缩性可使手爪在抓取或卡紧物体时的顺应性提高,防止受力过大而造成被抓物体或手爪本身的破坏。

气压系统的压力一般为0.7MPa,因而抓取力小,只有几十牛到几百牛大小。

控制系统控制系统的任务是根据机器人的作业指令程序及从传感器反馈回来的信号控制机器人的执行机构,使其完成规定的运动和功能。

工业机器人本体的基本组成

工业机器人本体的基本组成

工业机器人本体的基本组成
工业机器人本体的基本组成通常包括以下几个部分:
1. 机械结构:这是机器人的主体框架,包括底座、腰部、臂部、腕部和末端执行器等组成部分。

机械结构的设计需要考虑到机器人的负载能力、运动范围、精度要求等因素。

2. 驱动系统:驱动系统是为机器人提供动力的关键组件,它可以根据需要调节机器人的运动速度和方向。

常见的驱动方式有电动、液压、气压和伺服电机等。

3. 传感系统:传感系统用于感知机器人周围环境的变化,例如位置、速度、力/扭矩、温度等参数。

常用的传感器包括编码器、激光雷达、摄像头、红外线传感器等。

4. 控制系统:控制系统是机器人的“大脑”,负责接收传感器反馈的数据并进行处理,然后发出指令来控制机器人的动作。

控制系统通常由嵌入式处理器、操作系统、编程语言和人机界面等组成。

5. 执行机构:执行机构是机器人完成特定任务的关键组件,例如抓手、喷涂枪、焊接头等。

执行机构通常与末端执行器相连,可以根据需要进行调节和更换。

6. 配套软件和设备:除了机器人本体外,还需要相应的配套软件和设备来支持机器人的运行和维护。

例如机器人操作系统、编程软件、调试工具、维护手册等。

综上所述,工业机器人本体的基本组成包括机械结构、驱动系统、传感系统、控制系统、执行机构和配套软件和设备等多个部分,它们相互协作,共同实现机器人的功能和任务。

机器人系统的构成和工作原理以及各种传感器和运动控制技术的应用

机器人系统的构成和工作原理以及各种传感器和运动控制技术的应用

机器人系统的构成和工作原理以及各种传感器和运动控制技术的应用机器人系统的构成和工作原理以及各种传感器和运动控制技术的应用机器人是一种能够执行预设任务的自动化设备,它能够通过传感器感知环境并作出相应的动作。

机器人系统通常由以下几个主要组成部分构成:感知系统、决策系统和执行系统。

感知系统是机器人系统中非常重要的一个组成部分。

它通过各种传感器来感知环境,获取环境的各种参数和信息。

常见的传感器包括视觉传感器、声音传感器、力传感器等。

视觉传感器可以通过摄像头等设备获取环境中的图像信息,从而进行目标检测、跟踪和识别等工作。

声音传感器可以获取环境中的声音信号,用于语音识别和环境感知。

力传感器可以感知机器人与其他物体之间的力的大小和方向,用于碰撞检测和物体抓取等任务。

感知系统的信息将被传递给决策系统进行处理。

决策系统是机器人系统中的“大脑”,负责分析感知系统传来的信息,并做出相应的决策。

决策系统通常由一系列算法和模型组成,可以是简单的逻辑判断,也可以是复杂的机器学习算法。

它可以根据环境中获取到的信息进行路径规划、动作选择和任务分配等决策。

例如,在一个自主导航的机器人系统中,决策系统可以根据传感器获取到的地图信息和目标位置,确定机器人应该采取的行动路径,并进行障碍物避难和导航操作。

执行系统是机器人系统中用来实际执行任务的组成部分。

通常,执行系统由各种机械和电子设备组成,包括电动机、执行器、控制器等。

执行系统可以根据决策系统的指令,控制机器人的各种动作,例如行走、转动、举起物体等。

电动机通常作为驱动系统的核心,通过提供动力来帮助机器人完成各种任务。

执行系统的性能直接影响着机器人的动作效果和任务执行能力。

除了机器人系统的构成部分,各种传感器和运动控制技术在机器人系统中也起到了重要的作用。

传感器可以帮助机器人感知环境,并将感知到的信息传递给决策系统。

运动控制技术则可以控制机器人的运动,帮助机器人实现各种动作。

例如,机器人的手臂可以通过运动控制技术精确地进行物体抓取和放置,从而完成各种复杂的操作。

机器人的组成结构

机器人的组成结构
一般情况下,实现臂部的升降、回转或或俯仰等 运动的驱动装置或传动件都安装在机身上。臂部的运 动愈多,机身的结构和受力愈复杂。机身既可以是固 定式的,也可以是行走式的,即在它的下部装有能行 走的机构,可沿地面或架空轨道运行。
常用的机身结构: 1)升降回转型机身结构 2)俯仰型机身结构 3)直移型机身结构 4)类人机器人机身结构
根据臂部的运动和布局、驱动方式、传动和导向装 置的不同可分为:
1)伸缩型臂部结构 2)转动伸缩型臂部结构 3)驱伸型臂部结构 4)其他专用的机械传动臂部结构
3.机身和臂部的配置形式
机身和臂部的配置形式基本上反映了机器 人的总体布局。由于机器人的运动要求、工作 对象、作业环境和场地等因素的不同,出现了 各种不同的配置形式。目前常用的有如下几种 形式:
36
1. 滑槽杠杆式手部
2.齿轮齿条式手部
4. 斜 楔 杠 杆 式
3.滑块杠杆式手部
5.移动型连杆式手部
6.齿轮齿条式手部
7.内涨斜块式手部
8.连杆杠杆式手部
手指类型:
吸附式取料手
吸式取料手是目前应用较多的一种执行器,特别是用于搬 运机器人。该类执行器可分气吸和磁吸两类。 1)气吸附取料手
连杆(Link):机器人手臂上 被相邻两关节分开的部分。
刚度(Stiffness):机身或臂部在外力作用下抵抗变形的能力。 它是用外力和在外力作用方向上的变形量(位移)之比来度量。
自由度(Degree of freedom) :或者称坐标轴数,是指描述物体 运动所需要的独立坐标数。手指的开、合,以及手指关节的自由 度一般不包括在内。
• 圆柱坐标型机械手有一 个围绕基座轴的旋转运 动和两个在相互垂直方 向上的直线伸缩运动。 它适用于采用油压(或气 压)驱动机构,在操作对 象位于机器人四周的情 况下,操作最为方便。

第二章_机器人的机械结构分析

第二章_机器人的机械结构分析

关节型搬运机器人
关节型焊接机器人
第二章
机器人的机械结构
机器人的构型
5、平面关节型 (Selective Compliance Assembly Robot Arm ,简称SCARA) 仅平面运动有耦合性,控制较通用关节型简单。运动灵活 性更好,速度快,定位精度高,铅垂平面刚性好,适于装 配作业。
SCARA型装配机器人
有较大的作业空间,结构紧凑较复杂,定位精度较低。
极坐标型机器人模型
2018/11/2
Unimate
机器人
第二章
机ห้องสมุดไป่ตู้人的机械结构
机器人的构型
4、关节坐标型 (3R) 对作业的适应性好,工作空间大,工作灵活,结构紧凑, 通用性强,但坐标计算和控制较复杂,难以达到高精度。
2018/11/2
关节型机器人模型
2、圆柱坐标型 (R2P)
结构简单紧凑,运动直观,其运动耦合性较弱,控制也较 简单,运动灵活性稍好。但自身占据空间也较大,但转动 惯量较大,定位精度相对较低。
圆柱坐标型机器人模型
2018/11/2
Verstran 机器人
Verstran 机器人
第二章
机器人的机械结构
机器人的构型
3、极坐标型(也称球面坐标型)(2RP)
• 电动式
电源方便,响应快,驱动力较大,可以采用多种灵活的控制方案。
2018/11/2
第二章
机器人的机械结构
二、机器人的分类
1.按机器人的控制方式分类 (1)非伺服机器人 非伺服机器人按照预先编好的程序顺序进行工作, 使用限位开关、制动器、插销板和定序器来控制机器 人的运动。 (2)伺服控制机器人 通过传感器取得的反馈信号与来自给定装置的综合信 号比较后,得到误差信号,经放大后用以激发机器人 的驱动装置,进而带动手部执行装置以一定规律运动, 到达规定的位置或速度等,这是一个反馈控制系统。

机器人控制系统的组成

机器人控制系统的组成

机器人控制系统的组成
(1)机器人控制系统的组成
机器人控制系统是一种先进的来控制机器机器人走动和操纵关节电机的有效方法。

它将机器人硬件、传感器、控制算法和控制软件等整合在一起。

它具有以下特点:节点硬件模块简单,易于集成;控制算法高效;控制软件容量小;具有良好的容错性,可满足庞杂任务需求。

具体而言,机器人控制系统主要由以下几部分组成:
(1)机器人硬件:机器人控制系统的硬件组件包括电机、传动机构、执行系统等。

除此之外,还包括动力源、供电控制和传感器系统等其他设备。

(2)传感器系统:机器人控制系统需要依赖传感器系统来实现环境参数的监控和信号传输,而这种监控和信号传输的完成则要依赖传感技术的运用和传感器的精确定位。

(3)控制算法:机器人控制系统需要通过控制算法来实现机器人对环境的控制。

这种算法包括数学建模、状态/模式跟踪等。

(4)控制软件:机器人控制系统中的控制软件起着极其重要的作用,
它负责将传感器所捕捉到的环境参数数据传递给控制算法,从而实现控制算法的执行。

总之,机器人控制系统的组成包括:机器人硬件、传感器系统、控制算法和控制软件四个部分,它们共同起着控制机器人走动和操纵关节电机的作用。

只有有效的控制系统组成,才能够实现机器人无限的发挥。

机器人基本结构

机器人基本结构

Ps P
K1 K 2

• P,计算而得驱动力,传力机构结构形式和尺寸有 关,单位N;η手部机械效率,0.85~0.95;K1安 全系数,1.2~2;K2工况系数,K2=1+a/g,运动最 大加速度,重力加速度;
仿人机器人手部
• 对不同形状、不同材质的物体实施夹持和操 作,物体表面受力均匀,提高操作能力、灵 活性和快速反应能力,仿人手; • 柔性手:多关节串联,钢丝绳牵引,凹凸不 平的物体受力均匀; • 多指灵活手:多手指组成,每个手指三个回 转关节,每个关节独立控制; • 多关节柔性手,哈工大和德国宇航中心 HIT/DLR四指灵巧手,
精度
• 机器人精度主要依赖于机械误差、控制算法误差 和分辨率系统误差。 • 机械误差主要产生于传动误差、关节间隙、连杆 机构挠性。传动误差由齿轮间隙、螺距误差等引 起;关节间隙由关节处的轴承间隙、谐波齿隙等 引起;挠性随机器人位形、负载变化而变化。 • 控制算法误差指算法能否得到精确描述的直接解 和运算字长造成的BIT误差(小); • 分辨率系统误差可取1/2基准分辨率;机器人精度 可以认为1/2基准分辨率和机械误差的综合;若机 械综合误差达到1/2分辨率,则精度等于分辨率。
机器人本体材料
• • • • 从结构动力学特性出发选择材料要求: 强度高,减少臂杆截面积,减轻质量; 弹性模量大,变形小,刚度大; 重量轻,减小惯性力,选高弹性模量、低密 度材料; • 阻尼大,运动后平稳停下,加大阻尼,吸收 残余振动能量; • 经济性;
机器人本体常用材料
• 碳素结构钢和合金结构钢,强度大,弹性模量大, 抗变形能力强,应用最广; • 铝、铝合金及其他轻合金,弹性模量不大,但密 度小,比值可与钢相比; • 纤维增强合金,石墨纤维增强镁合金,弹性模量/ 密度非常大,昂贵; • 陶瓷,品质良好,易碎,日本,小型高精度机器 人使用; • 纤维增强复合材料,比值大,阻尼大(叠层复合 材料),老化、蠕变、高温膨胀等问题,高速机 器人应用; • 粘弹性大阻尼材料,对构件进行约束阻尼处理, 减小振动;

机器人系统组成

机器人系统组成
机器人系统结构
➢ 机器人系统通常由机械部分,控制系统,人机操作界面组成。 ➢ 机器人本体通常有四轴、六轴两种机械本体,有些还有七轴本体。 ➢ 控制系统由控制器、控制电机的伺服、用于外部的IO端子组成,集
成在控制柜中。 ➢ 人机操作界面主要就是示教器。
1
机器人系统结构
2
机器人系统结构
各部分名称: ① 底座 ② 转盘 ③ 平衡配重 ④ 连杆臂 ⑤ 手臂 ⑥手
3
机器人轴说明
各轴正负方向
4
各关节电机说明
各轴电机
5
各轴机械零点
6
机器人铭牌
7
ቤተ መጻሕፍቲ ባይዱ
管线包
8
线缆接口
9
示教器
smartPAD 示教器
操作机器人需要通过示教器来操作。
10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机器人四大系统组成部分
机器人是一种具备自主行动和人工智能的机械装置。

它可以执行各
种任务,无论是在工业生产中还是在日常生活中。

机器人的功能和性
能很大程度上取决于其系统的组成部分。

一个完整的机器人系统通常
由以下四大系统组成:感知系统、控制系统、执行系统和智能系统。

一、感知系统
感知系统是机器人系统的重要组成部分,它使机器人能够感知和理
解外部环境。

感知系统使用各种传感器和感知器件来获取信息,并将
其转化为数字信号供控制系统和智能系统使用。

感知系统可以包括视
觉传感器、声音传感器、触觉传感器、力传感器等。

视觉传感器能够帮助机器人识别和跟踪对象,通过摄像头获取图像,并将图像转化为数字信号以便机器人进行处理。

声音传感器可以帮助机器人感知声音信号,如语音识别和声音指令等。

触觉传感器可以让机器人感知外部的接触力和压力,从而更好地进
行操作。

力传感器可测量机器人施加的力或受到的力,以确保安全和精确度。

感知系统的作用是为机器人提供与环境的交互和理解能力,使其能
够做出相应的反应和决策。

二、控制系统
控制系统是机器人系统的核心,它负责接收并解释感知系统提供的
信息,并针对性地生成控制信号以操纵执行系统。

它基于机器人的操
作目标和任务要求,通过算法和规划,将高级指令转化为底层的动作
和运动。

控制系统通常包括硬件和软件两个方面。

硬件方面,它包括控制器、运动控制器、逻辑电路等。

软件方面,它包括运动规划算法、决策算
法等。

控制系统的设计和优化是确保机器人能够准确执行任务的关键。

三、执行系统
执行系统是机器人系统的执行力部分,它将控制系统提供的控制信
号转化为机械运动。

执行系统通常由电动机、液压系统或气动系统组成,根据机器人的具体用途和任务要求进行选择。

执行系统的功能是根据控制信号实现机器人的准确运动和操作。


可以实现机器人的各种机械动作,如移动、抓取、举起等。

四、智能系统
智能系统是机器人系统的大脑,它赋予机器人智能和学习能力。


能系统通过处理和分析感知系统提供的信息,并采取适当的决策和行动。

智能系统通常包括计算机系统和机器学习算法。

计算机系统负责处
理数据和进行高级算法,机器学习算法则通过分析数据和模式来改善
机器人的性能。

智能系统的作用是让机器人具备自主识别和学习的能力,从而能够适应不同的环境和任务。

综上所述,机器人的四大系统组成部分包括感知系统、控制系统、执行系统和智能系统。

这些系统密切配合,相互作用,使机器人能够感知和理解环境,执行任务,并具备智能和学习能力,为人们的生产和生活提供了巨大的便利和效益。

相关文档
最新文档