华中科技大学流体力学课件Fm7
合集下载
华中科技大学 流体力学第七章2

例 科里奥利力是非有势质量力。
第二章-1
定义 如果流体密度只是当地压强的单值函数,即 该流体为正压流体。 此时,可以定义一空间函数 或 -- 压强函数
第二章-1
正压条件 又可以表示为
第二章-1
定义 如果流体密度只是当地压强的单值函数,即
该流体为正压流体。 此时,可以定义一空间函数
或者
-- 压强函数
根据数学定理: 如果 A 是封闭曲线 L 所围的单连通区域,则
令 P = u, Q = v, R = w,
第二章-1
封闭曲线 L 上的速度环量与 L 所围单连通区域 A 上 的旋涡强度之间具有等量关系。
斯托克斯定理中的 A 可以是空间曲面 面积,而不一定要求是平面面积。
无旋流动 -- 沿流场中任意封闭曲线 L 的速度环量均为零
1.涡线与涡管
1
2
3
4
涡线 --- 处处与涡矢量 相切的空间曲线。
由于
涡线也可以被看成是流体质点的瞬时转动轴。
流线方程
涡线方程
涡线不相交,并且具有瞬时性。
第二章-1
涡管 -- 由涡线组成的管状曲面。 涡管强度 -- 涡管横截面积上的涡通量。
涡管的例子: 龙卷风涡核部分像柱形的刚体一样高速旋转,
解 在圆 x2 + y2 = 1上, 其速度环量为
第二章-1
2.旋涡强度
涡量 -- 速度场的旋度
面积A上的涡通量 -- 涡量在 A 上法向分量的积分 也称为旋涡强度(或涡强)
n -- 面积 A 上的法向单位矢量。
第二章-1
当面积 A 在 xoy 平面上,nx = 0,ny = 0,nz = 1 所以
A0
n2 A2
n0 n1
第二章-1
定义 如果流体密度只是当地压强的单值函数,即 该流体为正压流体。 此时,可以定义一空间函数 或 -- 压强函数
第二章-1
正压条件 又可以表示为
第二章-1
定义 如果流体密度只是当地压强的单值函数,即
该流体为正压流体。 此时,可以定义一空间函数
或者
-- 压强函数
根据数学定理: 如果 A 是封闭曲线 L 所围的单连通区域,则
令 P = u, Q = v, R = w,
第二章-1
封闭曲线 L 上的速度环量与 L 所围单连通区域 A 上 的旋涡强度之间具有等量关系。
斯托克斯定理中的 A 可以是空间曲面 面积,而不一定要求是平面面积。
无旋流动 -- 沿流场中任意封闭曲线 L 的速度环量均为零
1.涡线与涡管
1
2
3
4
涡线 --- 处处与涡矢量 相切的空间曲线。
由于
涡线也可以被看成是流体质点的瞬时转动轴。
流线方程
涡线方程
涡线不相交,并且具有瞬时性。
第二章-1
涡管 -- 由涡线组成的管状曲面。 涡管强度 -- 涡管横截面积上的涡通量。
涡管的例子: 龙卷风涡核部分像柱形的刚体一样高速旋转,
解 在圆 x2 + y2 = 1上, 其速度环量为
第二章-1
2.旋涡强度
涡量 -- 速度场的旋度
面积A上的涡通量 -- 涡量在 A 上法向分量的积分 也称为旋涡强度(或涡强)
n -- 面积 A 上的法向单位矢量。
第二章-1
当面积 A 在 xoy 平面上,nx = 0,ny = 0,nz = 1 所以
A0
n2 A2
n0 n1
大学物理流体力学精品PPT课件

个大气压, 即 p1 p2
那么 v1 2gh
这时出口处水流速度与自由落体速度相等。
15
文丘里流量计 (测量管道中液体体积流量)
h
如左图所示。当理想流体在管道中作
定常流动时,由伯努利方程
SA SB
由连续性原理
PA
1 2
v
2 A
PB
1 2
v
2 B
Q S Av A S B vB 又 PB PA gh
起初,人们认为表面光滑的球飞行阻力 小,因此当时用皮革制球。
最早的高尔夫球(皮革已龟裂)
20世纪建立流体力学边界层理论后才解开。
光滑的球
表面有凹坑的球
§2-4.液体的表面现象
在液体与气体的分界面处厚度等于分子有效作用 半径的那层液体称为液体的表面。
S
表示增大液体单位表面积所增加的表面能
2、表面张力系数的基本性质 (1)不同液体的表面张力系数不同,密度小、容易蒸发的 液体表面张力系数小。 (2)同一种液体的表面张力系数与温度有关,温度越高, 表面张力系数越小。 (3)液体表面张力系数与相邻物质的性质有关。 (4)表面张力系数与液体中的杂质有关。
表面张力系数的测定
拉脱法 拉脱法测量液体表面张力系数的实验仪器——焦利秤。
水膜的对金属框的作用力为
f 2 L
当拉起的水膜处于即将破裂的状 态时,两个表面近似在竖直平面内, 此时用焦利秤对金属框的作用力:
Fmfgm2 g L
则液体表面的张力系数: F mg
2L
液滴测定法 将质量为 m 的待测液体吸入移液管
1 2
v2
PA
PB
gh
v 2gh
3.飞机机翼周围的空气是如何流动的
那么 v1 2gh
这时出口处水流速度与自由落体速度相等。
15
文丘里流量计 (测量管道中液体体积流量)
h
如左图所示。当理想流体在管道中作
定常流动时,由伯努利方程
SA SB
由连续性原理
PA
1 2
v
2 A
PB
1 2
v
2 B
Q S Av A S B vB 又 PB PA gh
起初,人们认为表面光滑的球飞行阻力 小,因此当时用皮革制球。
最早的高尔夫球(皮革已龟裂)
20世纪建立流体力学边界层理论后才解开。
光滑的球
表面有凹坑的球
§2-4.液体的表面现象
在液体与气体的分界面处厚度等于分子有效作用 半径的那层液体称为液体的表面。
S
表示增大液体单位表面积所增加的表面能
2、表面张力系数的基本性质 (1)不同液体的表面张力系数不同,密度小、容易蒸发的 液体表面张力系数小。 (2)同一种液体的表面张力系数与温度有关,温度越高, 表面张力系数越小。 (3)液体表面张力系数与相邻物质的性质有关。 (4)表面张力系数与液体中的杂质有关。
表面张力系数的测定
拉脱法 拉脱法测量液体表面张力系数的实验仪器——焦利秤。
水膜的对金属框的作用力为
f 2 L
当拉起的水膜处于即将破裂的状 态时,两个表面近似在竖直平面内, 此时用焦利秤对金属框的作用力:
Fmfgm2 g L
则液体表面的张力系数: F mg
2L
液滴测定法 将质量为 m 的待测液体吸入移液管
1 2
v2
PA
PB
gh
v 2gh
3.飞机机翼周围的空气是如何流动的
流体力学基本原理PPT课件

优点:结构简单、阻力小、使用方便,尤其适用于测量气体管道内的流速。 缺点:不能直接测出平均速度,且压差计读数小,常须放大才能读得准确。
二、孔板流量计 孔板流量计.swf p1
1、结构和原理
两种取压方式:
(1) 角接法 取压口在法兰上;
(2) 径接法
1
上游取压口在距孔板1倍 管径处,下游取压口在距 孔板1/2倍管径处。
2000<Re<4000时,可能是滞流,也可能是湍流,与外 界条件有关。——过渡区
圆管内滞流与湍流的比较
本质区别 速度分布 平均速度 剪应力
滞流 分层流动
u
umax
1
r2 R2
um
1 2
umax
du dy
湍流
质点的脉动
1
u
umax
1
r R
n
(n
7)
um 0.82umax (n 7)
2、压强的表示方法
1)绝对压强(绝压): 流体体系的真实压强称为绝对压强。 2)表压 强(表压): 压力上读取的压强值称为表压。
3)真空度: 真空表的读数
绝对压强、真空度、表压强的关系为
表压
实测压力
绝对压
真空度 绝压(余压)
大气压 实测压力
绝对零压
表压=绝对压-大气压 真空度=大气压 - 绝对压
2、静力学方程的讨论
达到允许的最大高度,容器内液面
愈低,压差计读数R越大。
'
R
远距离控制液位的方法:
B
压缩氮气自管口 经调节阀通入,调 节气体的流量使气 流速度极小,只要 在鼓泡观察室内看 出有气泡缓慢逸出 即可。
R
Ah
压差计读数R的大小,反映出贮罐内液面的高度 。
二、孔板流量计 孔板流量计.swf p1
1、结构和原理
两种取压方式:
(1) 角接法 取压口在法兰上;
(2) 径接法
1
上游取压口在距孔板1倍 管径处,下游取压口在距 孔板1/2倍管径处。
2000<Re<4000时,可能是滞流,也可能是湍流,与外 界条件有关。——过渡区
圆管内滞流与湍流的比较
本质区别 速度分布 平均速度 剪应力
滞流 分层流动
u
umax
1
r2 R2
um
1 2
umax
du dy
湍流
质点的脉动
1
u
umax
1
r R
n
(n
7)
um 0.82umax (n 7)
2、压强的表示方法
1)绝对压强(绝压): 流体体系的真实压强称为绝对压强。 2)表压 强(表压): 压力上读取的压强值称为表压。
3)真空度: 真空表的读数
绝对压强、真空度、表压强的关系为
表压
实测压力
绝对压
真空度 绝压(余压)
大气压 实测压力
绝对零压
表压=绝对压-大气压 真空度=大气压 - 绝对压
2、静力学方程的讨论
达到允许的最大高度,容器内液面
愈低,压差计读数R越大。
'
R
远距离控制液位的方法:
B
压缩氮气自管口 经调节阀通入,调 节气体的流量使气 流速度极小,只要 在鼓泡观察室内看 出有气泡缓慢逸出 即可。
R
Ah
压差计读数R的大小,反映出贮罐内液面的高度 。
流体力学课件PPT课件

注意:恒定流中流线与迹线重合
第27页/共90页
四、流管、流束、元流、总流、过流断面
1.流管
在流场中通过任意不与流线重合的封闭曲线上各 点作流线而构成的管状面。
第28页/共90页
2.流束
流管内所有流线的总和。流束可大可小,视流管 封闭曲线而定。
•元流:流管封闭曲线无限小,故元流又称微元流束。 •总流:流管封闭曲线取在流场边界上,总流即为许
x
y方向:
my
(uy ) dxdydz
y
z方向:
mz
(uz ) dxdydz
z
据质量守恒定律:
第39页/共90页
单位时间内流进、流出控制体的流体质量差之总和
等于控制体内流体因密度发生变化所引起的质量增
量 即
mx
my
mz
t
dxdydz
将 mx、my、mz 代入上式,化简得:
(ux ) (u y ) (uz ) 0
第54页/共90页
1.伯努利方程的物理意义
• z mgz : 单位重量流体所具有的位能。 mg
•
p
mg
p
/
mg
:
单位重量流体所具有的压能。
•z p :
单位重量流体所具有的势能。
•
u2 2g
1 2
mu
2
/
mg
:
单位重量流体所具有的动能。
第55页/共90页
• z p u2 : 单位重量流体所具有的机械能。
第8页/共90页
§3-1 描述流体运动的方法
一、拉格朗日方法
1.方法概要
着眼于流体各质点的运动情况,研究各质点 的运动历程,并通过综合所有被研究流体质点的 运动情况来获得整个流体运动的规律。
流体力学第七章课件

,
y
u y
(2)在固壁上流体不能渗入亦不能脱离,故有
u n 0 即 0
n
这种边界条件下求解拉普拉斯方程的边值问题称为诺埃
曼(Neumen)问题,又叫第二类边值问题。
对于非定常流动,还需利用初始条件。
6
第七章 不可压缩理想流体的无旋运动
二、速度势与速度环量的关系
对于无旋势流,有
充要条件,我们把函数(x, y, z,t)称为速度势。这
里t为参变数。必有
d uxdx u ydy uz dz
1
第七章 不可压缩理想流体的无旋运动
由此说明了无旋必有势,反之可证有势必无旋。
又
d dx dy dz
x
y
z
故
ux
x
,
uy
2 21 22 2n 0
同理,对于不可压缩平面流动,若有
1 2 n
因为平面无旋势流满足 21 2 2 0
所以 2 21 2 2 2 n 0
18
第七章 不可压缩理想流体的无旋运动
x
y
0
故是无旋流。
(2)
ux x 2ay
积分 于是
2axy f y
uy
y
y
2axy
f
y
2ax
f y
y
15
第七章 不可压缩理想流体的无旋运动
故
2ax f y 2ax
y
f y df y 0
(1)流动是无旋还是有旋?
流体力学基础 ppt课件

➢流体介质是由连续的质点组成的;
➢质点运动过程的连续性。
流体的压缩性
不可压缩流体:流体的体积如果不随压力及温度变 化,这种流体称为不可压缩流体。
可压缩流体:流体的体积如果随压力及温度变化, 则称为可压缩流体。
实际上流体都是可压缩的,一般把液体当作不 可压缩流体;气体应当属于可压缩流体。但是,如 果压力或温度变化率很小时,通常也可以当作不可 压缩流体处理。
1.3 压强
垂直作用于流体单位面积上的力,称为流体的压强, 简称压强。习惯上称为压力。垂直作用于整个面上的 力称为总压力。
在静止流体中,从各方向作用于某一点的压强大小 均相等。
压强的单位: ❖ 帕斯卡, Pa, N/m2 (法定单位); ❖ 标准大气压, atm; ❖ 某流体液柱高度; ❖ bar(巴)或kgF/cm2等。
m v
(1-1)
式中 ρ —— 流体的密度,kg/m3;
m —— 流体的质量,kg;
v —— 流体的体积,m3。
不同的流体密度是不同的,对一定的流体,密度是压力p和 温度T的函数,可用下式表示 :
f(p,T)
(1-2)
液体的密度随压力的变化甚小(极高压力下除外),可忽略
不计,但其随温度稍有改变。气体的密度随压力和温度的变化
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
1)求干空气的平均分子量:
Mm = M1y1 + M2y2 + … + Mnyn
=32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体的平均密度为:
T0p 0 Tp0
即
2 2..4 6 8 9 2 3 2 7 7 1 9 .8 3 3 .3 0 1 1 1 1 4 30 0 0 .9k2 /g m 3
➢质点运动过程的连续性。
流体的压缩性
不可压缩流体:流体的体积如果不随压力及温度变 化,这种流体称为不可压缩流体。
可压缩流体:流体的体积如果随压力及温度变化, 则称为可压缩流体。
实际上流体都是可压缩的,一般把液体当作不 可压缩流体;气体应当属于可压缩流体。但是,如 果压力或温度变化率很小时,通常也可以当作不可 压缩流体处理。
1.3 压强
垂直作用于流体单位面积上的力,称为流体的压强, 简称压强。习惯上称为压力。垂直作用于整个面上的 力称为总压力。
在静止流体中,从各方向作用于某一点的压强大小 均相等。
压强的单位: ❖ 帕斯卡, Pa, N/m2 (法定单位); ❖ 标准大气压, atm; ❖ 某流体液柱高度; ❖ bar(巴)或kgF/cm2等。
m v
(1-1)
式中 ρ —— 流体的密度,kg/m3;
m —— 流体的质量,kg;
v —— 流体的体积,m3。
不同的流体密度是不同的,对一定的流体,密度是压力p和 温度T的函数,可用下式表示 :
f(p,T)
(1-2)
液体的密度随压力的变化甚小(极高压力下除外),可忽略
不计,但其随温度稍有改变。气体的密度随压力和温度的变化
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
1)求干空气的平均分子量:
Mm = M1y1 + M2y2 + … + Mnyn
=32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体的平均密度为:
T0p 0 Tp0
即
2 2..4 6 8 9 2 3 2 7 7 1 9 .8 3 3 .3 0 1 1 1 1 4 30 0 0 .9k2 /g m 3
流体力学基础讲解PPT课件

措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。
流体力学PPT演示文稿

第四十三页,共59页。
作用在平面上的流体静压力1
均质平板形心
x C
1 A
xdA
A
y C
1 A
ydA
A
A 对 x 轴的惯性矩
Ix
y2dA
A
惯性矩移轴定理
Ix Ixc yC2A
x
X
dA
y
(xc , yc)
Y
Ixc为A对通过形心并与x 轴平行的轴的惯性矩
第四十四页,共59页。
作用在平面上的流体静压力2
fx 2x fy 2 y
fz g
-a gf
第三十九页,共59页。
等角速转动液体的平衡3
代入方程
2x 1 p 0 x
2 y 1 p 0 y
g 1 p 0 z
第四十页,共59页。
等角速转动液体的平衡4
等压面
第四十一页,共59页。
z 2 r2 C
2g
一族旋转抛物面 自由面
压p = -2.74104Pa,h = 500mm,h1 = 200mm, h2 = 250mm,h3 = 150mm,求容器A上部的表压
第三十三页,共59页。
差压计
第三十四页,共59页。
p A p B 2 g2 h3 g3 h1 g1h
倾斜式测压计(微压计)
通常用来测量气体压强
p A m2g lsin1g h 1
第九页,共59页。
流体静压强的特性3
流体静压强的方向垂直于
作用面,并指向流体内部
静止流体任意点处静压强的大小与其作 用面方位无关,只是作用点位置的函数
第十页,共59页。
2.2 流体平衡的微分方程式
质量力
fxyz
表面力
作用在平面上的流体静压力1
均质平板形心
x C
1 A
xdA
A
y C
1 A
ydA
A
A 对 x 轴的惯性矩
Ix
y2dA
A
惯性矩移轴定理
Ix Ixc yC2A
x
X
dA
y
(xc , yc)
Y
Ixc为A对通过形心并与x 轴平行的轴的惯性矩
第四十四页,共59页。
作用在平面上的流体静压力2
fx 2x fy 2 y
fz g
-a gf
第三十九页,共59页。
等角速转动液体的平衡3
代入方程
2x 1 p 0 x
2 y 1 p 0 y
g 1 p 0 z
第四十页,共59页。
等角速转动液体的平衡4
等压面
第四十一页,共59页。
z 2 r2 C
2g
一族旋转抛物面 自由面
压p = -2.74104Pa,h = 500mm,h1 = 200mm, h2 = 250mm,h3 = 150mm,求容器A上部的表压
第三十三页,共59页。
差压计
第三十四页,共59页。
p A p B 2 g2 h3 g3 h1 g1h
倾斜式测压计(微压计)
通常用来测量气体压强
p A m2g lsin1g h 1
第九页,共59页。
流体静压强的特性3
流体静压强的方向垂直于
作用面,并指向流体内部
静止流体任意点处静压强的大小与其作 用面方位无关,只是作用点位置的函数
第十页,共59页。
2.2 流体平衡的微分方程式
质量力
fxyz
表面力